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ABSTRACT Dynamic Motion Primitives (DMPs) only address the generalization problem for target
positions that are close to the demonstration position and in order to enhance the generalization
capability, by making the learned movements executable in the entire reachable robot workspace, multiple
demonstrations are needed, resulting in an increase in the time required to teach new tasks to the robot. This
work aims to propose a novel approach to scale the DMP parameters through two demonstrations in order
to enhance the DMP’s generalization capability in the robot reachable workspace while guaranteeing a fast
and easy learning phase. The proposed method to scale the DMP parameters relies on a linear interpolation
performed on the DMP parameters extracted by two demonstrations and is applied to the agricultural field,
where the adoption of DMPs can provide a promising solution to meet the demand for a wide range of
tasks in an ever-changing and mutable agricultural environment. Four agricultural activities, namely digging,
seeding, irrigation, and harvesting, have been learned by the robot using DMPs. The experimental validation
was carried out on the Tiago robot and the proposed approach, based on two demonstrations, was compared
to two literature methods based on a single demonstration and multiple demonstrations in terms of accuracy
of the motion reconstruction, success rate of task execution and speed of the learning process. The obtained
results demonstrated that the proposed approach, based on two demonstrations, guarantees a successful
execution of the four tasks without exceeding the robot reachable workspace and with acceptable accuracy
(mean success rate of task execution is about 95.6%) and a fast training phase (about 70 minutes less than
the database approach that is built on multiple demonstrations).

INDEX TERMS Learning by demonstration, teaching by demonstration, robot learning, dynamic motion
primitives, motion planning, agricultural robotics.

I. INTRODUCTION
The introduction of robotics in agriculture has a great
potential to enhance yield productivity, reduce labour-
intensive work, and create a safer working environment for
farmers who have to typically face occupational hazards
associated with exposure to pesticides (including ocular,
dermal, and inhalation toxicity risks), as well as work-related
disorders due to biomechanical overloading [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Aysegul Ucar .

Robots can be used to automate repetitive tasks, such
as seeding, harvesting, weeding or pesticide spraying, and,
equipped with advanced sensing technologies, can collect
real-time data about crop health, soil conditions, and
environmental factors, enabling farmers to make data-driven
decisions for optimized resource management.

The agricultural environment poses unique challenges
for robotics, particularly when it comes to determining
optimal robot trajectories for efficient and safe task execution.
Agricultural operations involve intricate and ever-changing
settings, with factors like terrain, vegetation, and crop
growth patterns constantly fluctuating. As a result, planning
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robot movement in such environments demands easily
adaptable strategies that can effectively respond to these
temporal variations and to the need for learning new tasks.
Additionally, ensuring a high level of safety is crucial in
the interaction between farmers and robots to ensure the
successful completion of agricultural operations.

Traditional approaches to motion planning in robotics
often require expert programmers to manually code rules
and algorithms for accomplishing specific new tasks. Among
these, conventional techniques adopted for agricultural robot
motion planning, rely on point-to-point motion planning [2],
[3]. Alternatively, other approaches include i) grid-based [4]
or interval-based [5] search methods, which identify optimal
obstacle-free paths for both the manipulator and mobile base,
ii) reward-based algorithms that involve the robot attempting
different paths and receiving positive or negative rewards
based on its success or failure [6], [7] iii) artificial potential
fields algorithms, which generate attractive or repulsive paths
for the manipulator joints and mobile base [8], [9]) and
iv) sampling-based algorithms that find optimal paths using
roadmaps [10] or probabilistic methods [11], [12].
All of these approaches are time-consuming and complex,

and strongly rely on the expertise of skilled individuals.
Consequently, to meet the demand for a wide range of
tasks in ever-changing scenarios, an intuitivemotion planning
interface that allows non-expert users, such as farmers, to plan
and customize tasks, continuously, is essential for agriculture.
Moreover, ensuring the predictability of robot behaviour
is crucial for promoting safe human-robot cooperation.
Indeed, it is well-known that humans perceive and interpret
human-like robot motion more easily, resulting in a sense
of safety during interactions [13]. When robots move in
a manner resembling humans, farmers can anticipate their
motion and adjust their own activities to avoid potential
injuries.

To address these challenges, demonstration-based motion
planning methods offer a promising solution [14].

Teaching the robot motion by human demonstration
is a flexible framework that reduces the complexity of
programming robot tasks and allows end-users to operate
the robot in a natural and easy way without the need for
explicit coding [15], [16]. Indeed, this approach empowers
farmers to intuitively teach robots a new task by simply
showing them how to perform it, facilitating human-robot
collaboration and reducing the barriers to introducing robotic
technologies in agriculture. The typical approach used to plan
the robot movement by demonstration, in a single shot, is the
one based on Dynamic Movement Primitives (DMPs), i.e.
a set of nonlinear differential equations with a well-defined
landscape attractor [17]. The attractor landscape allows repli-
cating the recorded trajectory by means of a weighted sum
of equally spaced Gaussian Kernels. A generic modelling
approach to learning the landscape attractor is proposed
in [18] and consists of extracting the weight parameters
(DMP parameters) from demonstrated movements by means
of linear regression algorithms. Learning by Demonstration

(LbD) based on DMPs allows to address the generalization
problem for target positions close to the demonstration
position, since DMPs are formulated so that convergence to
different target positions is guaranteed [19].
However, to address the generalization and robustness

problem in the entire reachable robot workspace (i.e. also for
targets that are far from the one of the initial demonstration),
DMP parameters shall be opportunely scaled depending on
the distance between the new target position and the one
reached during the demonstration. The original formulation
of the DMP scaling factor proposed in [17], works very well
for movements of monotonic shapes, such as point-to-point
reaching tasks. However, for executing more complex move-
ments, such as the ones to be accomplished in the agricultural
field, and improving robustness and generalization capability
in the entire reachable robot workspace, an ad-hoc scaling
procedure for the DMP parameters needs to be found.

