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ABSTRACT Intelligent Transportation Systems (ITS) make use of advanced technologies to optimize
interurban and urban traffic, reduce congestion and enhance overall traffic flow. Deep learning (DL)
approaches can be widely used for traffic flow monitoring in the ITS. This manuscript introduces the
Artificial Hummingbird Optimization Algorithm with Hierarchical Deep Learning for Traffic Management
(AHOA-HDLTM) technique in the ITS environment. The purpose of the AHOA-HDLTM technique is to pre-
dict traffic flow levels in smart cities, enabling effective traffic management. Primarily, the AHOA-HDLTM
model involves data preprocessing and an Improved Salp Swarm Algorithm (ISSA) for feature selection.
For the prediction of traffic flow, the Hierarchical Extreme Learning Machine (HELM) model can be used.
The HELM extracts complex features and patterns, with an additional Artificial Hummingbird Optimization
Algorithm (AHOA)-based hyperparameter selection process to enhance predictive outcomes. The simulation
result analysis under different traffic data demonstrates the better performance of the AHOA-HDLTM
technique over existing models. The hierarchical structure of the HELM model along with AHOA-based
hyperparameter tuning helps to accomplish enhanced prediction performance. The AHOA-HDLTM tech-
nique presents a robust solution for traffic management in ITS, showcasing enhanced performance in
forecasting traffic patterns and congestion. The AHOA-HDLTM technique can be used in various smart
cities and urban regions. Its abilities in real-time traffic flow prediction can be helpful in the design of
efficient, sustainable, and resilient transportation networks.

INDEX TERMS Smart cities, intelligent transportation system, deep learning, traffic management, feature
selection.

I. INTRODUCTION
In urban areas, high population growth leads to a growth in
carbon emissions, air pollution, and traffic congestion which
The associate editor coordinating the review of this manuscript and impact the environment negatively but also delay economic
approving it for publication was Shaohua Wan. growth and the life quality of people [1]. To overcome this
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challenge, intelligent transportation systems (ITS) have been
developed for the solution. Integrating advanced methodolo-
gies like the Internet of Things (IoT), artificial intelligence
(AI), and machine learning (ML) can improve transportation
security, sustainability, and efficiency [2]. ITS is the main part
of smart cities that can aid in improving the employment of
transportation infrastructure, enhance mobility for citizens,
and decrease traffic congestion. Traffic forecasts offer experts
a period to propose resource provisions to safeguard a safe
journey [3]. By congestion, the worth of street networks is
restricted. The decreases outcome in direct as well as indi-
rect charges for the public. The congestion effects on the
social structure and economic system have been researched
widely [4]. Prediction of traffic flow is regarded as one of
the time-series-based issues because the future cost of traffic
flow has been assessed based on the previous data from one
or more locations. The volume of data develops the big data
idea in the transportation field from a wide range of sources.
Depending upon the sort of data gathered, dissimilar artificial
intelligence (AI) techniques are utilized to value the over-
load parameters [5]. There are many methods for analyzing
and storing so big data have a risky effect on the predic-
tion task. The development of big data computing amenities
provides chances for attaining exactness in traffic data
prediction [6].

In recent times, Al and MI field has stemmed from the
capability to expect traffic congestion. Recently, this study
area has extended owing to the arrival of enormous infor-
mation from static sensor networks [7]. Numerous traffic
factors have been estimated to anticipate traffic congestion,
especially short-term congestion issues. Most researchers
on expecting traffic congestion use previous data. Whereas,
a few researchers have expected congestion issues in the real
period [8]. Congestion forecasting is one of the most chal-
lenging issues to resolve from the view of modifiability when
compared to traffic flow forecast in non-congested situations.
However, the Traffic supervisors implemented relief actions
to the alarm system. The shallow design technique has been
utilized for the prediction task in most cases. This framework
offers effective solutions for the small size of data only but
does not support big traffic data [9]. In recent days, a Deep
learning (DL) framework such as deep belief network (DBN),
DNN, recurrent neural networks (RNN), and CNN utilized in
several difficult applications such as video analysis, large data
set for image, natural language procedure and also in several
data mining procedure [10].

