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ABSTRACT Semantic super-resolution (SR) is an approach that improves the SR performance by leveraging
semantic information about the scene. This study develops a novel semantic SR method that is based on
the generative adversarial network (GAN) framework and self-distillation. A discriminator is adversarially
trained along with a generator to extract semantic features from images and distinguish semantic differences
between images. To train the generator, an additional adversarial loss is computed from the discriminator’s
outputs of SR images belonging to the same category and minimized via self-distillation. This guides
the generator to learn implicit category-specific semantic priors. We conducted experiments for SR of
text and face images using the Enhanced Deep Super-Resolution (EDSR) generator and the SRGAN
discriminator. Experimental results showed that our method can contribute to improving both the quantitative
and qualitative quality of SR images. Although the improvement varied depending on image category and
dataset, the peak signal-to-noise ratio (PSNR) value increased by up to 0.87 dB and the perceptual index (PI)
decreased by up to 0.17 by using our method. Our method outperformed existing semantic SR methods.

INDEX TERMS Image super-resolution, semantic super-resolution, self-distillation, adversarial learning,
text images, face images, EDSR, SRGAN.

I. INTRODUCTION
Super-resolution (SR) is the process of up-sampling a low-
resolution (LR) image to recover the underlying high-
resolution (HR) image, which has been used in various
applications such as surveillance, forensics, microscopy,
and remote sensing [1]. Inspired by the great success of
convolutional neural network (CNN) in various computer
vision approaches [2], recent SR studies have attempted
to use CNNs and have produced visually pleasing SR
images with low pixel errors [3]. However, CNNs suffer
from the well-known over-fitting problem, which reduces the
CNNs’ ability to generalize unseen data. Therefore, various
approaches to enhance generalization have been introduced,
and applied to SR studies [4].
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For the purpose of generalization, most CNN-based SR
methods usually avoid using only certain categories of
images for training because the biased training will cause
the over-fitting problem. However, the greater the number
of image categories used in the training process, the lower
the SR performance for each category. Therefore, an SR
method that is free of over-fitting while maximizing the
SR performance for each category is required. To this
regard, semantic SR methods have attempted to incorporate
contextual or semantic information of images belonging to
the same category into the SR process, resulting in more
accurate SR results without over-fitting. As the most recent
study, Park [5] introduced a semantic loss to measure the
semantic difference between text images and proposed a
semantic SR method that minimizes the semantic loss via
self-distillation. The method allowed existing SR models
to be trained to produce better text SR images and the
Enhanced Deep Super-Resolution (EDSR) model [6] trained
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using the method outperformed the generative adversarial
network (GAN)-based semantic SR model. However, the
method has been validated only for SR of text images. Also,
the semantic loss required the pretrained VGG network [7]
to extract semantic features from images, and the SR model
was trained to directly minimize the semantic loss along
with a pixel loss. This caused that the performance of the
SR model depended on the feature extraction capability
of the VGG network, and the incompleteness of the VGG
network as a semantic feature extractor misled the trained
SR model to produce degraded SR images. Therefore, this
study aims improving the Park’s method and proposes a
novel semantic SR method. Basically, the proposed method
is based on self-distillation as in the Park’s method, but
does not require any pretrained networks to extract semantic
features from images. Instead, we introduce a classifier (=
discriminator) that extracts semantic features from images
and recognizes semantic differences between them. The
classifier is adversarially trained along with an SR generator
(= one of existing SR models) to extract semantic features
from SR images and convey the semantic information to the
generator. In the process of training the generator, we add an
adversarial loss that is computed from the classifier output
and minimize the loss via self-distillation; thus, unlike the
Park’s method, the semantic difference between SR images
belonging to the same category is indirectly minimized.
In addition, our method is validated on text and face image
datasets.

The primary contributions of this study, which focuses on
developing an effective semantic SR method is as follows:
• We propose a novel semantic SR method that is based
on self-distillation and adversarial learning.

• We propose to train additional classifier to extract
good semantic features from images and recognize
semantically similar images.

• Ourmethod allows existing SRmodels to be generalized
to better super-resolve specific categories’ images
without over-fitting.

