
Received 15 December 2023, accepted 27 December 2023, date of publication 1 January 2024,
date of current version 9 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3348836

A Portrayal of Sliding Mode Control Through
Adaptive Neuro Fuzzy Inference System
With Optimization Perspective
JIM GEORGE1,2, (Member, IEEE), AND GEETHA MANI 1, (Senior Member, IEEE)
1School of Electrical Engineering (SELECT), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
2Department of Electrical and Electronics Engineering, Muthoot Institute of Technology and Science, Ernakulam, Kerala 682308, India

Corresponding author: Geetha Mani (geethamr@gmail.com)

This work was supported by the Vellore Institute of Technology, Vellore, Tamilnadu.

ABSTRACT Sliding mode control is a promising approach for designing controllers for systems with
empirical characteristics. This is a favored nonlinear control strategy that effectively addresses the
uncertainties present in derived mathematical models. To further enhance the stability of such systems,
an Adaptive Neuro Fuzzy Inference System is employed by adapting to dynamic changes and inconsistent
correlations between excitation and response. In this study, Sliding Mode Control was deployed in the
feedback loop, effectively serving as a state feedback controller based on a nonlinear control law. As
a two-parameter control approach, Sliding Mode Control requires careful tuning to achieve optimal
performance. The integration of the Adaptive Neuro-Fuzzy System aims to bestow the two parameters of
Sliding Mode Control with the ability to rapidly reduce errors to zero, thereby enhancing overall control
efficiency. The research focuses on utilizing an Adaptive Neuro Fuzzy Inference System to implement
Sliding Mode Control for a DC servo system while emphasizing state feedback control. The Harmony
Search Optimization method is employed to optimize controller parameters effectively. The results of the
research demonstrate the achievement of a best-fit value, where the minimal standard error and Best fitness
are considered. This highlights the successful integration of the proposed control strategy and validates its
effectiveness in providing accurate and reliable control of the real-time DC servo system.

INDEX TERMS Adaptive neuro fuzzy inference system (ANFIS), best fitness, DC servo, Harmony search
algorithm, sliding mode control (SMC), standard error, standard deviation (σ ), integral square error (ISE).

I. INTRODUCTION
A servo motor is a type of variable speed drive that is widely
used in modern creation, process mechanization and building
innovation. Controlling the motor position is essential for
applications that use an accurate control structure. Servo
motors are widely used in applications that require precise
positioning, rapid switching and excellent performance. They
are often used in mechanical technology, global positioning
systems, PCs, CNCmachines, radar frameworks, mechanized
assembly lines, machine apparatuses, and other applications.
The response of the position control is the ideal position
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of the DC servo provided it is in closed loop. The servo
position needs to be controlled and the process involves a)
System modeling b) Feedback Control c) Controller Design
d) Actuator Control e) Closed-Loop Operation and f) Tuning
and Optimization.

According to [1], the position control of a dc servomotor
is achieved through the use of an adaptive back-stepping
controller. To select an appropriate control structure, the
recommended approach is to adjust the control parameters
to accommodate plant limitations. Reference [2] outlines
an online iterative process for identifying data based on
input yield, utilizing fault-responsive control for adaptability.
Implementation challenges include speed, level of control,
and the preferred method. Reference [3] stated that DC
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motor models can be developed without any prior knowledge
usingMarkovian-based and direct pseudo-inversionmethods.
Reference [4] demonstrated the application of sliding mode
observer-based control on a DC servo, which involves brief
transient stages, rapid combinations, and a reduction in
unwanted response. As stated in [5], a proposal for a wireless
servo motor drive that incorporates wireless power transfer
into the DC servo motor drive enables a wireless bidirectional
servo motion. As scripted in [6], addressing uncertainties and
disturbances in the motor system to achieve accurate position
control is achieved by robust control. A mathematical
model applied to servo position control was highlighted
in [25].

Sliding mode control is a highly effective nonlinear control
technique that utilizes a dynamic control law to direct a
system toward boundaries known as the sliding mode. This
method involves defining a hyper-surface or sliding surface
in the system’s state space, which is then used by the
control law to guide the system towards it via switching and
reaching control. One of the most significant advantages of
sliding mode control is its robustness against uncertainties
and disturbances. However, to achieve optimal performance,
tuning the control gains and parameters may be necessary,
and a mathematical model of the system is required. Overall,
sliding mode control is an excellent choice for systems that
require a high level of precision and stability.

As discussed in [7], a fuzzy-based Sliding Mode Con-
trol (SMC) approach is used to examine missile-to-target
maneuvering situations. ANFIS-based SMC is used to
develop an optimal path-tracking algorithm, which considers
factors such as impact angle and acceleration constraints to
accurately hit a moving target within a specific time frame.
Two methods - SMC and RBF-NTSMC. are employed in
[8]. The RBF-NTSMC was designed to minimize speed
errors, improve throttle responsiveness, and minimize system
chattering. As discussed in [9], this approach aims to reduce
sloshing in a partially filled fluid compartment through
controlled horizontal forces and moments using a pendulum
model. It involves creating a stable surface for better slosh
damping and employs a sliding mode observer to monitor
the sloshing conditions. Experimental findings closely match
simulations, and the possibility of implementing advanced
filters is considered to enhance the controller performance
by reducing delays. The focus of [10] was adaptive sliding
mode control for uncertain nonlinear systems. It is designed
to handle uncertainties and maintain a robust performance
despite unknown nonlinearities, and external disturbances.
Adaptive techniques continuously update control parameters
to ensure stability and tracking performance. Reference
[11],proposes an observer-based sliding mode control strat-
egy for uncertain nonlinear systemswith time-varying delays.
The control design utilizes an observer to estimate system
states and ensures robustness in the presence of uncer-
tainties and time-varying delays. Reference [12] presents
an adaptive sliding mode control approach for DC servo

systems with time delay. Control design utilizes adaptive
techniques to handle uncertainties and time delays and
achieve robust tracking performance in the presence of these
effects.

