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ABSTRACT Khnee osteoporosis (KOP) is a skeletal disorder characterized by bone tissue degradation
and low bone density, leading to a high risk of bone fractures in the knee area. The traditional
method for identifying knee osteoporosis is knee radiography, which requires sufficient expertise from
specialists. However, the sheer volume of X-rays and the subtle variations among them may lead to
misinterpretation. In recent years, deep learning algorithms have revolutionized medical diagnosis and
reduced misclassification. Specifically, convolutional neural network (CNN)-based algorithms have been
utilized to automate the diagnostic process as they have the inherent ability to extract important features that
are difficult to identify manually. However, relying on a single method may result in suboptimal performance,
leading to ineffective deployment in the medical domain. To alleviate this issue, in this study, we propose
a robust detection method, KONet, which utilizes a weighted ensemble approach to distinguish between
normal and osteoporotic knee conditions, even when there are minor variations in the data. To validate the
architectural choices in the ensemble approach, we conducted experiments on various state-of-the-art CNN-
based models using transfer learning. Extensive experiments indicated that the proposed model achieves a
higher accuracy than existing models, outperforming the state-of-the-art models by a significant margin.

INDEX TERMS Convolutional neural network, classification model, knee osteoporosis, skeletal health,

transfer learning, weighted ensemble learning.

I. INTRODUCTION

Osteoporosis is a condition that affects the skeletal system
and is characterized by a reduction in bone mass and bone
tissue degradation, leading to low bone density and an
increased risk of bone fractures. A specific manifestation of
osteoporosis, known as Knee Osteoporosis (KOP), primarily
affects the knee area and has gained increasing attention in
recent years, impacting millions of people [1], [2], [3]. The
World Health Organization identifies several key risk factors
associated with the development of KOP, including age,
gender, family history, hormonal imbalances, and lifestyle
factors such as excessive alcohol consumption [4]. Women,
in particular, are classified as a high-risk group for developing
KOP, with numerous studies supporting this assertion [5], [6].
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KOP conditions are marked by a significant decrease in bone
mineral density and alterations in the protein composition of
bones, which contribute to the vulnerability of knee bones
to fractures and other pathological changes [7], [8]. Typical
indications of this disease include persistent discomfort and
pain in the affected knee region, stiffness, and reduced mobil-
ity, all of which significantly affect an individual’s quality of
life [4]. It is important to note that KOP is an irreversible
and incurable disease; however, timely identification and
specific treatments can significantly slow or even halt its
progression, improving the overall well-being of affected
individuals [7], [9]. The treatment of KOP necessitates a
multidisciplinary approach, encompassing pharmacological
treatments, lifestyle modifications, and physical therapy [1].

In the realm of pharmacological treatments, options such
as bisphosphonates, hormone therapy, and selective estrogen
receptor modulators have shown promise in enhancing
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bone density and mitigating fracture risk [10]. Furthermore,
lifestyle adjustments, including weight-bearing exercises,
ensuring adequate calcium and vitamin D intake, and
abstaining from smoking and excessive alcohol consumption,
play a pivotal role in promoting bone health and the effective
management of KOP.

In contemporary healthcare, KOP detection and classifica-
tion are conducted with the collaboration of medical experts
through the examination of images acquired using X-rays,
quantitative ultrasound system (QUS), computed tomography
(CT) [11], [12], and magnetic resonance imaging (MRI)
[13], [14]. Compared to other techniques, X-rays are
cost-effective and widely available. X-ray imaging is
commonly used in the medical community to diagnose
bone pathology [15]. These images are the most widely
used methods for identifying fractures or abnormalities in
body bones, such as the knee, elbow, wrist, spine, pelvis,
and shoulder. However, numerous X-rays and the minor
differences between them can lead to misjudgments in KOP
identification [16]. To address these issues, efforts have been
made over the years to automate the process. For instance,
recent studies have suggested a significant shift toward the
use of automatic diagnostic systems based on deep learning
to assist medical experts [16], [17].