Therefore, the objective of this work is to address DMP
generalization capability in the reachable robot workspace
by proposing a way to scale the DMP parameters using
only two demonstrations. This approach, which is based
on a linear interpolation performed on the learning param-
eters extracted by two demonstrations, is integrated into a
DMP-based motion planner which always guarantees that
the computed trajectories do not exceed the robot reach-
able workspace, differently from the original formulation
proposed in [17].

The proposed method to scale the DMP parameters is
applied to the agricultural field, where the adoption of DMPs
can provide a promising solution to meet the demand for
a wide range of tasks in an ever-changing and mutable
agricultural environment. DMPs could significantly speed up
and simplify the motion planning of agricultural robots by
proposing a tool that does not require an expert programmer
to plan new tasks for the robot. Moreover, this approach is
highly efficient, as it minimizes the time required for task
planning: it just entails the farmer demonstrating the desired
task to the robot through two demonstrations.

The proposed DMP motion planner was tested on the
Tiago robot [20] (developed by Pal Robotics) during the
fulfilment of four agricultural activities, such as digging,
seeding, irrigation, and harvesting, and the obtained results
were compared to the one achieved by using the original
formulation of the DMPs [17]. The comparative analysis
was performed by means of quantitative indices aimed at
evaluating i) the accuracy of the motion reconstruction
(assessed in terms of position error and human-likeness of
the movement) ii) the success rate of the task execution and
iii) the time needed to train the motion planner.

To sum up the main contributions of this paper are:
• to develop a motion planning system based on Learning
by Demonstration that integrates a novel approach
to scale the DMP parameters enhancing the robot
generalization capability and reducing the learning time

• to validate the proposed approach in the agricultural
field where the adoption of DMPs is limited and could

7662 VOLUME 12, 2024



C. Lauretti et al.: New DMP Scaling Method for Robot LbD and Application

provide a promising solution to simplify the robot
motion planning and meet the demand for a wide range
of tasks in an ever-changing and mutable agricultural
environment.

The paper is structured as follows: the literature analysis
is in-deep revised in Section II. The proposed Learning
by demonstration framework with a new formulation of
the DMP scaling factor is presented in Section III. The
experimental setup and experimental protocol are described
and the results are discussed in Sect. IV. Lastly, conclusions
and future works are reported in Section V.

II. RELATED WORKS
In the literature, to enhance the robustness of the DMPs to
external perturbations, e.g. an obstacle on the robot path,
a stylistic parameter, that is learned via multiple demonstra-
tions, is introduced in the DMP equations [21], [22]. In the
context of DMPs, a stylistic parameter refers to a parameter
that influences the execution style or characteristics of a
movement. It allows for fine-tuning the desired behaviour
of the DMP, such as the speed, amplitude, or emphasis
on certain aspects of the motion. By adjusting the stylistic
parameter, one can modify the execution of the movement
while still preserving the underlying shape and dynamics
represented by the DMP. These parameters provide a flexible
way to customize the style and execution nuances of robotic
movements based on specific requirements or preferences.
However, this approach does not deal with generalization
problems since the information about the final target is not
considered while learning the stylistic parameter [23].
Reinforcement Learning (RL) methods are promising

solutions to enhance LbD generalization capabilities for
different targets. Through RL the robot can go beyond
imitation and actively explore the action space in real-time
to learn a more generalized policy. RL algorithms, such
as Q-learning [24] or Policy Gradient methods [25], allow
the robot to interact with the environment, receive feedback
(rewards or penalties), and adjust its actions accordingly.
In [26] a method for learning tasks by observing an
expert’s demonstration without explicitly knowing the reward
function is presented. The algorithm aims at recovering
the unknown reward function and generating a policy that
performs close to the expert’s level. While RL has shown
promise in enhancing the generalization capabilities of LbD
approaches, it is important to note that RL comes with
the main drawback that it requires a significant number of
trials, both in simulation and real-world scenarios, before
converging to an optimal policy. This iterative process of
exploration and refinement can be time-consuming and
resource-intensive, particularly when dealing with complex
tasks or high-dimensional action spaces. A feasible approach
to improving DMPs generalization capability offline is to
resort to databases of parameters that are previously built
via dozens of demonstrations [27], [28], [29], [30]. To better
generalize with respect to the different targets, parameters
that best suit the specific movement to be performed are

selected from these databases and DMPs are subsequently
computed, on the basis of the selected parameters, to plan the
robot motion.

Other approaches based on the Gaussian Mixture Model
(GMM) and the Gaussian Mixture Regression (GMR) resort
to probabilistic methods for mergingmultiple demonstrations
and building a representative trajectory [31], [32], [33].
References [34] and [35]. During the merging process,
GMR takes into account the probabilistic nature of the
GMM to compute the expected output given a specific
input. Given a query input, GMR performs a weighted
combination of the outputs from all the Gaussian components
in the GMM, where the weights are determined by the
probabilities associated with each component. This weighted
combination allows GMR to merge the information from
multiple demonstrations and generate a representative output
that captures the overall trend and characteristics of the
demonstrated data. These multiple demonstrations can be
statically recorded offline or on-demand, throughout active
incremental learning which requires the operator to record
additional demonstrations as needed, i.e. whenever the
trajectory uncertainty becomes too high [36].