Combining fuzzy logic and neural networks, the ANFIS
computational paradigm enables human-like adaptive learn-
ing and reasoning through its five key components: fuzzy
sets, a fuzzy rule base, a fuzzy inference system, a neural
network structure, and a hybrid learning method. ANFIS
serves various purposes, including data modeling, system
identification, pattern recognition, and control, utilizing
if-then rules to describe the relationships between input and
output variables. Its fuzzy inference system parameters are
learned and adjusted iteratively through a hybrid learning
algorithm within the network. ANFIS proves effective in a
range of data modeling and control applications.

As indicated in [13], ANFIS is a hybrid intelligent strategy
that translates fuzzy logic into neural networks and vice
versa, facilitating efficient reasoning. Input space partitioning
is employed to handle complex nonlinear systems, utiliz-
ing training techniques such as Gradient Descent, RLS,
or Particle Swarm Optimization. The highlight of [14] is
the efficacy of ANFIS applied to a dc motor for modeling
and control applications. The controller applied provides
dynamic control parameters based on the change in motor
parameters. The design and deployment of ANFIS based
controller for dc servo is described in [15]. This controller
fine-tunes control signals based on input error and the rate
of change of error. Experimental results from this study
substantiate the controller’s effectiveness, showcasing its
ability to achieve precise position control and enhance overall
motor performance. According to [16], the ANFIS controller
adapts its parameters based on motor conditions, enabling
precise control. Compared with PID control, it shows
superior tracking accuracy and stability. As accentuated in
[17], the application of adaptive neuro-fuzzy control and
particle swarm optimization enhances the DC servo motor
performance. These techniques adapt to motor dynamics
and optimize control parameters, thereby improving the
accuracy and efficiency of conventional methods. The
experiments confirm the superior control performance of
this approach. As proposed in [28], an adaptive neural-fuzzy
sliding mode controller is used for the magnetic suspension
system of a low-speed maglev train. Simulations showed
that it effectively minimizes disturbances and parameter
fluctuations, with a robust and fast dynamic response. As
mentioned in [27], an adaptive fuzzy-based suspension
cooperative control system for Maglev Trains improves
stability and reduces errors using Adaptive Fuzzy Control.
This approach is proficient in optimizing energy consumption
and managing the concerns associated with nonlinear dead
loads and irregularities. The performance and comparison
of SMC and Conventional PI Controllers under various
conditions, including no-load and load, static, and transient
states are performed in [29]. The evaluation encompasses an
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analysis of control robustness, observing variations in system
position and speed, as well as investigating the chattering
effect. It highlights that while PI Controllers typically
maintain fixed Proportional Gain (Kp) and Integral Gain (Ki),
practical applications demonstrate that this practice leads to
uncertainty and variations in system parameters. Reference
[30], investigates three models, including sliding mode
evaluation, step response of a permanent magnet DC motor,
and a fractional order sliding mode controller for the DC
motor. Emphasizing a multi-input and multi-output nonlinear
system, the project uniquely addresses the reduction of
chattering effects through fractional order sliding mode,
examining critical parameters like load disturbance rejection
and reference velocity tracking capability essential for servo
motor speed control and revealing speed changes with vary-
ing parameters. Reference [31] introduces an adaptive neural
network tracking control method designed for a specific
group of uncertain strict-feedback nonlinear systems with
quantized input and output constraints. The control strategy
employs radial basis function neural networks to approximate
uncertain nonlinearities and utilizes a disintegration of
hysteresis quantizer. Additionally, it incorporates a log-type
Barrier Lyapunov function. This results in a computationally
efficient design that guarantees bounded signals, convergence
of output tracking error to a small domain around the
origin, and adherence to output constraints. Simulation
examples are provided to demonstrate the effectiveness
of the proposed control scheme in handling uncertainties,
quantized input, and output constraints. Asmentioned in [32],
develops a method, utilizing the hyperbolic tangent function,
to ensure that designed virtual control signals adhere to
state constraints on virtual control states. Additionally, the
research proposes an adaptive neural fixed-time tracking
control strategy for nonlinear systems with full-state con-
straints, expressing plans for future application to practical
issues and exploration of significant control challenges,
such as simultaneous arrival at the origin, addressing
unknown constants in Lyapunov functions, and compensating
for input nonlinearities using approaches from existing
literature.

Optimization is an intricate process that aims to identify the
optimal solution while considering the constraints and objec-
tives. This method involves a series of steps such as defining
the problem, selecting the appropriate technique, enhancing
the solution, and evaluating the outcome. It encompasses
different types of optimization such as deterministic and
stochastic approaches, continuous and discrete optimization,
single and multi-objective optimization, and global and
local optimization. In addition, heuristic and meta-heuristic
methods can be utilized to achieve the best results.