The convolutional neural network (CNN) is the de facto
deep learning approach for automatic feature extraction
from images and has been utilized to detect several disease
conditions, such as pneumonia [18] and breast cancer [19].
Although CNN-based variant models such as ResNet50,
AlexNet, VGG19, SqueezeNet, EfficientNet, VGG16, and
GoogLeNet, have demonstrated successful outcomes in
classifying medical images, they face significant challenges.
The primary obstacle lies in the requirement for large
amounts of labeled data for training, which can be arduous
to acquire in the medical domain [20], and the cost is high.
To address this issue, researchers have proposed the concept
of transfer learning. In transfer learning [21], a CNN trained
on a large dataset is retrained on a novel problem with
fewer data, whereby the CNN can quickly learn features
on the small new dataset by using the knowledge gained
from the large dataset. This method is particularly useful
when the data are too few to achieve certain tasks. The
pre-trained model provides a better starting point and avoids
the retraining of a large model from scratch [21], [22].
This helps to effectively solve various image-classification
tasks [21]. Despite the higher performance exhibited by
several methodologies in classifying KOP, certain limitations
still exist in the proposed methods. In particular, existing
methodologies perform better in the training phase; however,
their accuracy is clearly lower in the validation and testing
phases [16], [17]. In the automated healthcare field, testing
accuracy is crucial because a minor increase in accuracy
can lead to a more accurate and faster diagnosis, which can
improve patient outcomes and treatment plans.

Considering these problems, we propose a method
for constructing a weighted ensemble model using a
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transfer-learning approach to diagnose KOP. The primary
objective of this approach is to avoid depending solely on a
single method and mitigate the biases and variance present
in individual models. This is accomplished using a weighted
ensemble technique, which assigns greater weight to the
optimal model, thereby combining the capabilities of several
models to increase the overall performance. This method
has shown promising results compared to other existing
approaches. The contributions of this study are summarized
as follows:

e Our primary contribution is the development of the
KONet model, which seamlessly integrates the strengths
of EfficientNetB0 and DenseNet121 through a weighted
ensemble approach for KOP diagnosis. To achieve this,
we use custom weights to combine the capabilities of
both models and enhance overall performance, allowing
for adaptive feature selection and representation. The
weighted ensemble technique assigns greater impor-
tance to the optimal model, mitigating the biases
and variance present in individual models. Notably,
our KONet model has shown promising results when
compared to other existing approaches, making it
the first ensemble learning-based approach for KOP
classification.

o A thorough evaluation was conducted on various state-
of-the-art models, including KONet, and their respective
performance measures were analyzed.

« A comprehensive evaluation was performed on various
weight configurations to determine the optimal weights
that would enhance performance metrics.

The remainder of the paper is organized as follows:
Section II presents several related works conducted for
disease classification and KOP diagnosis, using visual Al
In Section III, the preliminaries of the proposed approach
are outlined. Section IV presents the proposed architecture
and provides an overview of the ensemble process and
optimization strategy. In Section V, the materials and exper-
imental setup used in the KONet approach are introduced.
This section also elucidates some of the pre-processing
phases necessary for building the proposed model. Section VI
presents a discussion on the performance metric analyses
utilized. Section VII concludes the paper and identifies the
limitations and future directions of this work.

Il. RELATED WORKS

The related works in this paper consist of two distinct
components: the role of visual artificial intelligence (Al) in
the classification and detection of different diseases and an
overview of the state-of-the-art in KOP classification.

A. STATE-OF-THE-ART ON VISUAL Al FOR DISEASE
DIAGNOSIS

In response to the rapid transformation of Al, several
approaches have been adopted in the healthcare sector to
diagnose diseases using computer vision. In particular, after
the introduction of CNN approaches, researchers developed
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FIGURE 1. Dataset samples with ground truth labels.

disease diagnosis systems utilizing CNN. Farooq et al. [23]
introduced a classification method for Alzheimer’s disease
using MRI images; they utilized GoogLenet, ResNet-18, and
ResNet-152. Among these networks, Googl.eNet exhibited
98.88% accuracy. In [24] CheXNet algorithm was developed
to distinguish 14 types of diseases by examining chest X-ray
images. The network consisted of a 121-layer CNN and
was trained on the ChestX-rayl4 dataset. They checked
the performance of their approach using the annotations
of four practicing academic radiologists on a test set and
noticed that their system performed better than the average
radiologist. Visual Al approaches have been applied to
chest radiographs, microscopy images, MRI, and other
medical image datasets to help health practitioners. For
instance, in [25], an automated segmentation method was
proposed to segment brain tumors using a CNN trained
on MRI images with promising results; however, because
of overfitting, there were fewer parameters. The work that
uses the dice similarity coefficient metrics was the result
of participating in the brain tumor image segmentation
benchmark (BRATS) algorithm challenge, where it secured
second place. In addition to MRI, several approaches
involving microscopy images, as in [26] have proposed the
CapsNet neural network to classify 2D HeLa cells. The
authors in [27] developed a method to effectively detect
osteoporosis by applying CNNs to oral panoramic radio-
graphs. Herein, patient-specific characteristics in common
clinical circumstances considerably boosted the prediction
accuracy compared with the image-only mode. This study
anticipated that by exploiting the sophisticated inference
capabilities of deep learning, key clinical parameters that
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Osteoporosis