Moreover, fuzzy logic [37] and artificial neural net-
works [38], [39], [40] are combined with GMM and
GMR approaches to improve the capability of fitting
the demonstrated samples and dealing with environmental
perturbations [41], [42]. In [43] a novel methodology, that
integrates GMM-based DMPs and Dynamic Time Warping
(DTW) techniques, is also presented. The method is used to
3-D model manipulation skills after multiple demonstrations
that could be recorded throughout multimodal or multisensor
wearable systems [44], [45]. In [46], Long Short-TermMem-
ory (LSTM) networks are used to generalize with respect to
different target positions by leveraging the sequential nature
of the demonstrations. LSTMnetworks can learn from a set of
demonstrations that exhibit variations in target positions and
extract the underlying patterns of the demonstrated motions
to infer the desired actions or trajectories even when the target
positions vary.

Nevertheless, providing the robot with many demonstra-
tions could be time-consuming and sometimes impractical,
even though they are recorded on-demand during incremental
learning.

The ambition of this work is to move beyond the current
state-of-the-art by proposing a method that, compared to
other approaches that make use of multiple demonstrations
or huge databases of parameters to generalize with respect to
different target positions and tasks, requires only two sets of
parameters for each task, with a significant reduction of time
in the learning process.

III. THE PROPOSED SCALING METHOD FOR THE DMP
MOTION PLANNER
The block scheme of the proposed DMP-based motion
planner is shown in Fig. 1. In the first phase, i.e. Offline
Task Learning, the motion performed by a demonstrator is
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FIGURE 1. Block scheme of the proposed DMP-based Motion Planner.

firstly recorded (Motion recording in Fig. 1). Two trajectories
for each task to be performed are demonstrated to the robot
through a hands-on approach, i.e. a human demonstrator
is required to passively move the robot arm and position
sensors embedded into its joints are used to measure the
performed motion. These trajectories are preferably executed
at the boundary of the robot workspace (which could be
experimentally retrieved by the user). By choosing target
positions at the workspace boundary, the demonstrated
trajectories will cover a wider range of the robot reachable
space. This helps capture the full extent of the robot motion
capabilities and increases the likelihood of the robot being
able to generalize its movements to target positions within
that workspace.

Considering the proposed demonstration method, where
the task is demonstrated by passively moving the same
platform that needs to learn the task, it becomes evident that
the proposed approach is inherently adaptable to different
platforms. Subsequently, Forward Kinematics (FK) is
adopted on recorded joint trajectories to retrieve the robot
Cartesian motion; afterwards, distinctive features (called
DMP parameters) are extracted from the two demonstrations
using the Locally Weighted Regression algorithm [17] and a
DMP scaling factor that modulates the extracted parameters,
depending on the target to be reached, is learned (Scaling
factor learning in Fig. 1).
Afterwards, when a human subject wants the robot to perform
one of the recorded tasks (Online Task Performing in Fig. 1),
an online selection of the DMP parameters from the dataset
is performed depending on the task to be performed and on
the target position to be reached, which is generally retrieved
through cameras combined with machine learning techniques
that recognize the objects to be manipulated in the scene and
evaluate their location [47], [48] (DMP parameters selection

in Fig. 1). The task to be performed can be selected by the
operator, through a tablet or a remote computer, from a list of
previously learnt ones.

Selected parameters are then scaled on the basis of the
target to be reached (DMP parameters scaling in Fig. 1) and
used to compute DMPs that execute the desired task (DMP
computation in Fig. 1).

In the following, theoretical details about the DMP
computation and DMP parameters extraction are provided.
Moreover, the literature method used to scale the DMP
parameters and the proposed one based on two demonstra-
tions are described. The method presented in this work tries
to address generalization problems that may arise from the
adoption of the original formulation of the DMP scaling
factor. The proposed motion planning could be also provided
with an obstacle avoidance module to guarantee computation
of collision-free trajectories proposed in [49] and with an
optimized spatial allocation of the Gaussian kernels that
minimize the number of parameters to be learnt while keeping
the same level of accuracy in the motion reconstruction
proposed in [27]. For the sake of brevity, results obtained
from the adoption of these modules are not shown in this
work.

A DMP is a second-order non-linear system that incorpo-
rates the desired kinematic state of a robot, including position,
velocity, and acceleration. It utilizes an attractor landscape
to replicate a recorded trajectory by combining weighted
Gaussian kernels evenly spaced throughout the landscape.

A. COMPUTATION OF DMPS
A theoretical formulation for DMPs used in robot Cartesian
motion planning is described by the following equation:

τ ÿ = αy
(
βy (g− y)− ẏ

)
+ fy (1)
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In this equation, τ represents a time constant, αy and
βy are positive constants, g denotes the final point of the
trajectory and fy is a forcing term that implements the attractor
landscape. The positive constants αy and βy in Equation (1)
play a significant role in shaping the behaviour of the DMP.
The constant αy controls the speed of convergence towards
the goal position g during the execution of the DMP. A higher
value of αy leads to a faster convergence, meaning that the
DMP will reach the goal position more quickly. Conversely,
a lower value of αy results in a slower convergence, allowing
for smoother and more gradual movements towards the goal.
The constant βy controls the spring-like behaviour of the
DMP, determining the strength of the force pulling the system
towards the goal position. A higher value of βy increases the
attraction force, resulting in stronger and more pronounced
movements towards the goal. On the other hand, a lower value
of βy reduces the attraction force, leading to more relaxed and
less forceful movements.