As accentuated in [18], an efficient track to tune PID
controllers for DC servo motors using the LJ optimization
algorithm which outperformed the ZN technique in min-
imizing the ISE, is ideal for this application. According
to [19], the ASO and ChASO algorithms optimize the

FOPID controller parameters for the DC motor speed
control, resulting in improved performance and robustness.
ChASO utilizes chaotic sequences for faster convergence
and precision, avoiding local minima. As stated in [20], the
Genetic Algorithm can optimize a PID controller for a DC
servo speed and position control. A GA-tuned PID controller
performs better than a ZN-tuned PID controller, improving
the control over the motor’s speed and position. As discussed
in [21], the OBL/HGO method was used to control the DC
motor speed using optimized PID parameters. This approach
minimizes errors and improves speed regulation while
avoiding local optima. In [22], a new version of the ASO
algorithm, hASO-SA, uses simulated annealing to improve
search capabilities. It outperformed other meta-heuristic
algorithms in optimization tasks. The study in [23] focused on
a PID controller tomaintain a steady pace for aDCmotor. The
Ziegler-Nichols method determines PID parameters. Particle
Swarm Optimization and Genetic Algorithms were used
for parameter estimation. The PSO algorithm outperformed
GA in achieving the desired results. In [24], K-DBSCAN
clustering was introduced, which combines the DBSCAN
algorithm with the novel-HS optimization algorithm to over-
come limitations in handling non-convex clustering and local
optima. The proposedmethod achieved superior performance
and shows promise for further clustering research.

This study contributes to the implementation of state
feedback sliding mode control, which is integrated with the
Adaptive Neuro-Fuzzy Inference System. The key states
considered for feedback in the DC servo system are angular
velocity (ω) and angular displacement (θ). By feeding
back these states, the sliding mode control parameters were
determined by ANFIS and then applied to the sliding
mode control law. To improve the system performance, the
obtained results were further optimized using the meta-
heuristic Harmony Search Algorithm. The effectiveness of
this optimization process and the optimal values obtained are
shown through plots that illustrate the number of iterations
and the best-fit analysis. Two crucial factors that contribute
to evaluating the performance of the closed-loop system are
the number of iterations and best-fit analysis. These factors
are presented as plots, supplemented by information on
standard deviations and standard errors. This comprehensive
analysis aids in understanding and assessing the efficiency
and reliability of the closed-loop control systems. Overall,
this study employs a combination of state feedback sliding
mode control, an Adaptive Neuro-Fuzzy Inference System,
and meta-heuristic optimization to enhance the performance
of the DC servo system. The research findings and visual
representations presented in the plots provide valuable
insights into the behavior of the system and the benefits of
the applied control strategies.

The organization of the paper is as follows: Section II
details the architecture of the Adaptive Neuro-Fuzzy Infer-
ence System based on SlidingModeControl, themathematics
involved in sliding mode control, the Hardware in Loop
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implementation of SMC, and the design of ANFIS for deter-
mining Sliding Mode Control parameters and comparison of
actual and predicted sliding mode control parameters high-
lighting standard error and standard deviation respectively.
Section III highlights Harmony Search Optimization and the
determination of the optimal periodic phase trajectory based
on the best fitness. Section IV presents on the results and
discussion. The results are obtained such that the best fitness
value coincides with a minimal value of the standard error
and standard deviation. Section V discusses conclusions and
provides a nutshell of the major findings.

II. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED
SLIDING MODE CONTROL OF DC SERVO
The focus of this work is to develop an equivalent ANFIS for
determining sliding mode control parameters of DC servo as
per section(5) in [26].The matching parameters with respect
to state variables x1 and x2 are θ and ω which account for the
angular position and angular velocity of the servo. The entire
control structure is designed and analyzed. In the design
phase, the design of ANFIS for the determination of sliding
mode control parameters is designed (refer to Figure 1) and
in the analysis phase, the performance of the system based on
the standard error, standard deviation, and the optimization
algorithm is discussed.

A. SLIDING MODE CONTROL
The Sliding Mode Control strategy is a two-phase strategy.
During the reaching phase, the system is directed along
a deterministic trajectory which drives towards a sliding
surface. As the system approaches this surface, a switching
function guides it to adhere to the sliding surface. This dual-
step process ensures stability by employing rigorous control
during the transient phase and surface control during steady
state. In essence, the system becomes locked onto the sliding
surface, reducing the need for continuous control. However,
it is important to note that sliding mode control does not
achieve zero error but ensures stability with minimal error.
Its applicability is limited to cases where the system is
subjected to bounded or limited disturbances. The subsequent
section highlights the mathematical expressions for the
design of the Sliding Mode controller. A key advantage of
Sliding Mode control is the ability to manipulate the system
by adjusting two parameters, thereby enabling effective
control [33].

1) MATHEMATICS OF SLIDING MODE CONTROL
The Degree of Freedom are considered to be the angular
position θ and angular velocity ω for dc servo.
Considering bounded disturbance χ as a function of θ and ω

with respect to time

|f (θ, ω, t)| ≤ χ > 0 (1)

The state model of dc servo is given in equation (2) and(3)
dθ

dt
= ω (2)

TABLE 1. Set of ρ and c values for Sliding Mode Control.

dω

dt
= u+ f (θ, ω, t) (3)

Equation (4) highlights the control rule for zero convergence

u = K1θ + K2ω K1 < 0,K2 < 0 (4)

Compensation dynamics is highlighted in equation (5)

dθ

dt
+ cθ = 0; c > 0 (5)

Asymptotic mode convergence is obtained under equation (6)
and (7).

θ (t) = θ (0)e−ct

ω(t) = −cθ(0)e−ct (6)

ζ = ζ (θ, ω) = ω + cθ; c > 0 (7)

Rate of change of ζ is given in equation (8)

dζ

dt
= cω + f (θ, ω, t) + u

ζ (0) = ζ0 (8)

Lyapunov function candidate is shown in equation (9)

V =
1
2
ζ 2 (9)

The equilibrium is ζ = 0
Stability constraints are as given in equation (10).

lim
|ζ |→∞

V = ∞

dV
dt

< 0; ζ ̸= 0 (10)

For stability V should be negative definite.
Derivative of Lyapunov function is given in equation (11),

dV
dt

= ζ
dζ

dt
= ζ (cω + f (θ, ω, t) + u) (11)

u = −cω + ν

ν = −ρ ∗ sgn(ζ ) (12)

Sliding Mode Control law is highlighted in equation (13).

u = −cω − ρsgn(ζ ) (13)

2) SLIDING MODE CONTROL- HIL IMPLEMENTATION
SlidingMode Control implementation technique is illustrated
in Figure 2. This study focuses on determining the sliding
mode control parameters based on ANFIS.
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FIGURE 1. Control structure showcasing state feedback sliding mode control via ANFIS.

