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ABSTRACT In this research, we address the urgent need for accurate prediction of in-hospital survival
periods for patients diagnosed with pancreatic cancer (PC), a disease notorious for its late-stage diagnosis
and dismal survival rates. Utilizing machine learning (ML) technologies, we focus on the application of
Variational Autoencoders (VAE) for data augmentation and ensemble learning techniques for enhancing
predictive accuracy. Our dataset comprises biochemical blood test (BBT) results from stage II/III PC patients,
which is limited in size, making VAE’s capability for data augmentation particularly valuable. The study
employs several ML models, including Elastic Net (EN), Decision Trees (DT), and Radial Basis Function
Support Vector Machine (RBF-SVM), and evaluates their performance using metrics such as Mean Absolute
Error (MAE) and Mean Squared Error (MSE). Our findings reveal that EN, DT, and RBF-SVM are the
most effective models within a VAE-augmented framework, showing substantial improvements in predictive
accuracy. An ensemble learning approach further optimized the results, reducing the MAE to approximately
10 days. These advancements hold significant implications for the field of precision medicine, enabling more
targeted therapeutic interventions and optimizing healthcare resource allocation. The study can also serve as
a foundational step towards more personalized and effective healthcare solutions for PC patients.

INDEX TERMS Pancreatic cancer, machine learning, bioinformatics, small-scale data, variational
auto-encoder.

I. INTRODUCTION
Pancreatic cancer (PC), of which approximately 90% is pan-
creatic ductal adenocarcinoma (PDAC), ranks among the
most lethal malignancies globally, with a dismal 5-year sur-
vival rate of less than 11% [1]. Although recent advancements
in therapeutic interventions have marginally improved this
rate to 17.4% [2], PC continues to account for a significant
number of fatalities worldwide as of 2020 [1], [3]. A major
contributing factor to these grim clinical outcomes is the
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diagnostic challenge posed by the non-specific symptoms
of PC, which often mimic those of other non-cancerous con-
ditions, leading to delayed diagnosis at early stages [4], [5].
Consequently, by the time of hospital admission, the majority
of patients present with tumors that have already progressed
to late stages, often characterized by local invasion and distant
metastases [6].

In addition to enhancing early-stage diagnosis, there is
an urgent need to innovate therapeutic strategies aimed
at reducing mortality among late-stage PC patients. Preci-
sion medicine (PM) is increasingly recognized as a viable
approach and has garnered considerable attention in recent
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FIGURE 1. The procedure of the data preparation and model training. There are 24 biochemical blood test indicators/items in one record,
with a label 0 or 1 indicating the final outcome of that patient. Ten machine learning models have been benchmarked, and four of them
have been selected to build the ensemble learning architecture.

FIGURE 2. The violin plot showing the dataset’s structure and the distribution of each variable. Here 0 and 1 on the x-axis respectively represents
survived and deceased group. Y-axis indicates the tested value. ALT, Alanine aminotransferase; NEU, Neutrophil; LDH, Lactate dehydrogenase; MON,
Monocyte; EOS, Eosinophil; CO2CP, carbon dioxide combining power; TBIL, total bilirubin; AMS, Amylase; LYM, Lymphocyte; AFP, Alpha fetoprotein;
CEA, Carcinoembryonic antigen; WBC, white blood cell; DBIL, Direct Bilirubin; ALP, alkaline phosphatase; HbA1c, glycated hemoglobin; CA125,
carbohydrate antigen 125; CA199, Carbohydrate antigen199; Fg, Fibrinogen; Cr, creatinine; LPS, Lipase; PLT, platelet; Hgb, Hemoglobin; IBIL, Indirect
bilirubin. Note that only the record of the deceased group was used in the analysis of this work.

years [7], [8]. A critical component of implementing PM
is the judicious selection of patients who are suitable can-
didates for novel precision healthcare interventions [9].