Solving Equation (1) yields the DMP trajectory for each
degree of freedom (DoF) of the robot Cartesian space.

The forcing term fy is expressed as:

fy (x) =

∑N
i=19i (x) ψi∑N
i=19i (x)

x (g− y0) (2)

In Equation (2), y0 and g denote the initial and final points
of the trajectory, respectively, which shall not be equal, for
a successful adoption of discrete DMPs (see [17] for more
details). Conversely, 9i (x) represents a fixed basis function
defined as Gaussian function:

9i (x) = exp
(

−
1

2σ 2 (x − ci)2
)

(3)

Here, σi, ci, and N denote the width, centres, and the
number of Gaussian functions, respectively. ψi are weight
parameters (DMP parameters) used to fit the recorded
trajectory, and x is a state variable introduced to remove the
time dependency from the system. It is important to note that
the time dependency of Equation (1) is expressed as:

τ ẋ = −αxx (4)

This equation establishes a relationship between the time
and the state variable x of the entire system. In [17], the range
of variation for x and ci is defined as [0, 1].

B. EXTRACTION OF DMP PARAMETERS
The extraction of DMP parameters ψi in Equation (2) is
accomplished by using a locally weighted regression (LWR)
algorithm [18]. The position, velocity, and acceleration of the
recorded trajectory (yd , ẏd , and ÿd ) are incorporated into the
forcing term of Equation (1) as follows:

ft = τ 2ÿd − αy
(
βy (g− yd )− ẏd

)
. (5)

This formulation transforms the problem into a function
approximation task, aiming to find the ψi parameters that
minimize the discrepancy between ft and fy. For each
kernel function 9i(t), the LWR algorithm searches for

the corresponding ψi that minimizes the locally weighted
quadratic error using the following cost function [17]

Ji =

P∑
t=1

9i (t) (ft (t)− ψiϵ (t))2 (6)

Here, ϵ (t) = x (g− y0), and P represents the number of
data points in the trajectory.

C. APPROACH IN THE LITERATURE FOR SCALING DMP
PARAMETERS
The scaling factor for DMP parameters proposed in [17],
denoted as (g− y0) in Equation (1), has noticeable drawbacks
that can be illustrated with a practical example.

Consider a scenario where a robot learns how to pick an
object from an initial position A and place it at a target
position B (see Fig. 2) through LbD. In this case, the robot
is manually guided by a human demonstrator from A to B,
and the DMP parametersψAB are extracted from the recorded
motion during the task. An example of this motion for the
robot Cartesian coordinates is shown in green (Demo 0) in
Fig. 2.
Now, suppose the robot is required to perform the same

task for different target positions (C and D) shown in Fig. 2
(green lines, i.e. demo 1 and demo 2, represent the correct
trajectory to be executed by the robot). If we apply the
original formulation of the scaling factor, (g− y0), to scale
the initial DMP parameters ψAB, the planned motion appears
as the blue trajectories in Fig. 2 (i.e. dmp1 and dmp2).
The first major drawback of this approach to scaling

the initial DMP parameters, ψAB, is evident from the Z
coordinate, which is not a monotonic function. When the
recorded motion has minimum or maximum points, scaling
them by the factor (g− y0) / (g− y0)AB can lead to an
amplification of the motion, sometimes extending beyond the
robot reachable workspace if the factor is greater than 1.

In particular, a DMP can generalize to different target
positions if the following relation holds:

a = aAB
(g− y0)
(g− y0)AB

∈ [ymin, ymax] (7)

Here, a represents the amplitude of the executed DMP, aAB
is the amplitude of the recorded motion from A to B, and
[ymin, ymax] denotes the acceptable Range of Motion (RoM)
for the corresponding DoF of the robot.

From Equation (7), we observe that a = (g− y0) when
the motion is monotonic. Therefore, if the initial and target
positions are chosen within the reachable workspace of the
robot, all the intermediate points of the planned DMP will
also fall within that workspace.

However, if aAB > (g− y0)AB, even if the initial and
target positions are within the robot workspace, there is
no guarantee that all the DMP points will remain within
that workspace. In general, the capability of generalization
decreases proportionally to amaxAB/ (g− y0)AB, as it happens
to the motion along the Z axis in Fig. 2.
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FIGURE 2. Graphical illustration of conventional DMP scaling factor
adoption.

Another drawback of the approach proposed in [17] is that
when gAB = y0AB , the extraction of DMP parameters becomes
infeasible since Equation (7) becomes indeterminate.
Therefore, in order to address these issues, a customized

scaling factor for the DMP parameters needs to be developed.

D. THE PROPOSED DMP SCALING METHOD
To address the limitations of the existing DMP scaling
approach, as the main contribution of this work, we introduce
a different scaling factor in lieu of the traditional one adopted
in [17] (i.e. (g− y0) in Equation (1)). In the following, the
experimental method used to determine this scaling factor for
the DMP parameters using two demonstrations is reported.