FIGURE 2. Sliding mode control- hardware in loop implementation.

3) DETERMINING SLIDING SURFACE
The initial phase data were obtained by applying the
following set of ρ and c values to the SlidingModeController.

Equation (14) presents a mathematical representation of
the sliding surface, with equilibrium point ζ = 0 taken into
consideration. The slope of the sliding surface is governed
by the factor c, which influences the chattering effect. The
different sliding surfaces corresponding to the varying values
of c are shown in Figure 3.

ω

θ
= −c (14)

B. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM
1) ARCHITECTURE
Adaptive Neuro-Fuzzy Inference System (ANFIS) is a
hybrid computational model that combines the adaptive
capabilities of neural networks with the fuzzy logic

FIGURE 3. Sliding surfaces with slope -c.

FIGURE 4. Architecture of Adaptive Neuro Fuzzy Inference System [26].

system’s ability to represent and handle uncertainty. ANFIS
is particularly useful for modeling complex, nonlinear
relationships.
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ANFIS typically consists of five layers:
Layer 1 (Input Layer): Input variables θ and ω are

represented by nerons
Layer 2 (Fuzzy Inference Layer): Each neuron in this

layer corresponds to a fuzzy rule. The input values are
fuzzified here using membership functions.

Layer 3 (Normalization Layer): This layer normalizes
the degree of firing of the fuzzy sets.

Layer 4 (Consequent Layer): Neurons in this layer
represent the consequent parameters of the fuzzy rules. These
parameters are adapted during the learning process.

Layer 5 (Output Layer): The output is computed as a
weighted sum of the neurons’ outputs from the fourth layer.

2) PARAMETERS
Membership Functions: Each input variable has associated
membership functions that define the degree of membership
for each fuzzy set.Rule Parameters: Parameters in the fuzzy
rules, typically represented as antecedent and consequent
parameters. Learning Parameters: ANFIS uses a learning
algorithm to adapt the parameters during the training process.
Common algorithms include gradient descent and least
squares.

3) MATHEMATICAL MODEL OF ANFIS
Layer 1: Layer 1 of the Adaptive Neuro-Fuzzy Inference
System (ANFIS) is the Input Layer, responsible for fuzzifying
the input variables using Gaussian membership functions.
Considering input variables as x1,x2,..,xm,y1,y2,. . . ,ymdegree
of membership calculation is as shown in equation (15).

µAi,j = e
−.5(

xi−ci,j
di,j

)2

µBi,j = e
−.5(

yi−ci,j
di,j

)2
(15)

Equation (15), represents membership value of xi in the j-th
fuzzy set with input i. The parameters ci,j and di,j are themean
and standard deviation of the Gaussian membership func-
tions, respectively. These parameters are usually initialized
randomly and then adjusted during the training process using
a hybrid learning algorithm. Gaussian membership functions
define the fuzzy sets associated with each input variable, and
the Gaussian membership function equation determines the
degree of membership of each input variable in each fuzzy
set. These membership values are then used in subsequent
layers of the ANFIS for further computations. Layer 2: The
Fuzzy Inference Layer is Layer 2. Equations (16) and (17)
show how rules are activated and firing strength normalized.
respectively. The activation strength of each rule in Layer 2 is
driven by the degree of membership of the input variables in
the corresponding fuzzy sets.

wj = πm
i=1µAi,j (xi)µBi,j (yi) (16)

w′
j =

wj
6nm
k=1wk

(17)

Each input variables (m) are correlated with n fuzzy sets
and nm rules. The equations provided explicate the process
through which the membership functions of input variables
are utilized to determine the firing strength for each rule
within Layer 2. Subsequently, these firing strengths are
normalized and utilized by subsequent ANFIS layers for
additional calculations.

Layer 3: The Consequent Layer is Layer 3 of the Adaptive
Neuro-Fuzzy Inference System (ANFIS). In this layer,for
each rule, a linear function connecting the input variables
is associated with the consequent parameters.With yj being
the result of the j-th rule and P0,j, P1,j, P2,j,. . . , Pm,j as the
consequent parameters for rule j:

Equation (18) presents the inputs’ linear combination.

yj = P0,j + P1,jx1 + P2,jx2 + . . . + Pm,jxm (18)

yj represents the output of the j-th rule based on the linear
combination of input variables.These equations describe
how the consequent parameters are associated with a linear
function of the input variables in Layer 3 of the ANFIS.

Layer 4: Layer 4 of the Adaptive Neuro-Fuzzy Inference
System (ANFIS) is theOutput Layer, where the overall output
is computed based on the weighted sum of the outputs from
the Consequent Layer. Considering w′

j as the normalized
firing strength of j-th rule and yi,j as the ouput of the j-th rule,

fj =
6nm
j=1w

′
jyj

6nm
j=1w

′
j

(19)

In Equation (19), n is the number of fuzzy sets for each input
variable, m is the number of input variables,nm is the total
number of rules, and y is the overall output of the ANFIS.This
equation represents the weighted sum of the outputs from
the Consequent Layer, where each term is multiplied by the
normalized firing strength w′

j of the corresponding rule. The
sum of the normalized firing strengths in the denominator
ensures proper normalization of the output.