For instance, in the context of Patient-derived Organoid Phar-
macotyping (PDOP) [10], it becomes imperative to identify
patients with an appropriate survival period tomitigate ethical
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FIGURE 3. The procedure of VAE augmentation.

concerns associated with potential inappropriate treatment or
overtreatment [11].

Conversely, machine learning (ML) has increasingly found
applications in various medical domains for several years,
extending from mitigating COVID-19 [12] to advancing
herbal medicine research [13], [14]. In these diverse appli-
cations, ML has consistently demonstrated its efficacy in
accurately predicting clinical outcomes [15], [16], [17]. This
track record strongly suggests that ML could serve as a
potential tool for predicting patient clinical statuses, thereby
facilitating more targeted interventions in the realm of PM.
While there has been a surge in research focusing on the
application of ML in pancreatic cancer [11], [18], [19],
[20], [21], and Variational Auto-Encoder (VAE)-based data

augmentation [22], [23], [24] there remains a conspicuous
gap in the literature: no studies have yet reported on leverag-
ingML to predict the in-hospital survival period of pancreatic
cancer patients specifically for the purpose of PM by bio-
chemical blood test (BBT).

Building on the promising capabilities of machine learn-
ing in medical applications and the unmet need for precise
in-hospital survival prediction in pancreatic cancer, this study
takes a practical approach. We employ a Variational Auto-
Encoder (VAE) to augment a dataset of biochemical blood
test (BBT) results collected from stage II/III pancreatic can-
cer patients. This augmented data is then used to predict
the in-hospital survival period. To validate the efficacy of
our approach, we benchmarked the predictive performance

TABLE 1. Specifications of the models.

TABLE 2. Specifications of the best models after fine-tuning.
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FIGURE 4. The (a)-(j) MAE and (k)-(t) MAE changes of each model before and after VAE augmentation. Augmentation factors
indicate the folds of original training data that VAE synthesized. Factor 0 means the data without augmentation.

FIGURE 5. The (a)-(j) MSE and (k)-(t) MSE changes of each model before and after VAE augmentation. Augmentation factors indicate
the folds of original training data that VAE synthesized. Factor 0 means the data without augmentation.

against ten mainstreammachine learning algorithms and sub-
sequently integrated the three best-performing models into
an ensemble learning framework. Remarkably, our findings

indicate that the ensemble learning approach, when aug-
mented with VAE, can reduce the prediction error by up
to 33% compared to using a single conventional model.
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FIGURE 6. The fine-tuning of the EN model’s parameters: (a) Alpha when L1 ratio is 0.9, and (b) L1 ratio when Alpha
is 0.5.

FIGURE 7. The fine-tuning of (a), (b) the DT and (c), (d) the RBF-SVM models’ parameters. When scanning one parameter
of the model, another parameter stays in default of the Scikit-learn package.

These results underscore the potential of our VAE-assisted
ensemble learning strategy in accurately predicting in-hospital
clinical outcomes, thereby highlighting its prospective utility
in the PM of pancreatic cancer.

II. METHODS
The data was extracted from the medical records of the
patients’ treatment conducted in 3201 Hospital, Shaanxi,

China, in accordance with the principles of the Declaration
of Helsinki. The protocol was approved by the Ethics Com-
mittee of the 3201 Hospital. Due to the retrospective nature of
this study, the Ethics Committee of the 3201 Hospital waived
the requirement for informed consent from the patients; how-
ever, all patients were informed about the potential use of
their de-identified data for research purposes. The data used
in this study were fully de-identified to ensure anonymity.
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FIGURE 8. K-fold cross validation of the ensemble learning model (EN+DT+RBF-SVM) (a) without VAE and (b) with VAE.
The improvement in using VAE is (c). The blue dashed lines indicate the average survival days of the patients upon
admission, the green dashed lines are the median survival periods, and the red dashed line is the mean prediction
improvement after using VAE. The grey regions indicate the variance. The details of the patients’ survival period:
count 252; mean 16.3; 50% 11.000000; min 0.0; max 100.0.