Consider the demonstrations demo0 and demo2 shown
in Fig. 2, representing the boundaries of the workspace.
We compute the DMP weights for target positions within
demo0 (target gB) and demo2 (target gD) as follows:

ψ̃(g) = ψ0 +
ψ2 − ψ0

g2 − g0
· (g− g0) (8)

Here, ψ0 and ψ2 are the DMP weights extracted from
demo0 and demo2, respectively, and g represents the target
position within the range of gB and gD.
Equation (8) is formulated as a linear interpolation between

the DMP weights extracted from two demonstrations, demo0
and demo2, to compute the weights ψ̃ for a target position g
within the range of gB and gD.
The equation (8) reports a linear relationship in the form of

y = mx+c, where y corresponds to ψ̃(g), x corresponds to g,
m represents the slope, and c is the y-intercept. In this case,
m is computed as ψ2−ψ0

g2−g0
, which represents the rate of change

of the DMP weights with respect to the target position.

By multiplying the slope m with the difference between
the target position g and the initial position g0, and adding the
y-interceptψ0, we obtain the interpolatedDMPweights ψ̃(g).
This interpolation allows us to estimate the DMP weights for
any target position within the range defined by demo0 and
demo2, providing a smooth and continuous scaling of the
DMP parameters.

It is important to note that the proposed approach
eliminates the dependence on the initial position y0 of the
DMP. This simplifies the fitting of DMP parameters and
ensures more accurate reproduction of the DMP. In this
approach, DMP parameters ψ0 and ψ2 are extracted based
on the relative motion ỹd = yd − y0.

Therefore, when computing a DMP for a new target
position g within the range of gB and gD, with an initial
position y0, we utilize Equation (8) to obtain new weights ψ̃
that are then used in Equation (1). Finally, the robot reference
position ỹ is calculated as ỹ = y0 + y, where y represents the
DMP obtained by integrating Equation (1).

1) ADVANTAGIES OVER EXISTING METHODS
The proposed method provides two key advantages com-
pared to the literature approach used for scaling the DMP
parameters: enhanced generalization capabilities and reduced
amplification issues. Indeed, by capturing the relationship
between target positions and DMP weights, the method
enables a better generalization to new target positions within
the robot workspace. This means that the robot can effectively
adapt its motion to different target positions without the need
for explicit parameter tuning.Moreover, themethodmitigates
the risk of amplifying the motion beyond the robot reachable
workspace. This ensures that planned trajectories remain
within the acceptable RoM, avoiding potential undesired
movements.

Additionally, in comparison to existing methods based on
multiple demonstrations, the proposed approach significantly
simplifies and expedites the learning process, making it
particularly well-suited for dynamic environments such as
agriculture, where continuous adaptation of robot activities
is required.

IV. APPLICATION TO AGRICULTURAL ACTIVITIES AND
EXPERIMENTAL VALIDATION
DMPs could be effectively used to plan complex activities in
robotics, such as the ones to be performed in the agricultural
domain, and could significantly speed up and simplify the
motion planning of agricultural robots. Indeed it could
provide the end-user with a tool that does not require an expert
programmer to plan new tasks for the robot.

In this section, benefits from the application of DMPs
to the agricultural domain are pointed out in terms of
the efficacy of the motion planning (assessed in terms of
motion reconstruction accuracy and success rate of the task
execution) and simplicity/speediness of the learning process.
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The experimental validation of the proposed DMP-based
motion planner was carried out on four agricultural activities,
i.e. digging, seeding, irrigation, and harvesting.

In the following, the i) experimental robotic platform,
ii) experimental protocol, and iii) results and discussions are
reported.

A. EXPERIMENTAL ROBOTIC PLATFORM
The robotic platform used to test the proposed DMP-based
motion planner is the Tiago robot [20] developed by PAL
Robotics S.L. The main robot components used to carry
out the experiments are shown in Fig. 1. They are: i) the
RGB-D camera (Astra S manufactured by Orbbec [50]) with
a resolution of 640x480 and depth range of 0.6 − 8m,
ii) the lifting torso (able to move at 50 mm/s from a
minimum to a maximum height of 1.10 m and 1.45 m,
respectively), iii) the 7 Dof arm (composed of four M90
modules and one 3 DoF wrist) with a payload of 3 kg iv) the
Pal gripper (including two independent fingers with a linear
range of 4 cm) and v) a workstation Dell G5 15 5500 with
Ubuntu 16.04 Operating System equipped with an Intel®

Core™ i7-10870H processor at 8 × 5 GHz and 16 GB of
RAM.

B. EXPERIMENTAL PROTOCOL
The experimental validation consisted of two phases, named
in the following a) Offline task learning and b) Online task
performing. The 1st phase was aimed to record the motion
from a demonstrator during the execution of four working
activities, i.e. digging, seeding, irrigation, and harvesting, and
to subsequently extract from this motion the set of DMP
parameters to be stored in the database. The 2nd phase was
intended to validate the proposed approach and to assess
its generalization capability with respect to different target
positions. For this purpose, the proposed method based on
2 demonstrations was compared to two methods adopted in
the literature, i.e. the conventional approach based on a single
demonstration [17] and the conventional approach based on
multiple demonstrations [27].

In the following, performance indices used to carry out the
comparative analysis are defined. Moreover, the two phases
of the experimental validation, i.e. offline task learning and
online task performing, are described.

1) PERFORMANCE INDICES
Four performance indices [27], namely i) Normalized
Position Error (NPE), ii) Human-Likeness Index (HLI),
iii) Database Building Time (DBT) and iv) Success Rate
(SR), were computed to perform the comparative analysis
among the different approaches.