Layer 5:Layer 5 of the Adaptive Neuro-Fuzzy Inference
System (ANFIS) is theOutput Layer, where the overall output
is calculated based on the weighted sum of the outputs from
the Consequent Layer

f =
6nm
j=1w

′
jfj

6nm
j=1w

′
j

(20)

where fj is the linear combination of consequents, antecedents
and bias.

4) STEPS FOR DESIGNING ANFIS FOR ρ (ANFIS 1)
Membership function plots for inputs θ and ω and ρ as output
is shown in Figure 5 and Figure 6. Mathematical details of
corresponding membership functions are given in Table 2 and
Table 3.
Step 1: Inputs are θ and ω

Step 2: Select membership function of inputs as Gaussian
membership functions
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FIGURE 5. Membership function plot of ω for ρ.

FIGURE 6. Membership function plot of θ for ρ.

TABLE 2. Membership function - gaussian membership function of θ

for ρ.

TABLE 3. Membership function - gaussian membership function of ω

for ρ.

Step 3: Take data of ρ. The data were obtained from the
SMCdeployed individually. The data set is shown in Figure 7.
Step 4: The ANFIS architecture for ρ is shown in Figure 8.
The weight matrix is set to unity. The rule set with outputs

FIGURE 7. Data of ρ.

of the Takagi- Sugeno Model Type 3 ANFIS is shown in
Table 4. Step 5: Training error for ρ. Refer to Figure 9. Step 6:
Mapping of the training data and actual data with respect to
ρ is given in concise form in Table 8.

Step 7: The input and rule surface for ρ are plotted are
shown in Figures 10,11,12 and 13.

5) STEPS FOR DESIGNING ANFIS FOR C (ANFIS 2)
Membership function plots for inputs θ and ω and c as output
is shown in Figure 14 and Figure 15. Mathematical details of
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TABLE 4. ANFIS 1 output (ρ) with 7*7 rule set.

FIGURE 8. ANFIS architecture for ρ.

FIGURE 9. Training error for ρ.

corresponding membership functions are given in Table 5 and
Table 6.

Step 1: Inputs are θ and ω

Step 2: Select membership function of inputs as Gaussian
membership functions

Step 3:Take data of c. The data is obtained from SMC
control deployed individually. The data set is shown in
Figure 15.

FIGURE 10. Contour plot of ρ with angular velocity and angular position
as input.

FIGURE 11. Contour plot of ρ with angular velocity and angular position
as input (top view).

Step 4: The ANFIS architecture for c is shown in Figure 8.
The weight matrix is set to unity.The rule set with outputs of
the Takagi- SugenoModel Type 3 ANFIS is shown in Table 7.
Step 5: Training error for c. Refer to Figure 17. Step 6:

Mapping of training data and actual data with respect to c is
tabulated in Table 3 in a concise form.

Step 7: The input and rule surface for c were plotted as
shown in Figures 18,19,20 and 21.
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FIGURE 12. Contour plot of ρ with angular velocity and angular position
as input (side view from ω-ρ plane).

FIGURE 13. Contour plot of ρ with angular velocity and angular position
as input (side view from θ-ρ plane).

TABLE 5. Membership function - gaussian membership function of θ for c.

Training of ρ and c was performed using a hybrid
algorithm. In the context of ANFIS, a hybrid algorithm
refers to the combination of different optimization or learning
techniques to train the parameters of the ANFIS model
effectively. The purpose of using a hybrid algorithm is to
leverage the strengths of multiple algorithms and overcome
their individual limitations, leading to improved performance
and faster convergence in training the ANFIS models.

TABLE 6. Membership function - gaussian membership function of ω

for c.

The hybrid algorithm in ANFIS typically combines two
main components: fuzzy logic-based inference and neural
network-based learning.

The hybrid algorithm combines the fuzzy inference system
and neural network learning using a single optimization
process.The process usually involves two main steps:

a) Forward Pass: Fuzzy Inference System processes data,
determines rule firing strengths, and calculates output values
using membership functions and fuzzy rules.

b) Backward Pass: ANFIS model parameters update
through gradient descent, minimizing errors in a hybrid
algorithm that combines fuzzy logic’s interpretative reason-
ing with neural networks’ learning capabilities for adaptive
optimization.The process continues until a satisfactory con-
dition of performance or convergence is obtained. The hybrid
algorithm in ANFIS combines the strengths of fuzzy logic,
which provides interpretative and human-like reasoning,
with the learning capabilities of neural networks, which
enable the adaptation and optimization of fuzzy inference
system parameters. This combination allows ANFIS to learn
from data and effectively adapt to complex and nonlinear
systems. By utilizing a hybrid algorithm in ANFIS, the
model can benefit from the efficient pattern recognition
and generalization of neural networks while maintaining the
transparency and interpretability provided by fuzzy logic.

Table 8 shows the minimal Root Mean Square Error
corresponding to different ρ and c values. From table 8, the
minimal RMSE is obtained for ρ = 0.2 and c = 0.9.

C. COMPARISON OF ACTUAL AND PREDICTED VALUES OF
SLIDING MODE CONTROL PARAMETERS
The parameters of the sliding mode control are ρ and c.
Table 1 lists the values assigned to the physical system
for position control. In lieu of the given values (actual
values), it is necessary to check the efficiency of the
ANFIS. A comparison table along with the errors is given
in Tables 8 and 9. The standard deviation and standard error
are both statistical measures used to describe the dispersion
or variability of a data set.