FIGURE 9. The prediction error improvement of the proposed strategy (VAE+ ensemble learning, dash line in red)
compared to other individual algorithms (improvement rates are bars and the models’ original MAE values are solid
lines in red).

Data storage, access, and potential re-use were strictly con-
trolled and in compliance with data protection regulations of
the 3201 Hospital.

This study employs a retrospective analysis based
on anonymized data. All patient information was fully
de-identified prior to inclusion in this research. The dataset
comprises BBT data collected from stage II/III pancreatic
cancer patients admitted to 3201Hospital in China since 2016
to present. Initially, a total of 544 records were gathered;
however, 292 of these were excluded due to incomplete
entries, successful treatment outcomes, or ambiguous final
clinical results, as illustrated in Fig. 1. Consequently, the
final dataset used for this study consists of 252 records, each
containing 24 BBT features such as ALT, NEU, CA199,
among others. Detailed information of the BBT markers
can be found in the caption of Fig. 2. Note that only the
record of the deceased group was used in the analysis of this
work.

To prepare the dataset for machine learning experiments,
all data vectors were aligned and standardized using the
StandardScaler function of Scikit-Learn package by default
settings. The dataset was then partitioned into two distinct
subsets: an 80% training set and a 20% test set. Machine
learning models were initially trained using the training set
and subsequently validated using the test set.

Variational Autoencoders (VAE) serve as a key role in
machine learning technologies, designed to encode a training
dataset into a latent space and synthesize new data [25]. This
encoding process is not merely a data compression mecha-
nism; it captures underlying patterns within the dataset that
can be leveraged for data augmentation. When a recognizable
pattern emerges in the encoded data, VAE has the capability
to generate new, synthetic data by sampling from this latent
pattern [26]. The efficacy of VAE in augmenting small-scale
datasets has been previously demonstrated in the realm of
electronics, where it is evident that usingVAEwas to augment
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data of semiconductor devices can improve the performance
of ML-based modeling [27].

In our study, the VAE model was initially trained using the
existing training set. This VAE model is constructed with a
detailed multi-layer architecture. The encoder consists of two
fully connected layers with a hidden dimension of 100 units
each. The first layer applies a sigmoid activation function,
and the second layer uses a tanh activation to enhance their
capability of representation. These layers feed into two linear
layers that generate the mean and log-variance for the latent
space, which has a dimensionality of 2. The decoder mirrors
this architecture with a tanh activated layer followed by a
sigmoid activated layer, both with a hidden dimension of 100,
and culminates in a sigmoid activated output layer that recon-
structs the input data. The model is trained over 100 epochs
with a batch size of 32. A validation split of 20% is used to
monitor and prevent overfitting.

Post-training, the model was deployed to generate syn-
thetic data from the latent space: random points in the latent
space were sampled and processed by the decoder to generate
data in real space. This synthetic data was not used in isolation
but was integrated with the original training set to create a
more robust VAE-Augmented Training Set (VATS). Utilizing
VATS, we trained our machine learning models and subse-
quently evaluated their performance metrics, such as Mean
Absolute Error (MAE) andMean Squared Error (MSE), using
a separate test set for validation. The entire workflow of this
VAE-based data augmentation strategy is illustrated in Fig. 3.

TheMLmodels adopted in this work are: Elastic Net (EN),
radical basis function support vector machine (RBF-SVM),
k-nearest clustering (KNC), decision tree (DT), random for-
est (RF), gradient boosting (GB), XGBoost [28] (XGB),
AdaBoost [29] (AB), LightGBM [30] (LGB), and deep neural
network (DL, realized by Pytorch 2.0.1). Except for the last
four models, others were realized by using Scikit-Learn 1.2.2.
All codes were compiled by Python 3.10.12 in a personal
computer with AMD Ryzen 5600G CPU and 16GB memory.
The specifications of the models can be found in Table 1.

