
Received 26 October 2023, accepted 22 December 2023, date of publication 1 January 2024,
date of current version 9 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3348937

Applying the Simple Partial Discard
Method to Crystals-Kyber
DONGYOUNG ROH , (Member, IEEE), AND SANGIM JUNG , (Member, IEEE)
The Affiliated Institute of Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea

Corresponding author: Dongyoung Roh (dyroh@nsr.re.kr)

This work was supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant funded by
the Korean Government through Ministry of Science and ICT (MSIT) (Development of next-generation cryptosystem to improve security
and usability of national information system) under Grant 2021-0-00046.

ABSTRACT In certain cryptographic applications random numbers are required (e.g., when generating
cryptographic keys and generating digital signatures). To obtain these random numbers, the typical approach
involves obtaining random bits first and then converting them into random numbers. Several methods to
convert a sequence of random bits into a sequence of random numbers are known and some of them
are standardized. Recently, ISO/IEC JTC 1/SC 27/WG 2 decided to add two more methods, the simple
partial discard method and the complex partial discard method, to the existing four standard methods.
Meanwhile, CRYSTALS-Kyber is the only public-key encryption and key-establishment algorithm selected
for the post-quantum cryptography standardization project by NIST (National Institute of Standards and
Technology). It uses an algorithm called Parse that takes a byte stream as input and outputs a polynomial of
degree d with coefficients in Zq (for some positive integer d and prime q) using the simple discard method to
generate key pairs. In this paper, we apply the simple partial discard method to Parse. We show that using the
simple partial discard method instead of the simple discard method can reduce the number of bits required
by up to 12%. Furthermore, we show that, in some cases, using the simple partial discard method instead of
the simple discard method can experimentally generate a polynomial up to 8% faster.

INDEX TERMS Conversion methods for random number generation, CRYSTALS-Kyber, simple discard
method, simple partial discard method.

I. INTRODUCTION
Random number generation stands as a fundamental yet
vital element within secure communication systems. This
is due to the pivotal role that random numbers assume in
cryptography, such as their use in generating cryptographic
keys, initial vectors, primes, random exponents, and more.
To generate random numbers, we typically start by using
a random bit generator to produce a sufficient number of
random bits, which are then converted into random numbers
within the desired range. However, improper conversion
methods can sometimes lead to security vulnerabilities
of cryptographic algorithms. A notable example is the
attack on Digital Signature Algorithm (DSA), a public-key
cryptosystem and Federal Information Processing Standard

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuangqing Wei .

for digital signatures [1]. DSA uses a randomly selected
positive integer k , which is less than a certain n-bit prime q.
The initial standard random generator in DSA simply set k as
a n-bit random number reduced modulo q. Bleichenbacher
exploited the non-uniformity of this random generator to
expose weaknesses in DSA [2]. Therefore, we should be
careful when converting random bits into random numbers.

Several conversionmethods for random number generation
have been developed and some of them have been standard-
ized. There are four methods, the simple discard method, the
complex discard method, the simple modular method, and
the complex modular method, in ISO/IEC 18031:2011 [3]
and ANSI X9.82-1-2006 (R2013) [4]. Three of them, the
simple discard method, the complex discard method, and
the simple modular method, are also in NIST SP 800-90A
Rev. 1 [5]. Recently, the ISO/IEC JTC 1/SC 27/WG 2,
a working group on cryptography and security mechanisms,

3476

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-3153-7308
https://orcid.org/0000-0002-8581-6820
https://orcid.org/0000-0001-5913-1441


D. Roh, S. Jung: Applying the Simple Partial Discard Method to Crystals-Kyber

decided to introduce two additional conversion methods, the
simple partial discard method and the complex partial discard
method, in a new edition of ISO/IEC 18031.

Meanwhile, after it became known that widely used
public-key cryptosystems are vulnerable to attacks using
quantum computers, various cryptosystems have been devel-
oped to address this threat. Recently, the standardization
of quantum-resistant cryptosystems has been progressing in
several organizations. One of the most well-known efforts
is the post-quantum cryptography standardization project
by NIST (National Institute of Standards and Technology).
Initiated in 2016, this project selected the primary algorithms
for standardization in 2022 after receiving multiple proposals
and undergoing several rounds of evaluation. The selected
algorithms are categorized into public-key encryption and
key-establishment algorithms and digital signature algo-
rithms, with CRYSTALS-Kyber being the sole public-key
encryption and key-establishment algorithm selected for
standardization.