III. HARMONY SEARCH OPTIMIZATION
Harmony Search (HS) is a metaheuristic optimization
algorithm that draws inspiration from the creative process
of musicians in the jazz band. The objective is to dis-
cover optimal solutions by emulating improvisation and
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FIGURE 14. Membership function of θ for c.

FIGURE 15. Membership function of ω for c.

TABLE 7. ANFIS 2 output (c) with 7*7 rule set.

FIGURE 16. Data of c.

harmonious collaboration among musicians. HS is applicable
to a wide array of optimization problems that are capable of
accommodating both continuous and discrete variables.

TABLE 8. Minimal Root Mean Squared Error (RMSE) for output of
ANFIS-based SMC for different control parameters.

The fundamental steps of the Harmony Search algorithm
are as follows:

Step 1:Initialization Generate an initial collection of
potential solutions called ‘‘harmonies’’ within the predefined
bounds of the decision variables of the problem.
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FIGURE 17. Training error for c.

FIGURE 18. Contour plot of c with angular velocity and angular position
as input.

FIGURE 19. Contour plot of c with angular velocity and angular position
as input (top view).

Step 2:HarmonyEvaluationAssesses the objective func-
tion for each harmony. The objective function encapsulates
the optimization criteria specific to the problem being solved.

FIGURE 20. Contour plot of c with angular velocity and angular position
as input (side view θ-c plane).

FIGURE 21. Contour plot of c with angular velocity and angular position
as input (side view ω-c plane).

Fitness function: The fitness function is given as in
equation (21).

fitnessfunction = @(length)sum((θ ∗ length− ω)2) (21)

• This fitness function determines best-fitness (length)
that minimizes the sum of squared differences between
the model predictions and the actual data.

• (θ * length - ω) computes the vector of differences
between the values obtained by multiplying each
element of θ with length and the corresponding elements
in ω.

• The sum of squares term in the objective function calcu-
lates the sum of squared differences, which represents
the fitness function value for a given length.

In the context of the objective function, the length represents
the magnitude or value of the objective function output
when evaluated with a specific set of decision variables. The
algorithm uses this length as a measure of the closeness
of the current harmony to the optimal solution. During
the optimization process, the HSO iteratively updates and
evaluates different harmonies, seeking to converge towards
harmonywith the shortest (in case ofminimization) or longest
(in case of maximization) length, which corresponds to the
optimal solution for the given problem.
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TABLE 9. ANFIS prediction for ρ.

In summary, the ‘‘length’’ in the objective function of
Harmony Search Optimization refers to the value of the
objective function for a specific harmony, serving as a
measure of the harmony’s quality and guiding the search for
the optimal solution.

Step 3: Harmony Memory Update Selects new har-
monies by combining elements from the existing harmony
memory. This process mirrors musicians building upon

TABLE 10. ANFIS prediction for c.

previous melodies during improvisation. Selection strategies
can include randomness, probability-based selection, or rank-
ing based on fitness values.

Step 4:Improvisation Generates novel harmonies by
perturbing selected harmonies. This involves altering specific
components while adhering to the harmony rules. For
instance, adjusting the values of the decision variables within
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predetermined ranges or applying specialized operators for
discrete variables.

Step 5: Harmony Evaluation Evaluates the objective
function for newly generated harmonies.

Step 6: Harmony Memory Update Update the harmony
memory by replacing certain existing harmonies with newly
generated ones based on their fitness values. The aim is to
enhance the quality of the harmonies stored in memory over
subsequent iterations.

Step 7: Termination Criteria Repeat steps 4-6 until
the termination condition is met. The termination condition
can be defined by the maximum number of iterations,
achievement of a desired convergence level, or any other
condition tailored to the specific problem.

Step 8: Solution Extraction Once algorithm concludes,
extract the best solution from the harmony memory based
on its fitness value. This solution represents the optimized
solution for the problem at hand.

A. PHASE TRAJECTORY
The phase variables considered are θ and ω. The phase
trajectory for the application of the ANFIS-based Sliding
mode control is shown below. To determine the optimal phase
trajectory optimization is performed. The unique nature of
the excitation signal establishes the initial condition as (0,0),
with two distinct final states: (1,0) and (−1,0). In terms of
radians and using a conversion factor, the final state (1,0)
indicates a clockwise rotation of π /4 radians, whereas the
final state (−1,0) signifies a counterclockwise rotation of
−π /4 radians. Analysis of the phase trajectory reveals that
the system endeavors to settle around these final states.
However, within a time span of 5 seconds, the excitation
undergoes variation. Consequently, the system toggles the
two final states. In addition, the phase trajectory exhibited a
stable node mode when the controller was applied. The phase
trajectories obtained in this study exhibited periodic behavior,
as they are influenced by the time-dependent variables of the
angular position (θ) and angular velocity (ω) [33]. As a result,
an analysis based on equilibrium points becomes irrelevant.
Moreover, the stability of the phase trajectory is indicated
by its closed nature. As the phase trajectory approaches the
sliding surface, the phenomenon of chattering occurs which is
apparent. The periodic phase trajectories for different values
of θ and ω are plotted in Figures 22,23,24,25,26 and 27.
The concept of a periodic phase trajectory is a fundamental

element in the analysis of dynamic systems. It refers to the
path followed by a system over time when it displays periodic
characteristics. As the system functions with respect to time,
it traces a trajectory in the phase space, where each point on
the trajectory corresponds to a specific state of the system at a
particular time. In instances of periodic behavior, the system
repeats its states after a defined time interval. The recurring
evolution of the system characterizes its periodic behavior.
The path taken by a system can take the form of either a closed
loop or a sequence of closed loops, indicating that specific
states are revisited at intervals throughout its progression.