III. RESULTS AND DISCUSSION
Fig. 4 serves as an initial overview of the model perfor-
mances, revealing a wide range ofMAE values that span from
18.1 to 12.0 (Augmentation Factors indicate the folds of orig-
inal training data that VAE synthesized. Factor 0 means the
data without augmentation. Same below.) This variation in
MAE underscores the importance of model selection, a point
further emphasized by the differential impact of VAE aug-
mentation on each model. For example, the EN model sees
a 10% improvement in MAE with VAE augmentation, while
XGBoost experiences a decline. This suggests that VAE’s
effectiveness is highly model-dependent. Among the models
tested, EN and DT rise to prominence, both showing over
a 10% improvement in MAE when augmented with VAE.
RBF-SVM also merits attention; although it doesn’t benefit
from VAE augmentation, it achieves a low MAE, indicating
its inherent robustness. The improvement is calculated by

Eq.1 as below, where the positive improvement means the
model with augmented data overperforms that with the orig-
inal data.

Improvement =
Ori.value − Aug.value

Ori.value
× 100% (1)

Fig. 5 builds on these insights again by focusing on MSE,
another key performance metric. The data corroborates the
MAE findings, reinforcing the notion that EN, DT, and
RBF-SVM are the most reliable models for predicting
in-hospital survival periods for PC patients. This consistency
across different metrics adds a layer of validation to our
model selection process.

Fig. 6 dives deeper into the EN model’s performance,
exploring how different parameters affect its MAE. Fig. 6(a)
examines the relationship between MAE and the Alpha
parameter when L1_ratio is set at 0.9, and Fig. 6(b) shows
the relationship between MAE and the L1_ratio parameter
when Alpha is set at 0.5. The results indicate potential higher
performance as Alpha increases for both the original and
VAE-augmented data, suggesting that more complex models
may be more effective to capture the structure of the data
in this case. Interestingly, the trends for the original and
VAE-augmented data diverge in Fig.6(b), implying that VAE
introduces additionally meaningful but sophisticated infor-
mation that can be mitigated through L1 regularization. This
observation is critical for understanding how VAE augmen-
tation affects model complexity and performance: a feature
selection step may be helpful to further boost the prediction
accuracy.

Fig. 7 extends this analysis to the DT and RBF-SVM
models, providing a comprehensive view of how parameter
tuning impacts different models. For both data, the algorithm
requires shallower trees to provide a closer modeling of the
data, as shown in Fig. 7(a), suggesting a simpler DT model is
more suitable for capture the features of the data. The oppos-
ing trends between the original and VAE-augmented data
confirm that VAE introduces a certain level of complexity,
inherent to its sampling procedure from the low-dimensional
latent space, as shown in Fig. 7(b). Similar to the EN’s
parameters, RBF-SVM’s parameters exhibit the same trends
as shown in Fig. 7(c) and (d): The data requires more complex
model to capture its hyperfine structures. This complexity
could be both a boon and a bane, as demonstrated in Fig. 6’s
L1 regulation, depending on the model and its parameters,
emphasizing the need for careful model selection and tuning.
However, although understanding the data structure can help
in modeling and predicting unforeseen data, the in-depth
analysis of the data distribution in their latent space is not
the scope of this study.

In the final analysis that is depicted in Fig. 8, we inte-
grate the top-performing models into an ensemble learning
framework, utilizing the ‘‘StackingRegressor’’ method from
the Scikit-Learn package. The ensemble consists of three
base models: EN, RBF SVR, and DT, each selected for
their unique strengths in modeling complex relationships and
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performance enhancing after VAE-based data augmentation.
These base learners are first trained on the dataset, and
then their predictions are stacked and used as input for the
final model, known as the meta-learner. This meta-learner
integrates the predictions from each base model to produce
a final, aggregated prediction. This approach leverages the
diverse capabilities of individual models, aiming to enhance
the robustness and reliability of predictions, particularly in
the context of predicting in-hospital survival for pancreatic
cancer patients.