• The performance of our method is validated on different
text and face image datasets in various aspects. The
experiments demonstrate that our method outperforms
other semantic SR methods.

II. RELATED WORK
A. SELF-DISTILLATION
Knowledge distillation is the process that helps train student
networks by transferring extra supervised information dis-
tilled from the pretrained teacher network [8]. It has been
commonly used for network compression. Self-distillation is
one of the knowledge distillation techniques, but it focuses
on efficiently optimizing a network from the consistent
distributions of data representations without the assistance
of teacher networks [9]. Therefore, it was successfully used
as a regularization technique for matching the predictive
distribution of the network between different samples of the
same label [10]. Also, it was used for matching semantic

features between different images of the same category and
guiding the network to learn the semantic information [5].
We also use self-distillation for the semantic learning in this
study.

B. CNN-BASED SR
SR has witnessed great strides with the development of deep
learning and CNNs.

The Super-Resolution Convolutional Neural Network
(SRCNN) [11] is considered to be the pioneering work in
using CNNs for the task of SR. It only consists of three layers
and requires the LR image to be up-sampled using bicubic
interpolation prior to being processed by the network, but it
has been shown to outperform the traditional SRmethods that
do not use CNNs.

The Residual Network (ResNet) [12], designed to ease
the training of networks with a number of layers by adding
skip/shortcut connections, was applied to the SR domain to
create SRResNet, where it was also used as the generator
network of a GAN-based network termed SRGAN [13].
EDSR [6] was also based on ResNet, and removed batch
normalization layers to disable restriction of the feature
values and reduce memory usage during training, allowing
more layers and filters to be used. The ResNet-based deep
networks showed significantly improved SR performance.

The Residual Channel Attention Network (RCAN) [14]
is a much deeper network, comprising of residual groups
that each contains a number of residual channel attention
blocks. A long skip connection was used with the residual
groups, enabling propagation of information from the early
stages to the latter stages of the network, whereas a short
skip connection was used inside the residual blocks, serving
to propagate information at finer levels. Thus, this residual-
in-residual architecture enabled to train very deep CNNs
(more than 400 layers) while effectively conveying the low-
frequency information across layers.

Most CNN-based SR methods have tried to reduce the
pixel error of SR images and yield high peak signal-to-
noise ratio (PSNR) values. However, PSNR is known to
be poorly correlated with human visual perception [15].
Focused more on the perceptual quality of SR images,
SRGAN [13] used GAN with the perceptual loss computed
using the pretrained VGG network and produced visually
more convincing images.

Enhanced SRGAN (ESRGAN) [16] improved SRGAN by
modifying the network architecture and the loss function.
It removed batch normalization layers (similarly to EDSR)
and used the residual-in-residual dense block as the basic
building block of the network to enable higher network
capacity and facilitate training. Also, ESRGAN used the
relativistic average discriminator, which predicts the proba-
bility that an image is relatively more realistic than the other.
Finally, to compute the perceptual loss, ESRGAN used the
VGG features before activation layers to reduce the sparsity
of features and better supervise brightness consistency
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and texture recovery. Benefiting from these modifications,
ESRGAN produced SR images with sharper edges and better
textures, while reducing undesirable artifacts.

After ESRGAN, a number of ESRGAN variants have been
proposed [17] and shown to produce SR images with more
realistic and natural textures than ESRGAN.

Most recently, attempts to combine CNNs with the Vision
Transformer (ViT) [18] have been reported in the SR domain
as well. Some studies [19], [20] used a 3 × 3 convolutional
layer to extract shallow features before applying the ViT.
This provided a simple way to map the input image space
to a higher dimensional feature space and led to more stable
optimization and better SR results.