This manuscript presents an Artificial Hummingbird Opti-
mization Algorithm with Hierarchical Deep Learning for
Traffic Management (AHOA-HDLTM) technique in the ITS
environment. The AHOA-HDLTM technique initially per-
forms data preprocessing and improved salp swarm algorithm
(ISSA) based feature selection. For traffic flow monitor-
ing, the AHOA-HDLTM method applies a hierarchical ELM
(HELM) model. At last, the predictive result of the HELM
approach can be upgraded by the use of an AHOA-based
hyperparameter selection process. The enhanced perfor-
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mance of the AHOA-HDLTM method can be assured using a
detailed simulation analysis of diverse traffic data.

II. LITERATURE REVIEW

Abdullah et al. [11] designed a bi-directional RNN (BRNN)
employing GRU. The method employs a BRNN to fake and
predict traffic congestion in the smart areas. This study rec-
ommends a data-driven model by utilizing BRNN for traffic
organization that employs real-time information from devices
and connected mechanisms to control traffic efficiently.
In [12], an enhanced solution is designed, which integrates
a novel target tracing and moving vehicle counting technique
and a better LSTM system for the forecast of traffic flow.
Specifically, the MultiNetV3 framework and DCN V2 con-
volution kernel are mainly employed to exchange YOLOv4’s
traditional convolutional kernel and backbone network to
recognize multiple targets tracking and moving separately.

In [13], an effectual approach for OD (Origin—Destination)
matrix forecast depends on traffic info employing DL. The
model using DNN with the LSTM or autoencoder layers is
categorized by comparatively high resistance and accuracy
to miss data from temporary measurement points that are
located in the urban road network. In [14], a new DL design
called Ensemble Attention-based Graph Time Convolutional
Networks (EAGTCN) is designed. At the initial stage, by spa-
tial blocks, the global spatial pattern is captured which are
attached by a three-dimensional ensemble attention layer as
well as a Graph Convolution Network (GCN). In [15], a tem-
poral threshold mechanism and soft spatial is designed. To fill
out the absent weather info spatial interpolation methods
were utilized. Hybrid DL techniques such as CNN-LSTM
and LSTM are also proposed. The hybrid method eliminates
the features of spatiotemporal and later employs these fea-
tures as memory. This method forecasts the traffic stream
variances based on past features as well as time-based input.
Qietal. [16] presented a DL model depending on a spatiotem-
poral GCN. This model consists of four processes. First,
creating a biased adjacency matrix utilizing the Gaussian
similarity function. Second, accumulating a feature matrix.
Lastly creating a spatiotemporal GCN depend on a DL design
(i.e. T-GCN).

Yang et al. [17] present a traffic flow dependency and
dynamics-based DL-aided method (TD2-DL). Exactly, the
graph theory-based model is proposed to classify the local
temporal-spatial traffic dependency. Next, the LSTM model
is used. Last, an EKF is applied for integrating the expected
traffic speed that is projected by v-CTM joined with the
LSTM and the field traffic information. So, the FNN tech-
nique has been mainly developed. In [18], a PSO-BiLSTM
method depends on the integration of BiLSTM neural net-
work and PSO is proposed. The PSO model searches for the
optimal parameters on a total scale that has been utilized and
then non-linear adjustable inertial weights are taken rather
than linear weights. In addition to that, the BILSTM predic-
tion technique of the network is enhanced by employing the
PSO method.
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FIGURE 1. Workflow of AHOA-HDLTM algorithm.