Through k-fold cross-validation, we find that this ensemble
approach further narrows down theMAE to just 12 days.With
the addition of VAE augmentation, this already impressive
figure is further reduced by 4.7% to approximately 11 days.
The blue dashed lines of Fig. 8(a) and (b) indicate the average
survival days of the patients upon admission, and the green
dashed lines are the median survival periods, and the red
dashed line is themean prediction improvement of the ensem-
ble learning model after using VAE. It can be seen that after
the VAE+ensemble learning, the average prediction error
(as per MAE) is lower than the mean survival days (16.3) –
This is a good sign that our strategy can yield an acceptable
prediction result even with small-scale dataset from a single
local hospital.

Fig. 9 is a summary of the prediction enhancement that
was achieved by our strategy compared to the use of each
individual model. The red solid line indicates the original
MAE of each model, and the red dashed line is theMAE from
our strategy. A maximum of 35% reduction was achieved.
Additionally, the proposed VAE-based ensemble learning
overperforms all individual models. This strengthens our
claim again that the proposed strategy can be more powerful
in the clinical prediction tasks of PM.

The substantial reduction in MAE, particularly to around
10 days through VAE-augmented ensemble learning, holds
significant promise for PM in the context of pancreatic can-
cer. By achieving such a high level of predictive accuracy,
our approach opens the door for more targeted and timely
therapeutic interventions. This not only has the potential
to improve patient outcomes but also to optimize resource
allocation in healthcare settings.

This study is not without its limitations, which warrant
discussion for a comprehensive understanding of the results
and their applicability. First and foremost, the research is
confined to a single-center dataset with a relatively small
sample size. This inherently restricts the generalizability of
our findings to a broader population of pancreatic cancer (PC)
patients. Second, the study focuses exclusively on stage II/III
PC patients, thereby limiting the scope of the model’s vali-
dation across varying disease stages. This could potentially
skew the predictive accuracy when applied to a more diverse
patient cohort. Third, the limited dataset size compelled us to
rely heavily on machine learning (ML) algorithms to discern
differences between subgroups, such as those defined by
age and gender. This could introduce bias or noise into the
predictive model, affecting its performance. However, studies

have indeed shown that older patients generally face poorer
survival outcomes [31], and there are notable differences in
survival rates between genders within certain treatment pro-
cedures [32]. These facts are worthy of being considered in
future explorations. Additionally, the study does not account
for other potential confounding factors like comorbidities or
treatment history, which could offer a more nuanced under-
standing of in-hospital survival period. Also, to our best
knowledge, there is no literature so far to ensure our selection
of BBT items can represent the definitive set of predictors
– Our findings can only suggest a correlation between these
chosen markers and patient outcomes.

It’s important to note that these limitations were primarily
dictated by data availability and scope constraints. Future
research endeavors should aim to address these issues by
incorporating multi-center data, expanding the patient stage
range, and considering additional variables that could influ-
ence the model’s predictive accuracy. Moreover, with the
rapid development of ML technology, more fancy method-
ologies might also be integrated into our proposed approach
to enhance further the performance like MAE, which is, how-
ever, out of the scope of the current research and is expected
to appear in future research.

IV. CONCLUSION
In this study, we attempt to address the critical challenge
of predicting in-hospital survival periods for PC patients
by leveraging ML technologies, specifically VAE for data
augmentation and ensemble learning for predictive accuracy.
Our results highlight the efficacy of models like EN, DT,
and RBF-SVM within a VAE-augmented framework. The
VAE technology itself was instrumental in enhancing the
performance of our MLmodels, particularly useful for small-
scale datasets. The ensemble approach further optimized the
results, reducing the MAE to approximately 10 days when
augmented with VAE.

These findings have profound implications for PM of PC.
The significant reduction in prediction error of the survival
periods, especially through VAE-augmented ensemble learn-
ing, not only enables more targeted therapeutic interventions
but also optimizes healthcare resource allocation. This study
serves as a pivotal step towards more personalized and effec-
tive healthcare solutions for PC patients.
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