• The NPE assesses the capability of the proposed
approach to accurately replicate the demonstrated
motions. It is normalized with respect to the overall
displacement of the recorded motion and is computed

as follows

NPE =
1
N

·
1

∥g− y0∥

N∑
i=1

∥p(i) − pm(i)∥ (9)

where N is the number of collected samples, p(i) is the
position of the computed DMP and pm(i) is the recorded
position at the i-th sample. The lower the NPE the higher
the trajectory reconstruction accuracy.

• the HLI evaluates the capability of the proposed
DMP-based Motion Planner to imitate the human style
motion and is assessed as

HLI =

√√√√ 1
N

N∑
i=1

(
∥ar (i)∥ − ∥ac(i)∥

)2
(10)

where N is the number of time instants and ar (i) and
ac(i) are the accelerations of the recorded and computed
DMP trajectories, evaluated at the sample i. Lower HLI
values are expected when a high degree of similarity
between the DMP trajectory style and the human one
is reached.

• the DBT returns a measure of the time required to build
a database and is calculated as

DBT =

N̄t∑
j=1

N̄d ∗

Nd∑
i=1

Nt∑
j=1

Tij
Nd ∗ Nt

(11)

where N̄d and N̄t are the number of demonstrations
and tasks to be stored in the database, respectively,
Nd and Nt are the total number of demonstrations and
tasks performed during the experimental session (i.e.
25 demonstrations and 4 tasks), respectively, and Tij is
the time required to record the i-th demonstration of the
j-th task.

• the SR of the task execution is used to evaluate the
capability of a given approach to accomplish the task
and is evaluated as

Success rate =
Nsucc
Ntot

× 100 (12)

where Nsucc is the number of trials successfully accom-
plished andNtot is the number of all the performed trials.
A task is considered successfully accomplished if the
trajectory is within the robot reachable workspace for
the given task (see Fig. 4).

2) STATISTICAL ANALYSIS
The mean value and Standard Deviation (SD) of the all
previously described indices were computed on the 25 target
positions for each task and DMP method. Since the data
were not normally distributed, a statistical analysis based
on Wilcoxon paired-sample test was performed in order
to carry out the comparative analysis among the different
approaches, and Bonferroni correction was applied on
multiple comparisons (p − value < 0.05/Nc, where Nc is
the number of comparisons).
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FIGURE 3. A picture of the offline task learning for the (a) digging,
(b) seeding, (c) irrigation and (d) harvesting.

3) OFFLINE TASK LEARNING
In the 1st phase of the experimental validation, a human
subject was asked to teach the robot how to perform the
working activities, namely digging, seeding, irrigation, and
harvesting, by means of a hands-on approach (please see
Fig. 3).

In other words, the subject was required to passively move
the robot arm in order to accomplish the task. During the task
execution, the robot was driven by a zero-torque control1,
[51] and the sensors embedded in the robot, i.e. the encoders,
were used to record the joints’ motion. The tasks are divided
into several elementary actions, as follows:

• the digging task was divided into 5 subtasks, i.e. i) tool
reaching, ii) digging, iii) soil placing into the bucket,
iv) tool placing and v) homing

• the seeding task was divided into 3 subtasks, i.e. Seed
reaching, Seed placing into the hall and Homing

• the irrigation task was divided into 4 subtasks, i.e.
i) seeds irrigation with a watering can, ii) watering can
placing and iii) homing

• the harvesting task was divided into 4 subtasks, i.e.
i) vegetable reaching, ii) vegetable detaching from the
plant, iii) vegetable placing into the crate and iv) homing

The four tasks were performed for 25 different positions of
the targets. These positions are reported in Fig. 5 for the four
tasks.

1A zero-torque control is a control modality in which the robot reference
torque is set to zero so that it can be moved by a user who exerts controlled
forces on the robot kinematic chain).

FIGURE 4. A graphical illustration of the target positions for the
(a) digging, seeding, irrigation and (b) harvesting.

FIGURE 5. Target positions used to build up the multiple demos database.

Subsequently, Cartesian trajectories were computed by
means of the robot FK and DMP parameters were extracted
from these trajectories.

4) ONLINE TASK PERFORMING
The 2nd phase of the experimental validation was aimed
at assessing the generalization capability of the proposed
approach based on a new formulation of the scaling factor
and comparing it to the ones based on the conventional
formulation of the scaling factor [17], [27] (see Fig. 6).

For this purpose, three experimental sessions were carried
out.

The 1st experimental session was aimed at evaluating the
number of demonstrations per task needed to achieve an
acceptable generalization capability with the conventional
approach based on multiple demonstrations (i.e. SR of the
task execution> 90). 25 databases with an increasing number
of demonstrations per task were built. They are named in
the following 1-demo-database, 2-demos-database . . . and
25-demos-database. The demonstrations included in these
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FIGURE 6. A picture of the online task performing for the (a) digging,
(b) seeding, (c) irrigation and (d) harvesting.

databases have been chosen to be equally spaced in the robot
workspace in terms of target positions. Target positions of the
demonstrations included in the 1-demo-database, 2-demos-
database . . . and 9-demos-databases are shown in Fig. 5 as an
example.

Subsequently, the robot arm was operated to perform the
four tasks, i.e. digging, seeding, irrigation, and harvesting,
for the 25 different target positions shown in black in Fig. 5
using the previously built databases, i.e. 1-demo-database,
2-demos-database . . . and 25-demos-database. Hence, the
previously mentioned performance indicators were calcu-
lated on the obtained DMPs and the number of demonstra-
tions per task needed to achieve a success rate of the task
execution > 90 was calculated.
The 2nd experimental session was aimed at comparing the

proposed approach based on 2 demonstrations and the con-
ventional ones based on single and multiple demonstrations.
For this purpose, three databases were built.