In [19], a traffic flow recognition technique that depends on
DL on the edge node has been presented. Initially, the authors
present a vehicle recognition technique that depends on the
YOLOV3 method trained with a great volume of traffic data.
Yu et al. [20] present a DL-based traffic safety performance
for a mixture of autonomous and manual vehicles from a
5G-enabled ITS. In [21], cloud-assisted IoT-ITS (CIoT-ITS)
was presented to overcome traffic management problem.
At this point, the IoT sensor combined camera has been
installed in the entire traffic signal corner for monitoring
the vehicle’s flow. Chen et al. [22] examine energy-efficient
and regenerative energy recovery systems for sustainable ITS
utilizing Artificial societies, Computational experiments, and
Parallel execution (ACP) structure.

ill. THE PROPOSED MODEL

In this manuscript, a novel AHOA-HDLTM method is estab-
lished in the ITS environment. The main purpose of the
AHOA-HDLTM system is to predict the level of traffic flow
in the ITS, enabling proper traffic management in smart cities.
To accomplish this, the AHOA-HDLTM technique encom-
passes data preprocessing, ISSA-based FS, HELM-based
classification, and AHOA-based parameter tuning. Fig. 1
shows the workflow of the AHOA-HDLTM technique.
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A. DATA PREPROCESSING

Min-max normalized called feature scaling, is a generally
employed method in traffic flow monitoring and data pre-
processing. It changes and scales the range of numerical data
to a certain range, usually between zero and one, making
it appropriate for many ML and data analysis tasks. In the
context of traffic flow monitoring, min-max normalized can
be executed for numerical features like traffic speed, volume,
or occupancy.

B. FEATURE SELECTION USING ISSA

The ISSA is used for electing an optimum subset of features.
SSA is a recent bio-inspired technique based on the foraging
and navigation of salp in the ocean [23]. A leader and fol-
lowers are the two groups performed in SSA. The solution
candidate is based on the salp location while foraging and
navigation, usually for optimization problems is treated as
a 2D matrix known as x. The present optimum solution is
known as a food source, Fj, and the leader location of salp,
le is updated according to Eq. (1):

ey

| _ | Fiter((uby—1bj) ca+ 1), e3>
4 Fi+c ((Mbj—lbj)62+lbj), c3<r

where the up and low boundaries of the searching space are
ub;j and Ibj, the uniformly distributed random integer within
[0, 1] are r,cp and c3 parameters that are embedded in the
SSA. The ¢ parameter is then evaluated by Eq. (2):

) = 2e~ /T )

where the existing and the maximal iterations that should be
initially set are ¢ and 7. The follower location of salps is
evaluated by Eq. (3):
i L iy,
xj:i(j_'_xj )lZZ 3)
The salp follower will be completely directed by the leader
in the original SSA to discover the optimum solution accord-
ing to the region of possible solution is evaluated through
the change among the upper and lower limitations of the
control variable. Once the problem dimension is considered
smaller, then it performs well. Nonetheless, if the search for
a possible solution is large, then the exploitation process
becomes ineffective. In resolving the optimization problem,
the balance between exploitation and exploration needs to be
decided wisely, note that the exploration capability of SSA
is quite restricted. In this work, two enhancements will be
suggested for enhancing the exploitation-exploration abili-
ties. The improved version is performed in Eq. (1), but the
low boundary has been removed to enhance the process’s
capability to use resources that are formulated by Eq. (4):

1 _ | Fite((ubj—ibj)ea), e3>
xj = ()
Fi+c ((ubj — lbj) cz) , 3<r

The second enhancement is executed to enhance the
exploration ability, where follower expression in Eq. (3) is
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FIGURE 2. ELM structure.

transformed into:
x} = (px; + qx}fl) i>2 &)

In Eq. (5), p is a random integer [0, 1] and ¢ is evaluated
as (1 —p).

The fitness function (FF) employed in the ISSA methodol-
ogy has been presented to take a balance amongst the count of
preferred features from the entire outcome (lesser) and classi-
fication outcome (higher) acquired through applying chosen
feature, Eq. (6) refers to the FF for measuring outcomes.

R
Fitness = ayr (D) + /3% (6)

In Eq. (6), yr(D) stands for the classifier error rate of
the offered classifier. |R| implies the cardinality of the cho-
sen subset and |C| denotes complete feature counts in the
database, parameters « and § are equivalent to the impact of
classification algorithm quality and subset length.