cannot be identified solely from dental panoramic X-ray
images would be considered simultaneously, resulting in
improved diagnostic precision [27]. Recently, Ahmad et al.
introduced an approach that leverages a modified version
of YOLOV7 along with a squeeze-and-excitation network
to detect gastric lesions in endoscopic images, classifying
them into four distinct categories [28]. This approach initially
addressed the four distinct classes and exhibited significantly
improved performance. In addition, Konwer et al. proposed
an approach to predict the progression of the disease by
utilizing analysis of temporal images [29]. Here, the authors’
suggested approach includes two main components such as
self-attention-based temporal convolutional network (TCN)
to acquire disease trajectory representations and a vision
transformer that is pre-trained in self-supervised methods to
extract features from single-time point medical images. This
method demonstrated substantial and statistically significant
results in comparison to established methodologies.

B. STATE-OF-THE-ART ON KOP DETECTION AND
CLASSIFICATION

In the domain of disease detection, deep learning has
demonstrated superior results compared to traditional
methods [26]. Several deep-learning approaches have also
been used for KOP diagnosis. The authors of [17] proposed
a transfer learning method using a VGG16 network for KOP
classification. They achieved 88% accuracy with fine-tuning
and 80% accuracy without fine-tuning. Five folds were
randomly selected from the training dataset to reduce bias
and overfitting during training. The fundamental shortcoming

5733



IEEE Access

M. J. Aashik Rasool et al.: KONet: Toward a Weighted Ensemble Learning Model

TABLE 1. Analysis of osteoporosis classification approaches.

Approaches

Dataset

Method

Limitations

Usman et al. [17]

From Mendeley knee X-
ray osteoporosis database
[30]

Constructing VGG16 utilizing trans-
fer learning approach to classify 3
classes

VGG16 is a simple network and it of-
ten fails to capture complex structures
of medical images.

Usman et al. [16]

The osteoporosis knee X-
ray dataset [31]

Constructing GoogLeNet (Inception
model) utilizing transfer learning ap-
proach to classify binary classes

Inception is a complex network,
which also requires substantial re-
sources and leads to overfitting con-
ditions.

K. Hatano et al. [32]

Computed radiogra-
phy(CR) images of
phalanges area (source is
not mentioned)

Constructing a classifier based on
deep convolutional neural network
(DCNN) to classify osteoporosis con-
dition in phalanges area.

This approach is challenging when
conducting identification within the
region of interest(ROI) using DCNN
solely based on textural information.

is the VGG16 network’s simplicity, which is insufficient to
adequately represent the complicated structures required for
identifying the KOP conditions. In [16] transfer learning
approaches were compared with several state-of-the-art
models, with GoogLeNet achieving 90% accuracy. The
authors followed 30 epochs and used the RMSProp optimizer
to achieve the results. The GoogleNet architecture is
intricate and demands considerable computational resources,
potentially resulting overfitting circumstances. In [32] digital
computed radiography images were used to train a DCNN
for osteoporosis diagnosis of the phalanges (digital bones in
the hands). They used threefold cross-validation to achieve
better accuracy in osteoporosis diagnosis. A comparative
analysis was conducted to identify KOP conditions. The
dataset, methods, and limitations are summarized in Table 1.
Apart from these studies, there has been little research using
deep-learning algorithms in this domain.

High accuracy is essential in disease identification.
Although other domains for diagnosing illnesses have
achieved more than 90% accuracy [27], current approaches
for KOP detection still demonstrate 90% accuracy. This
disparity poses a significant problem requiring a dedicated
strategy.

Ill. PRELIMINARIES

A. TRANSFER LEARNING METHOD

The key idea behind transfer learning for image classification
is that a model that is trained on a sufficiently large and gen-
eral dataset effectively acts as a general model of the visible
world, whereby the advantage is the use of acquired feature
maps, rather than training a large model on a large dataset
to rebuild from scratch [33], [34]. This approach helps to
prevent obstacles to domain adaption and improves data effi-
ciency. In transfer learning, two major scenarios exist: using
a convolutional network as a fixed-feature extractor and fine-
tuning the convolutional network [35]. This study freezes the
first 10 layers during the construction of the baseline models,
followed by the application of the fine-tuning mechanism.