The Efficient Super-Resolution Transformer (ESRT) [21]
used CNNsmore actively, to address the heavy computational
cost and high GPU memory occupation of the ViT. ESRT is
composed of the Lightweight Transformer Backbone (LTB)
and Lightweight CNN Backbone (LCB). LTB is responsible
for capturing long-term spatial dependencies across local
regions within an image and LCB is responsible for extracting
deep features while dynamically adjusting feature sizes to
maintain low computational cost. It was shown that ESRT
can achieve a very good balance between performance and
computational complexity. As another example of strategi-
cally combining CNNs with Transformers, the Transformer-
CNN Feature Distillation Network (TCFDN) [22] is a
hybrid network of Transformer and CNN with cascaded
feature distillation blocks for efficient SR. In each feature
distillation block, 1 × 1 convolutional layers are responsible
for distilling features and reducing channels with few
parameters, Transformer layers are responsible for attending
to spatial context and gradually refining features to attain
more discriminate information. TCFDN was able to extract
refined multi-level features with better representation ability
while remaining lightweight. Other efficient hybrid networks
can be found in [23].

In this study, we use SRGAN whose generator is replaced
by EDSR as the baseline network for the convenience of
implementation. However, our method is applicable to other
SR models with minor modifications.

C. SEMANTIC SR
Semantic SR is an approach that generates more accurate SR
results by incorporating contextual or semantic information
about the scene into the SR process.

In traditional exemplar-based SR, Sun et al. [24] realized
context-constrained face image SR by building a traning
set of texturally similar HR/LR image segment pairs.
Timofte et al. [25] investigated the role of semantic priors
on SR by training specialized models separately for each
semantic category, and showed that semantic information can
help the SR process enhance local image details.

In CNN-based SR, Xu et al. [26] first attempted to use
semantic priors. They proposed using amulti-class GANwith
multiple discriminators, where multiple discriminators help

the generator learn category-specific semantic information of
images of different categories (e.g., text and face images).
To assume different semantic priors co-existing in an image,
Wang et al. [27] obtained semantic priors at the pixel level
using a pretrained semantic segmentation network. Then,
they proposed a spatial feature transform layer to efficiently
incorporate the semantic information into the SR process.
Frizza et al. [28] proposed a similar approach based on a
typical GAN formulation and a pretrained semantic seg-
mentation network. They modified the network architecture
of ESRGAN using the findings of previous CNN studies
and trained the generator by adding a semantic similarity
loss, which represents the difference between the semantic
masks of HR and SR images obtained using the segmentation
network. Chen et al. [29] proposed a blind SR method using
a semantic-aware texture prior obtained by applying mini-
batch K-means to feature vectors of HR images. Recently,
to leverage semantic priors of text images, Park [5] proposed
minimizing the semantic difference between text SR images
using self-distillation. To this end, he proposed a semantic
loss that represents semantic differences between images and
is computed using the pretrained VGG network. He showed
that the learned semantic information can help SR networks
produce better text SR images and his method outperformed
Xu et al’s one.

Our method is similar to Park’s method, but improves
its performance by reformulating it in a GAN framework.
Our method is the same as Xu et al’s method in that it is
a GAN-based framework. However, our method does not
require multiple discriminators, and it minimizes semantic
differences between images belonging to the same category in
the SR process by introducing a semantic loss, thereby being
able to be more effective for semantic SR.

D. SUMMARY
Various structures and types of SR networks have been
proposed, and SR performance has been greatly improved.
However, SR performance can be improved more effectively
by using semantic information of the image, and it has
been shown that using the GAN framework is common
and excellent in terms of performance. Therefore, in this
study, we also use the GAN framework and utilize self-
distillation to effectively learn semantic information without
significantly changing the existing network structure. This
methodology has not been attempted before, and may have
superior performance compared to methods that do not use
the GAN framework or require network structure changes.

III. PROPOSED SEMANTIC SR METHOD
Inspired by the Park’s method [5], the semantic priors are
incorporated into the SR process via self-distillation. That
is, we distill the category-specific semantic information from
SR images of the same category (e.g., ‘‘text’’ or ‘‘face’’)
during training an SR generator. To this end, we propose a
semantic loss that enforces SR images belonging to the same
category to be semantically or contextually similar. However,
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FIGURE 1. Process flow of the proposed method.

the semantic loss is not directly computed using the
pretrainedVGGnetwork [7]. Instead, we train a discriminator
to distinguish semantic differences between SR images
belonging to the same category (see Fig. 1). Then, the
semantic loss is indirectly computed from the discriminator’s
output, aiming to fool the discriminator. In other words,
the generator is trained so that its SR images belonging to
the same category are semantically similar, by minimizing
the semantic loss via adversarial learning. This is because
the pretrained VGG network (used in the Park’s method)
cannot adequately mine semantic features of images and
direct matching of incomplete semantic features may cause
the SR process to proceed in the wrong way.