C. HELM BASED PREDICTION

To forecast the traffic flow, the HELM approach is utilized.
ELM is initially presented to train SLFNs [24]. A prominent
feature of ELM is that the parameters among the hidden
and input layers (HL) can be arbitrarily created and the
only free parameters, which require that optimizer are the
resultant weights among the HL and the resultant state.
Fig. 2 illustrates the infrastructure of ELM. To provide a
training set {(x;, ;) |x; € R?, ;e R,i=1,...,N}, whereas
x; implies the trained data and #; denotes the target. SLFNs
network function with L hidden node (HN) is defined as:

L
fo@ =D G «p. pieR (7

Jj=1

In which, B; implies the weighted linking of the j™ HN
to the output node and G; represents the j™ HN resultant
function. To additive nodes with activation function g, G; is
expressed as:

Gj(x) =g (aj-x +b;), ajeR?, bje R 8)

whereas a}{ refers to the weighted vector linking the input
layer to /" HN and b; is the biases of j HN, To the RBF
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node with initiation function g, G;j is represented as:

Gi(x) = g(”x;—”j”), ajeR?, bR ©)

J

whereas a; and b; denote the centre and effect factor of the j”
RBF node.

To trained data X = [x1,x2,...,05]7 € RV*4 that
contains N instances with all the samples are a d-dimensional
vector, T = (11, ta, . . .ty)T € R¥*! refers to the equivalent
target matrix. Simple ELM purposes for obtaining the resul-
tant weight by decreasing the amount of predictive error and
the norm of resultant weights:

min||[HB — T|*> + A1 81> (10)

whereas H = [hy, ha, ... ,hy]T € RY*L inferred the arbi-
trary latent representation matrix of the input X. It can be
attained by Eq. (8) or (9) with a; parameter , b; arbitrarily
created and &; = (G1(x;),Ga(xy), ...GLx) ,i=1,2,...N.
A implies regularized hyperparameter.

B*=HTH+A)'HTT (1)

Once the hidden neuron counts L is lesser than the count of
trained data N. When the hidden neuron counts are superior
to the amount of trained data, a better performance is:

B*=HTHHT + AD)7'T (12)

H-ELM is acquired in 2 phases. Primarily, similar to typical
DL approaches, K unsupervised ELM-SAEs are fixed for
learning K layers of latent representation Rnd the learned
representation (R) of the preceding element has been utilized
as input of the next element.

R = sRi1 (7)) (13)

In which, R; denotes the learned representation of it" HL
(the significant representation extracted by i# ELM sparse
AE), R;_1 implies the learned representation of i — / th HL
and it is additionally utilized as the input of i—1 component.
B} denotes the better-recreated matrix of i" ELM sparse
AE that obtains R;_1 as input, and s denotes the activation
function of HLs. When the feature in the preceding HL has
been extracted, the weighted matrix of existing HL is set and
requires not to be adjusted.

D. AHOA-BASED PARAMETER TUNING
Finally, the AHOA approach can be executed for the param-
eter tuning process. AHOA performs the optimizer by the
natural behavior of hummingbirds [25]. It primarily contains
3 components namely visit table, food sources, and popu-
lation (No. of hummingbirds). While handling the foraging
state, it again consists of three diverse approaches migrating
foraging, guided foraging, and territorial foraging. The math-
ematical formula can be discussed in the following.

Stepl: Initialization: Let /& be a number of birds and prey
for the optimizer. It can be established randomly.

fi=LB+n-(UB—LB),j=1,2,....h  (l4)
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where n is the random number range from zero to one.
Here, the visit table can be described as the visit level of
food sources for respective birds. The visit level proves more
important. Hereafter, each bird attacks the food via the visit
table.

The food source is initialized in the visit table shown
below:

. jk=12,....n (15

0 if j#k
Stk =
' nullj =k

Now, null represents the food captured by hummingbirds,
the 0 value signifies that k™ food is visited by j bird.

Step2: Guided searching:- This behavior can be stimulated
by the visit stage of the food source. When the food is
targeted, the hummingbird flies to feed it. The flying or flight
nature relies on 3 directions namely axial, omnidirectional,
and diagonal flights.