B. FINE TUNING

Fine-tuning is a method of adapting an architecture to a new
task using an existing model on specific datasets. During
fine-tuning, the pre-trained weights are updated with new
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weights [35]. In deep learning, this method is commonly
used to update parameters by introducing additional data
into an existing model. There are four major scenarios in
transfer learning that use standard rules of thumb. In the
first scenario, the new dataset is small and similar to
the original dataset. In the second scenario, the dataset is
large but similar to the original dataset [36], and CNN is
preferred as a fixed feature extractor method. In the third
scenario, the novel dataset is large and differs from the
original dataset, and the CNN method is preferably fine-
tuned. Finally, in the fourth case, if the novel dataset is small
but differs from the original dataset, the CNN method is
preferably fine-tuned. In the proposed approach, we followed
the fourth rule as our dataset was considerably smaller
than the ImageNet dataset and substantially different. It is
evident that in the fourth scenario, which is shown in the
rightmost column, the model was fine-tuned by rearranging
the final layer to satisfy domain-specific requirements. For
instance, the EfficientNetBO and Densenetl21 pre-trained
models have 1000 classes, whereas, in the proposed scenario,
there are only two classes. Therefore, the architecture must be
fine-tuned to satisfy the proposed criteria.

C. BASELINE NETWORK ARCHITECTURES

The EfficientNetB0O and DenseNet121 architectures used in
this study demonstrated superior performance on the KOP
dataset. The primary reason for selecting these architectures
was their superior test accuracy, indicating their capacity for
producing more reliable results in the context of our research.
We used the transfer learning method and fine-tuned the
last ten layers of these architectures to improve accuracy.
An approach for realizing this is to reuse an existing
network to extract essential features from new samples and
incorporate a novel classifier model to make predictions
based on the extracted features. However, the studied model is
specific to the original classification problem and therefore,
specific to the set of classes on which the model has been
trained. In our problem, the objectives of the learned feature
maps had to be reset for the dataset.

1) DenseNet121 ARCHITECTURE

DenseNet is a well-known architecture that was introduced
in 2017 [37]. DenseNet121 has 121 layers and is specifically
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FIGURE 2. Transfer learned DenseNet121 architecture to KOP dataset.

designed for image classification tasks [37]. This model is
structured into three key components: dense blocks, transition
layers, and classifiers.

The core of DenseNetl21 lies in its dense blocks.
Dense blocks contain several convolutional layers, each
interconnected to all previous layers. Here, dense blocks
receive input from all previous layers and maintain constant
feature map dimensions while varying the number of
filters between them. This intricate connectivity ensures
that each layer receives input from all preceding layers.
This approach aids in preserving information throughout
the network, potentially improving the model’s learning
capability. It addresses the vanishing gradient issue and leads
to improved model accuracy with parameter efficiency. The
second part of the network is the transition layer, which
performs down-sampling using a combination of convolu-
tional layers and a pooling layer. The third and final part
of the network is the classifier [38]. The classifier consists
of a global pooling layer, followed by a fully connected
layer with an activation function (softmax) that provides
the predicted results [39]. The process is demonstrated in
Figure 2.

2) EfficientNetBO ARCHITECTURE

The EfficientNet architecture consists of eight variants such
as EfficientNetBO to EfficientNetB7. The intuition behind
this network is on scaling the depth, width, and resolution of
the neural network [40]. EfficientNetBO is a simple and less
complex network within the EfficientNet family. It consists
of 18 convolution layers. According to Figure 3, initially,
the input image size of 224 x 224 passes through the first
layer. Subsequent layers decrease in resolution to reduce
feature map size while enhancing accuracy [41]. Each layer
has channels of 32, 16, 24, 40, 56, 80, 112, 192, 320, and
1280, respectively. On the other hand, the height and width
decrease progressively to 112, 56, 28, 14, and 7, respectively.
Following the convolutions, this information is forwarded to
the fully connected layer, where the maximum number of
filters employed is 1280. The final layer is responsible for
conducting the classification.
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FIGURE 3. Transfer learned EfficientNetB0 architecture to KOP dataset.

D. WEIGHTED ENSEMBLE-LEARNING MODEL

Ensemble learning, a powerful machine learning approach,
combines numerous distinct models to generate a new
model that improves prediction accuracy for certain tasks.
References [42] and [43]. This method has proven to be
beneficial in a variety of fields of study [44], [45]. In this
study, the weighted ensemble model method was used. The
weighted ensemble model approach assigns higher weights
to models with better performance on the validation and
test datasets. The intuition behind the weighted-average
mechanism relies on combining the strengths of several
models and reducing their weaknesses. In the proposed
weighted ensemble model, each model contributes to the
outcome based on its strengths and weaknesses.