For the proposed approach, two sets of DMP parameters
(i.e. the ones computed for upper and lower boundary
trajectories in the robot workspace shown in Fig. 5) were
used to calculate DMP scaling parameters for each task and
robot Cartesian DoF. These parameters were then stored
in a database named proposed-2-demos-database. In other
words, among the 25 recorded trajectories performed by
the demonstrator, only two trajectories (i.e. the ones at the
boundary of the workspace) were used to build the database
for the proposedmotion planner training. The other ones were
used as benchmark trajectories to evaluate the motion planner
performance.

FIGURE 7. A picture of the online performing of the harvesting task in a
realistic scenario.

Differently, for the conventional approach based on a single
demonstration [17], one set of DMP parameters (i.e. the ones
computed for the middle target point shown in Fig. 5) was
stored for each task and robot Cartesian DoF and a database
named conventional-1-demo-database was built.

Finally, for the conventional approach based on multiple
demonstrations, Mi sets of DMP parameters per task
were stored in a database named conventional-multi-demos-
database. Mi is the number of demonstrations, of the i − th
task, that is required to achieve a success rate of the task
execution> 90. It was computed during the 1st experimental
session.

Afterwards, the robot arm was operated to perform the
four tasks, i.e. digging, seeding, irrigation, and harvesting,
for the 25 different target positions shown in black in Fig. 5
using the previously built databases, i.e. conventional-1-
demo-database, conventional-multiple-demos-database, and
proposed-2-demos-database. Hence, the previously men-
tioned performance indicators were calculated based on the
obtained DMPs.

The 3nd experimental session was aimed at evaluating the
performance of the proposed approach while executing the
harvesting task in amore realistic scenariomade of real plants
(see Fig. 7).

This specific task is indeed particularly challenging, due to
the presence of leaves and stems around the fruits and to the
3-dimensional disposition of the fruits that may impact the
algorithm performance.

C. RESULTS AND DISCUSSIONS
Fig. 8 reports the results obtained for the 1st experimental
session, which was aimed at evaluating the number of
demonstrations per task needed to achieve an acceptable
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FIGURE 8. Experimental results obtained for the 1st experimental session. The black dashed line represents the acceptability threshold for SR,
i.e. 90%.

FIGURE 9. Experimental results obtained for the 2nd the experimental
session (T1=Harvesting, T2=Digging, T3=Seeding and T4=Irrigation). The
star symbol highlights statistically significant differences
(p − value < 0.01).

FIGURE 10. Heat map of NPE for the three approaches during the
fulfilment of the harvesting task. Red dots are the demonstration target
positions.

generalization capability with the conventional approach
(SR > 90). In this figure, the mean value and SD of
the NPE and SR computed on the 25 target positions for
each task using the conventional approach based on multiple
demonstrations are reported.

It is worth noticing from the figure that the higher the
number of demonstrations stored in the database the better
the generalization capability of the conventional approach
based on multiple demonstrations. Indeed, the SR of the
task execution shows an increasing trend as the number of
demonstrations grows. Likewise, the NPE as a function of
the number of demonstrations reports a decreasing trend.
In general, results obtained from the 1st experimental session
highlighted that at least a total of 24 demonstrations,
namely 5 demonstrations for the harvesting, 9 demonstrations
for the digging, 4 demonstrations for the seeding and
6 demonstrations for the irrigation, are needed for the
conventional approach to achieve a SR > 90%.

Fig. 9 reports the results obtained for the 2nd experimental
session, i.e. themean value and SD of the NPE, HLI andDBT,
computed on the 25 target positions for each task and DMP
method, namely proposed 2 demos DMP, conventional single
demo DMP and conventional multiple demos DMP.

As expected, the conventional single demo DMP, com-
pared to the other methods, had the worst performance in
terms of NPE (statically significant differences among the
approaches with p − value < 0.01 are highlighted by the
star symbol in the figure). As shown in the NPE heatmap
of Fig. 10, the best performance of the 1-Demo DMP is
obtained for target positions that are very close to one of
the demonstrations (Maximum NPE = 0.04) and drastically
decreases when the new target positions, where the DMPs are
tested, are far from it (Maximum NPE = 0.32). In contrast,
when the conventional multiple demos DMP is adopted, the
new target positions to be reached are often close to one of
the demonstrations (maximum distance < 20 cm); hence,
higher performance in terms of NPE is obtained (Maximum
NPE = 0.09) and this performance is comparable to the one
achieved with the proposed method (p − value > 0.01).
The conventional multiple demos DMP, despite its high
performance in terms of NPE, has a long-lasting training
phase, as confirmed by the BDT in Fig. 9. Indeed, it requires
the user to collect multiple demonstrations for each task:
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FIGURE 11. End-effector Cartesian position during the fulfilment of the seeding task.

a total of 24 demonstrations were collected to build the
multiple-demos database, which is very time-consuming if
one considers that about 5 minutes, on average, were required
to record one demonstration.

On the other hand, the proposed approach requires only
two demonstrations to be recorded for each task, with
consequent time savings during the training phase. These
time savings could be also appreciated during the execution
phase. In particular, the computational burden of the look-up
table approach, which strongly depends on the dimensions
of the DMP database to be queried, is significantly lower
for the proposed approach compared conventional multiple
demos DMP (approximately N times lower, where N is the
number of DMP parameter sets) [27]. Moreover, as evident
from Fig 9, the ability of the proposed approach to replicate
trajectories with a high degree of similarity with respect to the
one performed by the human demonstrator, is outlined by the
HLI that is always comparable to the one obtained with the
conventional multiple demos DMP and conventional single
demo DMP (p− value > 0.01).
The achieved results are also confirmed by the Success

Rate of the task execution which was higher than 90% for all
the tasks when the proposed 2 demos DMP and conventional
multiple demos DMP were adopted.