To distinguish semantic differences between SR images
belonging to the same category, the discriminator will be
trained to extract features, which are most discriminative for
images of a specific category. Therefore, using the trained
discriminator (instead of the pretrained VGG network)
enables to extract better semantic features from images and
helps generate more realistic SR images.

As shown in Fig. 1, we use one of existing CNN-based
SR models as the backbone network, which plays a role of
generating SR images. To train the generator, we randomly
sample an LR-HR image pair (xLR, xHR) and another LR-HR
image pair (yLR, yHR) belonging to the same category, from
the training dataset. Then, we minimize the loss:

LG = Lpixel(xHR, xSR)+ κLsemantic(xSR, ySR), (1)

where xSR and ySR represent the outputs (SR images) of the
generator given the input xLR and yLR, respectively. κ is a
weighting factor and set to 0.001 in our experiments. Lpixel is
the pixel loss and defined as:

Lpixel(x, y) =
1
WH

W∑
i=1

H∑
j=1

∥x(i, j)− y(i, j)∥1, (2)

where W and H are the image dimensions. Lsemantic is the
semantic loss and defined as:

Lsemantic(x, y) = BCE(D(x), 0)+ BCE(D(y), 1), (3)

where D(x) denotes the discriminator’s response to input x
and BCE() represents the binary cross entropy function.

The discriminator can also be one of existing CNN-based
binary classifiers. To train the discriminator, we minimize the
loss:

LD = BCE(D(xSR), 1)+ BCE(D(ySR), 0). (4)

As a result, the discriminator is trained to distinguish
semantic differences between xSR and ySR, whereas the
generator is trained to generate xSR semantically similar to
ySR by fooling the discriminator.

The training procedure is summarized in Algorithm 1.
Only the shaded parts in Fig. 1 are active during inference,
so there is no computational overhead for semantic SR.

Algorithm 1 Semantic SR via self-distillation and
adversarial learning
Initialize network parameters of the SR backbone
network and the discriminator, step t = 1.
do

Sample a batch (xLR, xHR) from the training dataset.
Sample another batch yLR randomly, which belongs
to the same category from the training dataset.
Get the SR images of xLR and yLR by feeding them
into the SR backbone network.
Feed xSR and ySR into the discriminator.
Update parameters of the SR backbone network by
minimizing the loss function in Eq. 1.
Update parameters of the discriminator by
minimizing the loss function in Eq. 4.
t ← t + 1.

while t < T ;

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
The main goal of this study is to verify that our method
enables existing SR models to learn semantic priors, thereby
improving their performance for certain categories of images.
We use EDSR [6] as a baseline model.1 Therefore, we con-

1EDSR has been widely used as a baseline model in recent SR methods
due to its high performance and effectiveness [30], [31].
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FIGURE 2. A part of images from text image datasets used in our experiments.

FIGURE 3. A part of images from face image datasets used in our experiments.

TABLE 1. Quantitative image quality evaluation of text SR images produced by different SR methods. The values to the left and right of ‘/’ represent the
PSNR and SSIM, respectively.

FIGURE 4. A part of HR patch images that have been cropped, rotated,
and flipped for training.

ducted experiments to generate text and face SR images using
four different methods (vanilla EDSR and three semantic SR
methods) and compare them.

TABLE 2. Quantitative image quality evaluation of face SR images
produced by different SR methods. The values to the left and right of ‘/’
represent the PSNR and SSIM, respectively.