In the proposed KONet, we identified the two most optimal
models from the pool of trained networks by analyzing the
test accuracy of each network. Subsequently, a weighted
ensemble model was constructed. Eq. 1 illustrates the
ensemble process:

Ensemble prediction = Wy - M| + W, - M3 (1)

where W) represents the assigned weight of Model 1, and
W, represents the weight of Model 2. M; denotes the
prediction of Model 1, and M; represents the prediction
of Model 2. The two optimal models that provided better
accuracy were selected for the KOP dataset. Different weight
ratios were then assigned to these models in construct-
ing an ensemble model. During the construction process,
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Performance accuracy of different
weight ratios on the KOP dataset
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FIGURE 4. Performance accuracy of different weight ratios on the KOP
dataset using DenseNet121 and EfficientNetB0 models.

the weights of 0.6 for Densenet121 and 0.4 for Efficient-
NetBO exhibited the best performance during the testing
phase. In Figure 4, the performance accuracy of different
weight ratios on the KOP dataset is presented for the
EfficientNetBO and DenseNet121 models.

IV. PROPOSED APPROACH

In this section, we present the methodology employed in
our study and the optimization strategies used to construct
KONet.

A. METHODOLOGY

Algorithm 1 and Figure 6 present a comprehensive outline
of the workflow adopted in this study. Initially, the data
are pre-possessed, and subsequently partitioned into training,
test, and validation sets in the ratios of 0.8, 0.1, and 0.1,
respectively. The transfer-learning approach was then utilized
to construct the six CNN models. In constructing these
networks, the first ten layers were frozen and the remaining
layers were fine-tuned on our dataset. The transfer learning
approach was chosen due to the relatively small size of our
dataset, and fine-tuning the last ten layers was necessary
because our data differs from the ImageNet dataset. During
fine-tuning, the final layer was arranged by applying the
linear transformation expressed in Eq. 2 below

y=xAT +b )

where x represents the incoming data; y represents the output
data after transformation; A” represents the learnable weight
of the shape A; b represents the additional bias learned during
training. The collection of models is denoted as M; in the
5th line of Algorithm 1, where each element is represented
by M, My, M3, M4, M5, Mg. The models were arranged
in descending order based on their test accuracy scores.
To accomplish this, the cardinality (number of elements) of
the set containing indices 7, was calculated with the evaluation
score S; equal to the evaluation score Sy, for each k in the
range of 1 to 6.
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Subsequently, the 7th line of Algorithm 1 demonstrates
that the two optimal models among the trained models, BM
(DenseNet121) and BM; (EfficientNetB0), were adopted as
the best models for further analyses and ensemble construc-
tion. When constructing the EfficientNetBO0, a dropout ratio
of 0.1 was applied. By contrast, in DenseNet121, a dropout
ratio of 0.3 was adopted. The dropout technique helps
circumvent the overfitting problem.

Algorithm 1 Algorithm for Our Proposed Approach

1: Preprocess the data.
2: Split the data into train test and validation
3: fori=1to6do
Train the model M; on the training data;
Evaluate the performance of model M; on the
validation set and test set;
4: end for
5: Sort the models M| to Mg based on their evaluation
scores S; in descending order, such that:
Vi<k<o6 |{ie{l,2,3,4,5,6}]|S; =Sk}
6: Select the two best-performing models:
BM_1 = max{M; | M; € {M, My, M3, My, M5, Mg}}
BM_2 = max{M; | M; € {M;, M, M3, My, M5, Mg}
and M; # BM_1}
7: Load two optimal models: BM| and BM; from the sorted
list;
8: Assign custom weights for models:
customyeighr = [x, y] & (x +y) = 1;
9: if BMaccuracy > BM,accuracy then
10: X >y,
11: end if
12: Create model input:
Input = Input(shape=(Height, Width, 3));
Predpp1 = BM1(Input);
Predppyr = BMa(Input);
13: Compute ensemble model prediction using custom
weights:
E_Pred = Ziz:](PredBM,- X CUStOMyeight [11);
14: return E_Pred,;

In the weighted ensemble process, custom weights, x and y
were assigned to each model, giving more weight to the more
accurate model. Subsequently, the input was passed through
the model both BM| and BM», by generating individual model
predictions as Predpys1 and Predpys;. These predictions are
then combined using the assigned weights, resulting in the
final ensemble prediction, generating the final prediction,
denoted as Ejp.q. This weighted average effectively captured
the strengths of both models while emphasizing each model’s
contribution. This process is demonstrated in lines 12 and
13 of Algorithm 1 and Fig. 5.