This trajectory serves as a valuable tool for gaining a
deeper understanding of the stability, periodic nature, and
overall dynamics inherent in diverse physical phenomena. By
analyzing periodic phase trajectories, researchers can gain a
deeper understanding of the underlying principles governing
the systems and make predictions about their future behavior.
The optimal phase trajectory was determined by the assessing
best fitness based on the Harmony Search Optimization
technique. This in turn provides the performance index which
accounts for the low value of the Standard deviation and
Standard Error.

FIGURE 22. Periodic Phase trajectory and sliding surface for ρ = 0.3 and
c = 0.8.

B. DETERMINATION OF OPTIMAL PHASE TRAJECTORY
The parameters of Harmony Search optimization are listed
in Table 10. The significance of choosing an appropriate
value for Harmony Memory Consideration rate (hmCR) and
Harmony Memory Bandwidth (hmBW) is:

1)The HMCR determines the probability of selecting
a value from the Harmony Memory (a repository of
previously generated solutions) during the search process.
A higher HMCR value increases the likelihood of selecting
values from the Harmony Memory, thereby promoting the
exploitation of promising solutions. However, lower HMCR
value encourages the exploration of new solutions. The
appropriate choice of HMCR depends on the characteristics
of the optimization problem, balancing the exploration and
exploitation trade-off.

2) The HMBW determines the range within which new
values are generated based on the values selected from
the Harmony Memory. It controls the diversity of solutions
generated during the search process. A wider bandwidth
allows for a broader exploration of the solution space,
potentially finding global optima. Conversely, a narrower
bandwidth narrows the search for promising solutions,
focusing on the local optima. The selection of an appropriate
HMBW value depends on the landscape of the problem
and the balance between exploration and exploitation. The
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FIGURE 23. Periodic Phase trajectory and sliding surface for ρ = 0.2 and
c = 0.9.

FIGURE 24. Periodic Phase trajectory and sliding surface for ρ = 0.5 and
c = 1.

results of the Harmony Search optimization are plotted in
Figures 28,29,30,31,32 and 33.

The Harmony Search algorithm’s fitness value, in general,
can be either maximized or minimized as shown in nature
of the optimization problem was applied. In the context
of maximization problems, the algorithm aims to achieve
higher values or accuracy for the fitness function. It explores
and exploits candidate solutions that yield the best possible
fitness values. However, from the perspective of the phase
trajectory, the Harmony Search Approach can be considered
as a minimization problem. Specifically, it aims to minimize
the length of the phase trajectory. This trajectory refers to
a sequence of states through which a system evolves over
time. The objective of the algorithm is to find the optimal
set of parameters that result in the most efficient trajectory.
In the case of periodic phase trajectories, the Harmony Search
algorithm emphasizes toggling equilibrium points. The goal
was to identify the parameter configurations that lead to a
periodic trajectory with minimal error.

FIGURE 25. Periodic Phase trajectory and sliding surface for ρ = 0.3 and
c = 1.

FIGURE 26. Periodic Phase trajectory and sliding surface for ρ = 0.25 and
c = 0.95.

The fitness function plays a pivotal role in Harmony
Search Optimization (HSO) because it serves to evaluate
the quality of candidate solutions, known as harmonies,
and guides the algorithm towards discovering the optimal
solution. Its significance in HSO is highlighted by several
key aspects. a) Objective Assessment: The fitness function
quantifies the performance of a specific harmony in tackling
the optimization problem. Assigning a numerical measure to
the quality of the solution, indicates how close the harmony
is to achieving the desired or optimal outcome. b)Guiding
the Search: Throughout the iterative process of improving
harmonies over generations, the fitness function acts as
a compass, directing the search towards more favorable
solutions.This is done by evaluating the potential of each
harmony to meet the objective of the problem, steering
the optimization in the right direction. c)Convergence
and Termination: The fitness function plays a vital role
in determining when the optimization process should be
concluded. As harmonies evolve, the ideal scenario is for their
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FIGURE 27. Periodic Phase trajectory and sliding surface for ρ = 0.2 and
c = 1.

TABLE 11. HS parameters.

fitness values to approach the optimal solution. Termination
criteria, such as reaching a certain fitness threshold or a
maximum number of iterations, are established based on
these fitness values. d)Solution Evaluation: Acting as an
evaluator, the fitness function enables the HSO to assess the
performance of candidate solution without having to explore
the entire solution space. By doing so, the algorithm can
concentrate its efforts on promising solutions, leading tomore
efficient convergence towards the optimal outcome.e) View
into the Landscape: The relationship between solutions
and the accompanying fitness values is shown visually in
the fitness landscape. This realization aids in understand-
ing the complexity of the issue, including the smoothness
of the landscape and the occurrence of several local optima.
This knowledge makes it easier to modify the algorithm’s
parameters for improved performance.f) Finding the Correct
Balance Between Exploration and Exploitation: In the HSO,
the fitness function helps determine the appropriate ratio of
exploration to exploitation. The method utilizes high fitness
values to identify potential solutions and optimize the search
process while simultaneously exploring new regions in the
solution space to prevent getting stuck in local optima.
g) Parameter Tuning: Since HSO frequently incorporates a
number of parameters, including bandwidth, pitch adjustment
rate, and harmony memory consideration rate, the fitness
function is essential in fine-tuning these parameters. Through
tweaking, the algorithm’s performance is improved and its
capacity to adjust to the particular challenge at hand is
guaranteed.

IV. RESULTS AND DISCUSSIONS
To find the best values for the control parameters, two
techniques were used. ANFIS is used for the first, and
Harmony Search optimization is used for the second.

FIGURE 28. Harmony Search Best Fitness for ρ = 0.3,c = 0.8.

FIGURE 29. Harmony Search Best Fitness for ρ = 0.2,c = 0.9.