Conversely, the conventional single demo DMP achieved
for some tasks (i.e. digging and seeding) very low per-
formance (about 52%) highlighting that it is not able
to generalize with respect to the entire reachable robot
workspace for the given task to be performed. Indeed, the
original formulation of the DMP scaling factor proposed
in [17], which works well for movements with monotonic
shapes, may encounter difficulties when applied to more
complex tasks such as digging and seeding in the agricul-
tural field. These types of tasks may potentially involve
movements with minimum and maximum points, which
may be inadvertently amplified beyond the robot reachable
workspace when the traditional approach to scaling the DMP
parameters is adopted, resulting in poor task execution and a
low success rate.

Fig. 11 shows the Cartesian position of the robot
end-effector during the fulfilment of a representative task (i.e.
seeding task), when the three approaches are adopted.

It is worth observing from the figure that, when the
recorded trajectory is monotonic, all the approaches are
somewhat able to reproduce the desired motion, as it happens
for the Y axis. Contrariwise, when the recorded trajectory
is non-monotonic and the new target position to be reached
by the DMP is far from the one of the demonstration
(as for X axis), the conventional 1 demo DMP results
in an undesired amplification of the motion shape that
leads to an unsuccessful execution of the task. This issue
is well addressed by the proposed method that proposes
a new formulation of the scaling factor based on two
demonstrations, as evident from the figure.

The results obtained in laboratory settings for the 1st and
2nd experimental sessions are consistent with those obtained
for the 3rd experimental session carried out in the realistic
scenario. Specifically, when performing the harvesting task
on a real tomato plant across five target positions, the
performance of the proposed approach does not deteriorate
compared to the outcomes achieved in laboratory settings: the
mean value and SD computed on the position and orientation
error calculated for the five targets are 8 ± 2 mm and 0.09 ±

0.02 rad , respectively, achieving a success rate of the task
execution of 100 %.

1) LIMITATIONS AND POSSIBLE SOLUTIONS
While the proposed DMP scaling method offers some
advantages compared to existing literature approaches, it is
important to consider potential limitations and explore
possible solutions to enhance its robustness and adaptability
in various situations.

One potential limitation of the proposed method is its
sensitivity to a limited demonstration range. As it relies
on linear interpolation between two demonstrations, its
effectiveness may decrease when applied to target positions
outside the demonstrated range. Extrapolation beyond this
range can lead to less accurate trajectory reproduction.

To address this limitation, it is recommended to select the
target positions of the two demonstrations as close to the
boundaries of the robot workspace as possible. By expanding
the range of the demonstrations, the method can better handle
target positions beyond the initially demonstrated range.
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Another possible limitation of the proposed method is
the inability to handle nonlinear relationships between the
DMP weights extracted from the two demonstrations. Since
the method employs linear interpolation, it assumes a linear
relationship between target positions and DMP weights. This
limitation restricts the ability to capture complex nonlinear
relationships, which may be necessary for certain tasks.

To overcome this issue, an extension of Equation (8) can be
made to enable non-linear interpolation. This can be achieved
by utilizing a different interpolation function, such as a spline
or polynomial function, thus enhancing the flexibility of
the approach to capture more intricate relationships between
target positions and DMP weights.

V. CONCLUSION
In this work, a novel approach to scaling the DMP parameters
via two demonstrations has been presented, with the purpose
of increasing the DMPs generalization with respect to the
different target positions and reducingsing the time required
to train the motion planner during the learning phase.

The feasibility of such an approach to planning complex
activities in robotics, such as the ones to be fulfilled in
the Agricultural field, has been assessed; four agricultural
activities, namely digging, seeding, irrigation, and harvesting,
have been successfully taught to the Tiago robot taking,
therefore, a step forward with respect to the literature in this
application domain. The achieved results demonstrated the
high generalization capability of the proposed method that
was able to successfully perform all the agricultural tasks
in the robot reachable workspace with an improvement in
the Success Rate of 25.6% and 4.9%, in comparison to the
conventional single demo DMP and conventional multiple
demo DMP, respectively. On average, a mean SR of 95.60%
was achieved with the proposed approach. This capability has
been also demonstrated through the accuracy of the motion
reconstruction (a maximum NPE of 0.16 was achieved when
the proposed method was adopted). The obtained result
could be considered acceptable for the tested application,
considering that a few unsuccessful trials generally occur
when the target position is at the edge of the reachable robot
workspace. Indeed, for robotic platforms such as the one
adopted in the experimentation (i.e. mobile manipulators),
unsuccessful tasks at the edges of the workspace may be even
overcome by slightly moving the robot base as needed.

Moreover, the achieved results in terms of DBT demon-
strated that the proposed approach can significantly speed up
and simplify the motion planning of agricultural robots by
proposing a tool that does not require an expert programmer
to plan new tasks for the robot.

Future works will be mainly addressed to i) test the
proposed approach on other application domains, such
as robotic surgery, rehabilitation, remote inspection and
maintenance etc. ii) increase the number of tasks of the
database and iii) integrate into the framework an obstacle
avoidance module that enhances the robustness of the motion
planner to external perturbations.
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