B. OPTIMIZATION STRATEGIES
In our study, the Adam optimizer was used as the optimization
technique. The Adam optimizer is a first-order gradient-based
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FIGURE 5. lllustration of our proposed approach for KOP classification. The diagram depicts the key components and workflow of our KONet model.

optimization algorithm that utilizes a stochastic objective
function based on the adaptive estimation of low-order
moments. The Adam optimizer was used owing to its fast
convergence in classification tasks compared to other opti-
mization techniques [46], which is achieved by maintaining
separate learning rates for each weight in the network
and adapting these learning rates to past gradients. This
process results in rapid convergence to optimal weights. The
Adam optimizer compares favorably with other optimization
methods, tools, and random devices [47]. This algorithm is
used to accelerate the gradient reduction algorithm through
an exponentially weighted average of the gradients, whereby
the algorithm reaches the minimum faster.

V. MATERIALS AND EXPERIMENTAL SETUP
This section provides a comprehensive description of the data
preprocessing methods and experimental setup.

A. DATASET

In this study, we utilized the publicly available osteoporo-
sis knee X-ray dataset from Kaggle [31]. This dataset,
which contains normal and osteoporotic classes, consists
of 372 images. Some examples are shown in Figure 1.
Compared to other medical image datasets, the KOP image
datasets are not widely and publicly available, with the
dataset mentioned in [31] being the sole exception. Consid-
ering this obstacle, we conducted our study using the dataset
mentioned in [31].

1) DATA PREPROCESSING
Initially, data preprocessing was performed in three steps:
resizing, augmentation, and data splitting. The dataset
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contained images of different sizes. As an initial step,
we resized the image to Image!eisht>Widthx3 according to
the input size. Next, data augmentation was conducted to
increase the size of the dataset, using the Augmentor library.
Data augmentation not only helps prevent overfitting but also
improves generalization and reduces bias, thereby improving
model performance on unseen data. The dataset size was
increased to 4000 images. Rotation, shear, and zooming
methods were used to augment the images. Examples of the
augmented data are shown in Figure 6.

Original Sher

Image

FIGURE 6. Comparative analysis between the original image and
augmented samples from the KOP dataset.

Subsequent to data augmentation, normalization was
applied, mostly to minimize the influence of lighting
condition variations on the images. This method can enhance
the adaptability of the model. The data were then divided into
three parts: training, validation, and testing in the ratio of 0.8,
0.1, and 0.1, respectively. The Python library “split-folder”
was used to perform the data-splitting.
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B. EXPERIMENTAL SETUP

The study was carried out in the Keras framework using
the features provided in the Colab Pro environment. The
experimental method involved numerous steps, including
training, validation, and testing, all performed on a Tesla
T4 GPU processing unit. The Keras framework was chosen
because of the wide support it offers for deep learning
tasks and its user-friendly interface, enabling rapid and
successful model creation. This decision provided access
to an extensive library of pre-implemented neural network
topologies, optimization methods, and assessment measures.
All of our constructed networks were trained with a batch size
of 32, and the number of training epochs was set to 40.

VI. DISCUSSION

A. PERFORMANCE METRICS ANALYSIS

This section provides the performance indicators utilized for
evaluating the qualitative and quantitative effectiveness of our
approach.

1) CONFUSION MATRIX ANALYSIS

In statistics, true positive Tp (refers to the model predicting
a positive result, when the actual result is also positive. True
negative Ty refers to the model predicting a negative result
when the actual result is also negative. False negative Fy
refers to the model predicting a negative result when the
actual result is positive. Finally, false positive Fprefers to the
model predicting a positive result when the actual result is
negative [47], [48].

According to the findings presented in Figure 7, the
confusion matrix for the proposed model displays the
relationship between the actual and predicted values for
the classification classes. The plot on the right shows that 7},
is 205; Fpis 10; Fyis 1; and T,is 183. The plots on the left
show these values as percentages, corresponding to a 7, of
51.38%, Fp of 2.51%, F, of 0.25%, and T, of 45.85%.
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FIGURE 7. Confusion matrix comparison of the KONet.

2) ACCURACY
Accuracy is a measure of how often a classification model
correctly predicts items, as shown in Eq. 3 to evaluate the
effectiveness of the proposed approach.