: 1 ifj=rdi(a),j=1,....2
G, = 16
af [0 otherwise (16)
if =D(k),ell,],
; 1D = rdp(),
G, = | 1P =%0 j=1l...z (7
: ie2, (m-(z—2)+1]
0 otherwise
Gy=1 j=1..2 (18)

where rdj([1,z]) and p(i) respectively are the randomly gen-
erated integer and permutation integer. Furthermore, the
random value is taken from O to 1 using the parameter n.
A candidate food source can be obtained by these flights.
The prey can be modernized from old to another location.

b+ 1) =Fig®) +a-G-(fib) ~fig®) (19

In Eq. (19), the prey position and targeted prey are stated as
fi (b) and f; 14(b), correspondingly. Next, the guided feature as
a~R(0, 1) shows the uniform distribution function with mean
0 and standard deviation (SD) 1.

Q) FT (f; (b)) < FT (g (b+ 1))
g(b+1) FT(f;(b)>FT (g (b+1))
(20)

jj(b+1)=[

Step3: Territorial searching: -When the target prey has
been visited that can consumed already, afterwards it can visit
novel or other food sources in their territory. The new location
is produced by means of Eq. (21) based on the respective area.

gb+1)=f®)+p-G-fjb) 2D

where B shows the territorial factor as ~R (0, 1).

Step4: Migration searching: The repeated visiting lacks the
food source in the territorial area. A migration co-efficient
has been considered the worst nectar-refilling rate. It transfers
towards a novel target. Therefore, it assumes random gener-
ation of food sources by worse nectar.

fwrst = LB+ n. (UB — LB) (22)
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As a result, the optimum solution is attained from AHOA
which is used for parameter selection.

During this case, the AHOA has been deployed for
determining the hyperparameter contained in the HELM
algorithm. The MSE has assumed that the main purpose is
written as:

MSE—lLM idiz 23
_?gizzl(yj_j) (23)

whereas M and L denote the outcome value of state and
data, y} and d} denote the gained and suitable magnitudes for
thej™ unit from the outcome state of the network in time ¢
correspondingly.

IV. PERFORMANCE VALIDATION

The AHOA-HDLTM approach has been validated utilizing
the traffic data comprising every 30s raw sensor informa-
tion for 30 days. The traffic information gathered in the
Ist 10 days has been utilized as a training database the
database comprising the data for the remaining 20 days can
be employed as a testing database. During this research, the
group of data comprised of 15min of combined data in vehi-
cles per 15 minutes (veh per 15 minutes). Therefore, 96 data
groups can be accessible every day. Earlier in the computa-
tion, the group of data was normalised and the information
was rendered from the range of zero to one.

Table 1 and Fig. 3 provide the overall predictive out-
comes of the AHOA-HDLTM technique in terms of MAPE.
The outcomes imply that the AHOA-HDLTM technique
exhibits effectual traffic flow prediction results under sev-
eral iterations. It is also noticed that the MAPE values
are decreased with a rise in iterations. It is identified that
the AHOA-HDLTM technique attains the best fitness of
0.23 average fitness of 0.94 and worst fitness of 2.61 under
iteration 100.

TABLE 1. MAPE outcome of AHOA-HDLTM system at distinct iterations.

MAPE (%)

No. of Best Average Worst
Iterations | Fitness | Fitness Fitness
0 1.50 4.98 7.47
10 0.68 2.69 7.02
20 0.29 0.84 4.52
30 0.47 0.90 421
40 0.53 1.30 4.52
50 0.34 1.06 3.89
60 0.42 0.56 3.38
70 0.32 1.20 3.17
80 0.39 0.99 2.66
90 0.24 0.27 2.77
100 0.23 0.94 2.61

Table 2 and Fig. 4 represent the actual vs. predicted
traffic flow of the AHOA-HDLTM technique under vary-
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FIGURE 3. MAPE outcome of AHOA-HDLTM system under various
iterations.

TABLE 2. Traffic flow outcome of AHOA-HDLTM algorithm under various
runs.