To implement our SR method, we used the EDSR model
with 16 residual blocks as the SR backbone network in
Fig. 1, used the discriminator network of SRGAN [13]
as discriminator, and modified the open source code [32]
implemented using the TensorFlow library. For comparison,
we also implemented the Xu et al.’s method (multi-class
GAN) and the Park’s method on our own. In the Xu et al.’s
method, we did not have a single GAN generate both text and
face SR images, but built two separate GANs for text and face
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FIGURE 5. Qualitative image quality evaluation of SR images produced by
different SR methods.

images; thus, each GAN uses the EDSR model as generator
and a single discriminator for identifying real text or face

images. All the networks were trained from scratch using the
Adam optimizer with momentum terms β = (0.9, 0.999),
learning rate = 10−4, upscale factor = 4, batch size = 16,
and total steps = 100, 000 on a single RTX 3090 GPU.
In the Xu et al.’s method, the weighting factors λ1, λ2, λ3,
and margin α were set to 1, 10−3, 0.1, and 1, respectively.
In the Park’s method, the semantic loss weight λ was set
to 0.006.

B. DATASETS AND EVALUATION METRICS
For text image SR, we used Old book Chinese character
OCR (OBCC-OCR) [33] dataset, consisting of 1,108 images,
for training and IAM-HistDB [34], DIVA-HisDB [35],
and HJDataset [36] datasets, consisting of 127, 120, and
341 images, respectively, for testing. The training and testing
datasets contain scanned text images of handwritten or
printed historical manuscripts, written in different languages
including Chinese, German, English, Latin, and Japanese (see
Fig. 2). 10% of the images in the OBCC-OCR datasets were
also used for testing.

For face image SR, we used the aligned and cropped
images in UTKFace [37] dataset, consisting of 21,398
images, for training and FFHQ [38] and CelebA [39] datasets,
consisting of 900 and 200 images, respectively, for testing.
The datasets contain face images of people of different ages,
genders, and ethnicities (see Fig. 3). 10% of the images in the
UTKFace datasets were also used for testing.

The original images of each dataset were used as HR
images and they were downscaled using the cubic interpo-
lation with anti-aliasing on to create LR images. The HR
images were randomly cropped into patches of size 96 × 96,
rotated, and flipped for training (see Fig. 4).

To evaluate the quantitative and qualitative quality of
SR images, we computed PSNR, structural similarity index
measure (SSIM), perception index (PI) [40], and learned
perceptual image patch similarity (LPIPS) [41] values. The
better the image quality, the higher the PSNR and SSIM
values are, but the lower the PI and LPIPS values are.

C. RESULTS AND DISCUSSION
Table 1 shows the PSNR and SSIM values of text SR
images produced by different SR methods. The semantic SR
methods use the EDSR model as their backbone network,
but had higher PSNR and SSIM values than the vanilla
EDSR. It means that the semantic priors obtained by each
method contributed to improving the quantitative quality of
SR images. However, as mentioned in the previous study [5],
Xu et al.’s method tended to be over-fitted to the training
dataset. As a result, its PSNR and SSIM values were highest
for the OBCC-OCR dataset, but lower than Park’s method
or the proposed method for the other datasets. Xu et al.’s
method is similar to the proposed method in that it is a GAN-
based framework, but neglects to reduce semantic differences
between images belonging to the same category, resulting
in reduced generalization ability. The proposed method
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FIGURE 6. Visual comparison of text SR images produced by different SR methods. The
images were cropped and enlarged to improve visibility.

outperformed the other methods without being over-fitted
to the training dataset. The proposed method consistently
showed higher PSNR and SSIM values than Park’s method
for all datasets, indicating that our GAN-based framework
is more effective for semantic SR than the VGG-based
framework.

Table 2 shows the PSNR and SSIM values of face SR
images produced by different SR methods. The noticeable
thing was that the Park’s method did not work correctly
and had lower PSNR and SSIM values than the vanilla
EDSR. We think that this is because the face images are
semantically less similar compared with the text images and
the pretrained VGG network may not be a good solution for
extracting semantic information from images. Nevertheless,
direct matching (the semantic loss in Park’s method) of
incomplete semantic information extracted from SR images
may cause the SR process to proceed in the wrong way.
In contrast, the proposed method showed highest PSNR and
SSIM values for all the datasets, in spite of being derived
from the Park’s method. This is because the proposed method
has the discriminator well trained to identify semantically
similar images and transfers the semantic prior indirectly
to the generator via adversarial learning. This indicates
again that our GAN-based framework is effective for
semantic SR.