T, +T,

Accuracy =

3
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Figure 8 illustrates the accuracy of each model during
the training (blue line) and validation (orange line) phases.
The performance of DenseNet121 is presented in Figure 8(a)
During the training phase, initially an upward trend is
observed; however, after the 5th epoch, a constant level is
maintained as a straight line. The validation line remains
consistently above the training line and is slightly noisier.
In Figure 8(b), the training and validation accuracy values
of EfficientNetBO, start at higher values than those of
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FIGURE 8. Comparison of KONet and other well performing models on

training and validation accuracy.
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DenseNet121 and exhibit an upward trend. The gap between
training and validation accuracy is comparatively higher than
that in DenseNet121. In Figure 8(c), the graph depicts the
accuracy of KONet, starting with good training and validation
values. The lines for KONet display a smooth approach to all
the training and validation phases. In the 21st epoch, the best
validation value for all three methods is attained.

3) PRECISION, RECALL, AND F1-SCORE

Precision and Recall are useful measures of success predic-
tion when the classes are highly imbalanced [47]. Precision is
the ratio of what a model classifies as true to what is actually
true, as expressed in Eq. (4):

Ty

Precision = ————
T, +Fp

“
In addition to precision, recall is also used to indicate success
or hit rate. Recall is the ratio of what the model predicts versus
reality, and is expressed as in Eq.(5):

Tp

Recall = —— Q)
Tp + F n

The F1 score is a good performance metric for binary
classification tasks. In the case of two classes such as positive
and negative, F1 is the harmonic mean of precision and recall.

The F1 score is expressed in Eq. (6):

Precision x Recall

Flscore =2 x — (6)
Precision + Recall

In Table 2, precision, recall, and F1-score are displayed.
Among these, the proposed ensemble model, KONet, per-
forms better than the other models. Here, the values were
calculated using the Marco average to average multiclass
values. These values are calculated with the support of
399 images.

TABLE 2. Review of the performance of various models on the KOP
dataset. The metrics evaluated include precision, recall, and F1-score for
each model.

MODEL [ PRECISION RECALL FI-SCORE
Densenet-121 0.96 0.96 0.96
EfficientNetb0 0.95 0.95 0.95
Resnet50 0.87 0.87 0.87
Vgg-19 0.88 0.88 0.88
MobileNet 0.95 0.95 0.95
Our KONet 0.97 0.97 0.97
Inception V3 0.94 0.94 0.94

Table 3 displays the class-wise performances of the
proposed model. According to this table, the normal class has
the highest precision of 1.00, whereas the osteoporotic class
has the highest recall value.

In this study, we evaluated the performance of the proposed
ensemble model and other well-known models, such as
Resnet50, VGG-19, DenseNetl121, MobileNet, Efficient-
NetBO0, and InceptionV3, that achieved better performance on
the ImageNet dataset.
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TABLE 3. Class-wise performance evaluation review of the KOP dataset.
The metrics include precision, recall, and F1-score for each class (normal
and osteoporosis).

CLASSES [ PRECISION RECALL FI1-SCORE
Normal 1.00 0.95 0.97
Osteoporosis 0.95 0.99 0.97

According to Table 4, in terms of training accuracy, the
performance of InceptionV3 is impressive. However, the
validation and testing accuracy is significantly lower than
that of the proposed KONet, and the validation and testing
loss is relatively high. This is because InceptionV3 uses a
combination of convolutional layers with modules, whereas
EfficientNet and DenseNet use skip connections allowing
the reuse of features, which leads to better performance,
alongside the proposed model in terms of validation and
testing accuracy with respect to InceptionV3. In addition,
InceptionV3 required more computation time than the other
networks during the training phase. Resnet50 and Vgg-19
performed worse than the other networks because these
networks are simpler than the others. ResNet-50 (50 layers)
and VGG-19 (19 layers) have fewer layers than the other
networks, which is another reason for the reduced training
time consumed per epoch by these networks. Table 4 clearly
shows that our proposed KONet outperforms the other
models in the testing and validation phases with a significant
margin of 1%, while having the second-highest number of
parameters.

The visual representation in figure 9 depicts a bubble chart
of the model performances, along with time consumption per
epoch. It’s evident that Inceptionv3 exhibits a significantly
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FIGURE 9. Comparison of model performance and time per epoch
(in seconds).
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TABLE 4. In-depth analysis of model accuracy on the KOP dataset.