Traffic Flow

. Predicted
Time Index | Actual =0 T Run 2 | Run3 | Run 4 | Run5
0 193 | 229 233 247 236 268
10 139 | 132 132 119 93 90
20 887 | 899 863 867 924 919
30 967 | 968 978 984 930 938
40 726 | 699 661 656 655 623
50 774 | 803 838 799 805 791
60 960 | 975 995 1010 | 989 953
70 863 | 872 833 836 882 893
80 970 | 1024 | 1039 | 1031 | 1014 | 1053
90 1041 | 1042 | 1042 | 1021 | 965 955
100 615 | 639 604 614 564 547

ing runs and time indexes. The obtained values pointed out
that the AHOA-HDLTM technique effectually predicted the
flow of traffic under all runs. It is also noticed that the
AHOA-HDLTM technique accomplishes effectual outcomes
under all time indices.

Table 3 illustrates the comparative outcome of the
AHOA-HDLTM technique with recent techniques with
respect to Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and equal coefficient (EC) [26].

Fig. 5 represents the RMSE inspection of the AHOA-
HDLTM technique with recent approaches. The outcomes
indicate that the PSOLS-SVM and FFOLS-SVM systems
are depicted as ineffective performance with maximal RMSE
values. Besides, the hybrid LSSVM model has attained a
somewhat lesser RMSE value whereas the AST2-FPOHDBN
and TAROEL-TEMS algorithms have attained consider-
able RMSE values. However, the AHOA-HDLTM system
reports effectual outcomes with minimal RMSE values of
20.226, 17.306, 15.684, 22.261, and 17.321 under lags 1-5,
correspondingly.

Fig. 6 demonstrates the MAE outcome of the AHOA-
HDLTM method with recent approaches. The outcomes
signify that the PSOLS-SVM and FFOLS-SVM models have

VOLUME 12, 2024

- Actual
o Pradicted (Run2)

Traffic Flow

Traffic Flow

1200

Traffic Flow
Traffic Flow

FIGURE 4. Traffic flow outcome of AHOA-HDLTM algorithm (a-€) Runs 1-5.

70
Emm PSO- LSSVM = AST2FP- OHDBN
=3 FFO- LSSVM [ IAROELTFMS
60 - 3 Hybrid- LSSVM mmm AHOA-HDLTM

50

Root-Mean-Square Error
8

30 1
20 |
[
Lag=1 Lag =2 Lag=3 Lag=4 Lag=5
No. of Lags

FIGURE 5. RMSE outcome of AHOA-HDLTM system under all lags.

shown ineffective performance with maximal MAE values.
Also, the hybrid LSSVM algorithm has attained a some-
what decreased MAE value whereas the AST2-FPOHDBN
and IAROEL-TFMS systems have gained considerable MAE
values. But, the AHOA-HDLTM technique reports effective
outcomes with lesser MAE values of 13.777, 11.186, 15.693,
20.880, and 17.531 under lags 1-5, correspondingly.

In Fig. 7, the EC results of the AHOA-HDLTM technique
are compared with recent models. The outcome highlighted
that the AHOA-HDLTM technique offers improved perfor-
mance with increased EC values under all lags. On lag 1,
the AHOA-HDLTM technique provides a higher EC of
99.42 whereas the PSOLS-SVM, FFOLS-SVM, Hybrid
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TABLE 3. Comparative outcome of AHOA-HDLTM system with recent