FIGURE 30. Harmony Search Best Fitness for ρ = 0.5,c = 1.

When ρ = 0.2 and c = 0.9 are used, an interesting
occurrence is seen using the ANFIS algorithm, which is
characterized by an encirclement of the contour plot. This
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FIGURE 31. Harmony Search Best Fitness for ρ = 0.3,c = 1.

FIGURE 32. Harmony Search Best Fitness for ρ = 0.25,c = 0.95.

FIGURE 33. Harmony Search Best Fitness for ρ = 0.8,c = 0.3.

fascinating finding clearly suggests the construction of an
ideal phase trajectory and demonstrates the effectiveness of
the ANFIS method in producing better outcomes. These

TABLE 12. Standard Error for ρ and c with respect to predicted values.

TABLE 13. Standard Deviation (σ ) for ρ and c with respect to predicted
values and best fitness.

particular parameter values are determined in large part
by the hybrid optimization technique built into the ANFIS
framework, which further supports the validity of the
results that are produced. Notably, we may achieve good
outcomes in a variety of problem domains by following
the ρ = 0.2 and c = 0.9 values thanks to the adaptability
of the ANFIS algorithm. These findings demonstrate the
efficiency of the algorithm across different scenarios and
highlight its versatility as a powerful tool for solving complex
problems across various domains. Validation through the
Harmony Search Optimization technique adds an extra layer
of confidence to the algorithm’s capabilities and sets the stage
for further exploration and application in practical settings

In essence, the fitness function serves as the driving force
behind Harmony Search Optimization, allowing for the eval-
uation of candidate solutions, guiding the search for optimal
solutions, and determining the conditions for termination. As
a critical component, it profoundly influences the behavior
and effectiveness of the algorithm in addressing complex
optimization problems. Tables 12 and 13 show the standard
error and standard deviation with respect to the actual and
predicted values of the sliding mode and the best fitness
value for the same. Table 13 indicates that the Best fitness
value achieved through the Harmony Search Optimization
algorithm aligns perfectly with the minimum value of the
standard error observed for the relevant parameters. Table 14
highlights the variation of ISE for different values of
control parameters. This finding provides strong evidence
to support the claim that the optimal value with the least
error for sliding mode control of DC servo systems for
position control is achieved when the parametersρ and c
take on the specific values of 0.2 and 0.9 respectively. The
Harmony Search Optimization algorithm demonstrated its
effectiveness in determining the optimal values for the control
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TABLE 14. Integral Square Error for variation in control parameters.

parameters.The minimization of standard error and Integral
Square error points ρ = 0.2 and c = 0.9 as the best fit
for achieving superior performance in the DC servo position
control system.

V. CONCLUSION
This study addresses the precise position control of a
real-time dc-servo system. The dc-servo is excited by the
periodic reference signal. The response and its derivative
form the periodic phase trajectory. The optimal periodic
phase trajectory is determined on the basis of the optimal
values of the sliding mode control derived through ANFIS
and HSO. These techniques supplement each other for the
same value of sliding mode control parameters

In this investigation, the sliding mode control concept,
reinforced by ANFIS, is applied to the feedback loop, with
the novelty of the state feedback control. By comparing this
novel architecture with traditional sliding mode control in
the feedback loop, the study demonstrated superior results,
highlighting the effectiveness of the proposed approach.
To ensure the optimality of the obtained control parameters,
this study employed a meta-heuristic Harmony Search
Algorithm. The primary goal of this algorithm is to maximize
the fitness value, aligning it with the objective of minimizing
the standard error and standard deviation associated with the
control parameters. This alignment of the maximum fitness
value with minimal error and deviation serves as a crucial
performance index, providing valuable insights along with
other standard indices to evaluate the system’s effectiveness.

The key findings of this study are highlighted below.
• Optimal values of ρ and c are 0.2 and 0.9 respectively.
• Minimal Root Mean Square error for output of Sliding
Mode Control law is obtained for the aforementioned
optimal values of ρ and c. Refer to Table 8.

• The standard error and standard deviation corresponding
to optimum values from the ANFIS perspective is
minimal. Refer to Table 12 and Table 13.

• Minimal ISE for obtained at ρ = 0.2 and c = 0.9
respectively. Refer to Table 14.

• Harmony Search optimization supplements the above
findings by Best- fitness value corresponding to least
squares estimation based on the length of phase
trajectory. Refer to Table 13.

The proposed control design and optimization technique
can make meaningful contributions to the field of control

systems by addressing challenges related to robustness,
adaptability, and optimization in diverse industrial applica-
tions. Its potential impact lies in improving the efficiency,
stability, and reliability of control systems across awide range
of industries.

In conclusion, SMC contributes to robustness by maintain-
ing the system on the sliding surface despite uncertainties
and disturbances. ANFIS adapts to varying system dynamics,
enhancing robustness in the face of changing conditions.HSO
optimizes the parameters of the combined SMC-ANFIS
controller, fine-tuning the system for better response and
minimizing error.The combination leverages the strengths of
each technique, leading to a controller that is both robust
and adaptable, capable of providing optimal performance
under different conditions. In this research, ANFIS was
meticulously adjusted to attain optimal parameters for sliding
mode control. The validation process affirmed the effec-
tiveness of the proposed approach. Integrating the periodic
phase trajectory concept with sliding mode control through
ANFIS, along with employing meta-heuristic optimization,
enhances the robustness and effectiveness of the real-time DC
servo system’s position control strategy. Through validating
the control parameters’ optimality and assessing diverse
performance indices, this study establishes the superiority of
the proposed method in achieving accurate and dependable
position control for a real-time DC servo system.
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