TIME
TRAIN VALIDATION TRAIN VALIDATION TEST

MODELS ACCURACY ACCURACY LOSS LOSS ACCURACY  EPOCHS EﬁgCH PARAMETERS
Densencti2] 09703 00624 00751 01175 09562 20 30 7563330
Mobilenet 0.9787 0.9474 0.0532 0.1687 0.9434 40 18(s) 3754690
EfficientNetb0 | 0.9734 0.9599 0.0248 02010 0.9576 40 24(s) 22852898
Resnet50 0.9041 0.8772 0.2232 0.4487 0.8881 40 31(s) 24637826
Vegl9 0.9296 0.8897 0.2109 03322 0.9104 40 28(s) 20288066

Our KONet 0.9794 0.9724 0.0458 0.0897 0.9652 40 42(s) 30251652
TnceptionV3 0.9806 0.9474 0.0455 0.1776 0.9378 40 58(s) 52852808

TABLE 5. Performance accuracy of different DenseNet121 and EfficientNetBO ratios on the KOP dataset. The ratios indicate the relative contributions of

the two models in a weighted ensemble.

DenseNet121 ratio  EfficientNetBO ratio [ Train accuracy ~ Validation accuracy ~ Train loss ~ Validation loss ~ Test accuracy
0.9 0.1 0.9878 0.9584 0.1229 0.4520 0.9504
0.8 0.2 0.9894 0.9599 0.0126 0.4159 0.9514
0.7 0.3 0.9878 0.9524 0.0229 0.4720 0.9540
0.6 0.4 0.9794 0.9724 0.0458 0.0897 0.9652
0.5 0.5 0.9787 0.9574 0.0502 0.2284 0.9610
0.4 0.6 0.9747 0.9449 0.0531 0.3002 0.9510
0.3 0.7 0.9759 0.9440 0.0526 0.3032 0.9502
0.2 0.8 0.9703 0.9474 0.0631 0.3879 0.9492
0.1 0.9 0.9683 0.9450 0.0729 0.3974 0.9486

higher computation time than its peers and has a com-
paratively inferior validation accuracy. Despite having the
second-highest training time per epoch, our proposed KONet
outperforms other models in terms of validation accuracy by a
considerable margin. This is because the weights assigned to
Densenet121 and EfficientNetBO (0.6 and 0.4, respectively)
constrain their contributions to the ensemble prediction.

To select the suitable weight ratios, we conducted exper-
iments using various ratios of Densenetl21 and Efficient-
NetBO0. The corresponding results are presented in Table 5.
Densenet121 (0.6) and EfficientNetBO (0.4) provided better
results compared to the other weight ratios during validation
and testing.

In addition, several images were tested using the proposed
model. Four test results from the test data are displayed. Two
images from each designated class and the proposed model
successfully distinguish the images with respect to the ground
truth. Figure 10 shows the predicted outputs categorized
according to ground truth.

B. COMPREHENSIVE DISCUSSION OF THE ADVANTAGES
AND LIMITATIONS OF THE KONet MODEL

Our proposed KONet model has demonstrated superior
performance in the KOP classification task. This is achieved
by combining the EfficientNetB0 and DenseNet121 models,
weighted according to their individual performance. This
approach allows KONet to effectively leverage the strengths
of these individual models while mitigating their limitations.
Even minor improvements in accuracy have significant
implications for contemporary disease detection and the
diagnosis of patients, highlighting the significance of our
findings.
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Prediction: normal Prediction: normal

(a) Predicted images as a normal condition.

Prediction: osteoporosis

Prediction: osteoporosis

(b) Predicted images as a KOP condition.

FIGURE 10. Visual analysis of test results: comparison of four test images
using the proposed KONet.

The primary limitation of our study is that the
KONet model utilizes more parameters compared to the
DenseNet121 and EfficientNetBO models. Nonetheless,
our research offers valuable insights into the potential
advantages of using a weighted ensemble approach to
enhance the accuracy of KOP classification. We recommend
that future studies explore alternative methods to reduce the
number of parameters without compromising performance.
Nevertheless, our findings underscore the importance of
employing a weighted ensemble approach to achieve high
accuracy in KOP classification tasks.
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VIi. CONCLUSION

The severity of KOP warrants timely diagnosis and
assessment; however, relying on human experts can be
time-consuming and costly. The aid offered by visual Al
plays a pivotal role in making informed decisions regarding
images acquired from various patients. This study employed
an ensemble model that uses the concatenation of two
transfer-learning models to classify KOP. The proposed
method achieved promising results compared with other
state-of-the-art models. Consequently, this model can help
clinicians diagnose KOP at a low cost. A limitation of this
study is that the performance of the ensemble model is
significantly affected by the choice of the base classifier. The
accuracy of the model can be further improved by introducing
an attention mechanism focused on the channel-wise impor-
tance of deep features of KOP images, which will be explored
in future research.
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