Figure 5 shows the PI and LPIPS values of text and face SR
images produced by different SR methods. First, the Park’s

methodwas not helpful for decreasing PI and LPIPS values of
text SR images. This means that the Park’s method improves
only the quantitative quality of SR images (this was not shown
in the previous study [5]). As aforementioned, the Park’s
method did not work correctly in enhancing face SR images;
thus, its PI and LPIPS values were consistently higher than
the vanillar EDSR. In general, GAN-based methods (i.e.,
Xu et al.’s and proposed ones) showed good performance in
decreasing PI and LPIPS values of SR images. Because their
results varied depending on datasets and image categories,
it was difficult to judge which was better between the two.
However, there was a discernible difference between the
perceptual quality of SR images produced by the twomethods
(see Figs. 6 and 7).

In most results, the visual difference of SR images
produced by different SR methods was not clearly observed
with the naked eye. So, to clarify the difference, we cropped
and enlarged the SR images as shown in Figs. 6 and 7. In the
text SR images of vanilla EDSR, the letters were seriously
distorted, reducing text readability. However, semantic SR
methods reduced the distortion, and in particular, GAN-based
methods (Xu et al.’s and proposed) produced visually much
better SR images. Among them, the proposed method best
reconstructed realistic texture and local details of HR images;
thus, its SR images seemed most similar to the corresponding
HR images. In the face SR images, the visual difference was
mainly observed in the mouth and eyes. The vanilla EDSR
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FIGURE 7. Visual comparison of face SR images produced by different SR methods. The images were cropped and enlarged
to improve visibility.

and the Park’s method sometimes produced unnatural and
blurry artifacts (e.g., see the third and last row of Fig. 7).
Xu et al.’s method showed good performance in producing
visually plausible SR images, but failed to clearly reconstruct
local textures. From the results, it can be seen that the local
textures and shape of the mouth and eyes were most clearly
reconstructed by the proposed method.

From the above results, we can conclude that useful
semantic information was extracted by the proposed method
and contributed to improving both the quantitative and
qualitative qualities of SR images. The improvement was
greater than when the other semantic methods were used.

D. LIMITATIONS
The proposed method has yet to fully recover local details,
as shown in Figs 6 and 7. This is because the binary
discriminator used in the proposed method distinguishes
semantic differences between images at the image level;
thus, the adversarial loss inevitably has limitations in
recovering local details in the pixel level. To address this
problem, we will need to design a more sophisticated
discriminator. As a preliminary experiment, we tried to
use an U-net structure discriminator [42]. It seemed to
help reconstruct small textures, but its overall perfor-
mance was poor compared to the binary discriminator.
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It also showed a tendency to be overfitted to the training
dataset.

The training parameters in our experiments were not fully
optimized. For example, the weight factor (κ) in Eq. 1
were heuristically set. A small κ may cause the semantic
information to be less learned, while a large κ may not recover
local detailed textures and degrade the SR image quality [5].
Therefore, the parameters need to be fine-tuned for further
improvement of performance.

V. CONCLUSION AND FUTURE WORK
In this study, we proposed a semantic SR method that is
based on the GAN framework and self-distillation to enable a
baseline CNN-based SR model to learn semantic information
of images, thereby improving their generalization abilities.
The method trained a discriminator to distinguish semantic
differences between images belonging to the same category
and led the baseline SR model to learn an implicit category-
specific semantic prior by minimizing the adversarial loss
via self-distillation. Therefore, the proposed method was able
to effectively incorporate a decent semantic prior to the SR
process without a pretrained network. In experiments with
various text and face datasets, the proposed method was
able to generate text and face SR images with improved
quantitative and qualitative image quality (up to 0.87 dB
in PSNR and up to 0.17 in PI) and outperformed existing
semantic SR methods.

However, as mentioned in Sec. IV-D, the semantic prior
could not be obtained at the pixel level, and the proposed
method had a limitation in reconstructing local details.
Currently, we are trying to find ways to resolve the problem.

From the perspective of contrastive learning [43], seman-
tically different images (i.e., negative samples) can also help
to obtain more robust semantic priors. The related experiment
would be an interesting future work.
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