102
models under all lags. BN PSO-LSSVM [ AST2FP- OHDBN
101 == FFO- LSSVM [ IAROELTFMS
= Hybrid- LSSVM mmm AHOA-HDLTM
No. | beors | FroLs | Hybri | AST2F | | o or | AHOA- 100 |
of | um | .sym | 4LS- | POH- | | "ror e | HDLT w2
Lag SVM DBN M 2 gg]
Root-Mean-Square Error 2 o8
Lag 33.88 et
=1 40.748 39.520 3 28.316 21916 20.226 8 97
Lag 30.85 =
= 43.887 42.146 1 24.706 19.016 17.306 96 -
Lag 23.87
= 48.880 | 46.371 2 17.614 17.574 15.684 95 -
Lag 29.31
= 52.487 50.548 1 24.281 24.001 22.261 94 -
L 29.79 Lag=1 Lag =2 Lag=3 Lag =4 Lag=5
ag ) No. of Lags
= 56.702 54.532 8 24.531 19.141 17.321
Mean Absolute Error
Lag 301 FIGURE 7. EC outcome of AHOA-HDLTM approach under all lags.
=1 26.101 23.401 3 16.907 15.517 13.777
Lag 20.41 TABLE 4. RUNT outcome of AHOA-HDLTM approach with recent models
=2 |33292 | 26541 |0 13.586 | 13.056 11.186 under all lags.
Lag 24.84
= 40.864 32.838 9 19.323 17.413 15.693 Running Time (sec)
Lag 28.51 Hybrid | AST2FP
No. of PSOLS- | FFOLS- IAROEL- | AHOA-
=4 | 48276 | 38580 | 4 21.660 | 22.700 | 20.880 Lags svm | sym | Ls- | OH- TEMS | HDLTM
Lag 25.90 SVM DBN
= 53.663 | 46.022 | 5 21191 | 19.331 17.531 Lag=1 | 1145 | 1438 |998 |3.99 226 1.06
Eanal Coefficient Lag=2 11.78 14.61 10.16 | 3.75 2.75 1.18
qual £0¢ Lag=3 | 11.79 15.21 10.19 | 527 422 2.61
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= FIGURE 8. RUNT outcome of AHOA-HDLTM approach under all lags.
20
FPOHDBN, and IAROEL-TFMS systems gain lesser
10 EC of 95.05%, 95.25%, 97.40%, 98.78%, and 99.47%,
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No. of Lags p gly.

FIGURE 6. MAE outcome of AHOA-HDLTM methodology under all lags.

LS-SVM, AST2-FPOHDBN, and TAROEL-TFMS models
accomplish lower EC of 95.85%, 95.96%, 98.08%, 98.51%,
and 99.24%, respectively. Additionally, on lag 5, the AHOA-
HDLTM method offers superior EC of 99.71 whereas the
PSO- LSSVM, FFOLS-SVM, Hybrid LS-SVM, AST2-
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Table 4 and Fig. 8 represent the running time (RUNT)
inspection of the AHOA-HDLTM technique with recent
models. The results indicate that the PSOLS-SVM and
FFOLS-SVM models have shown ineffective performance
with maximum RUNT values. At the same time, the hybrid
LSSVM model has attained a slightly decreased RUNT value
whereas the AST2-FPOHDBN and IAROEL-TFMS models
have obtained considerable RUNT values. Nevertheless, the
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AHOA-HDLTM technique reports effectual outcomes with
minimal RUNT values of 1.06s, 1.18s, 2.61s, 2.14s, and 3.06s
under lags 1-5, correspondingly. These results confirmed the
enhanced predictive results of the AHOA-HDLTM method.

V. CONCLUSION

In this manuscript, a new AHOA-HDLTM method was devel-
oped in the ITS environment. The main purpose of the
AHOA-HDLTM system is to forecast the level of traffic flow
in the ITS, enabling proper traffic management in smart cities.
To accomplish this, the AHOA-HDLTM approach includes
data preprocessing, ISSA-based feature selection, HELM-
based classification, and AHOA-based parameter tuning.
For traffic flow monitoring, the AHOA-HDLTM technique
uses the HELM model, tailored for traffic data analysis,
and extracts intricate features and patterns. At last, the pre-
dictive outcome of the HELM technique can be better by
using an AHOA-based hyperparameter selection process. The
enhanced performance of the AHOA-HDLTM method can be
assured using a detailed simulation analysis of diverse traffic
data. The extensive results highlighted the better predictive
outcome of the AHOA-HDLTM system with other methods.
While the article primarily focuses on traffic flow prediction
through the AHOA-HDLTM approach, there exists a critical
avenue for further investigation into the intricate interconnec-
tion between traffic flow and traffic state.
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