The key generation algorithm of CRYSTALS-Kyber
requires a number of random numbers in Zq, where q
is a prime. To generate these numbers, the designers of
CRYSTALS-Kyber proposed an algorithm calledParse, a sub-
algorithm of the key generation algorithm, which takes as
input a sequence of bytes from the output of an extendable
output function and iteratively generates random numbers in
Zq. Algorithm Parse incorporates the simple discard method.
Our Contributions: In this paper, we propose applying

the simple partial discard method, requiring fewer bits than
the simple discard method, to Algorithm Parse. Specifically,
we applied the simple partial discard method to an algorithm
called Parse, which is used to generate a matrix Â ∈

Rk×kq in NTT (Number Theoretic Transform) domain in
key generation. It is the simple discard method that the
designers of CRYSTALS-Kyber uses in Algorithm Parse.
We propose three algorithms that all use the simple partial
discard method, but slightly differently. We theoretically
analyze the performance and features of the proposed
algorithms.We also experimentally compare the performance
of the proposed algorithms with Algorithm Parse using the
reference code provided by the designers of CRYSTALS-
Kyber. We demonstrate that employing the simple partial
discard method, as opposed to the simple discard method, can
lead to a reduction in the required number of bits by up to
12%. Additionally, our experimental findings indicate that in
certain scenarios, utilizing the simple partial discard method
over the simple discard method can result in up to an 8%
faster generation of the matrix Â. And the generating function
we obtain in the course of analyzing the proposed algorithms
seems to be of independent interest.
Paper Organization: The outline of the paper is as follows.

We provide notations and brief descriptions of conversion
methods for random number generation and CRYSTALS-
Kyber in Section II. Section III analyzes the characteristics
of an algorithm called Parse designed by the designers of
CRYSTALS-Kyber, a sub-algorithm of the key generation of

CRYSTALS-Kyber. In Section IV, we propose three variations
of the key generation algorithm of CRYSTALS-Kyber by
applying the simple partial discard method and analyze the
characteristics of them. Section V presents experimental
results. Finally, Section VI concludes the paper.

II. PRELIMINARIES
A. NOTATIONS
We follow the notation of [6]. We denote by B the set
{0, . . . , 255}, i.e., the set of 8-bit unsigned integers (bytes).
Consequently, we denote byBk the set of byte arrays of length
k and by B∗ the set of byte arrays of arbitrary length (or byte
streams).

We denote by R the ringZ[X ]/ (Xn + 1) and by Rq the ring

Zq[X ]/ (Xn + 1), where n = 2n
′
−1 such that Xn + 1 is the

2n
′

-th cyclotomic polynomial. Here and subsequently, the
values of n, n′, and q are fixed to n = 256, n′ = 9, and
q = 3329.
For any positive integer α, we define r ′ = r mod+ α to

be the unique element r ′ in the range 0 ≤ r ′ < α such that
r ′ = r mod α.

Let G : B∗→ B32
×B32 be a hash function and XOF : B∗×

B × B → B∗ an extendable output function. The designers
of CRYSTALS-Kyber instantiated XOF with SHAKE-128 and
G with SHA3-512 from the FIPS 202 standard [7]. They also
proposed ‘‘90s’’ variant of CRYSTALS-Kyber in which they
instantiated XOF (ρ, i, j) with AES-256 in CTR mode, where
ρ is used as the key and i∥j is zero-padded to a 12-byte nonce
and the counter of CTRmode is initialized to zero and G with
SHA-512.

B. CONVERSION METHODS FOR RANDOM NUMBER
GENERATION
When randomness is needed, we typically employ random
bit generators. However, certain cryptographic applications
demand sequences of random numbers (a0, a1, a2, · · · )
where:
• for some positive integer r (the range of the random
numbers), each integer ai satisfies 0 ≤ ai ≤ r − 1;

• for any i ≥ 0 and s (0 ≤ s ≤ r − 1), ai = s with
probability almost exactly 1/r ; and

• each integer ai is statistically independent of any set of
integers aj (j ̸= i).

Several methods for converting a sequence of random
bits into a sequence of random numbers are known, and
among them, four methods have been standardized (see
ISO/IEC 18031:2011 [3], NIST SP 800-90A Rev. 1 [5], and
ANSI X9.82-1-2006 (R2013) [4]). The standardized methods
consist of two types of discard methods, the simple discard
method and the complex discard method, and two types
of modular methods, the simple modular method and the
complex modular method. These methods are simple and
intuitive, but they also have drawbacks. The discard methods
sometimes require discarding more bits than necessary, and
the modular methods do not guarantee a uniform output.

VOLUME 12, 2024 3477



D. Roh, S. Jung: Applying the Simple Partial Discard Method to Crystals-Kyber

Recently, the ISO/IEC JTC 1/SC 27/WG 2, responsible
for standardizing cryptography and security mechanisms
within ISO/IEC, decided to incorporate two new conversion
methods for random number generation into the standard.
These methods, developed by Koo et al. [8], are the simple
partial discard method and the complex partial discard
method, The partial discard methods discard less bits than
discard methods and guarantee a uniform output.

Here, we briefly review the simple discard method and the
simple partial discard method.

1) THE SIMPLE DISCARD METHOD
Let m be the unique positive integer satisfying 2m−1 < r ≤
2m (m is uniquely defined by the choice of r). The method to
generate the random number a is as follows.

1) Use the RBG to generate a sequence of m random bits,
(b0, b1, . . . , bm−1).

2) Let c =
∑m−1

i=0 2ibi.
3) If c < r then put a = c, else discard c and go to step 1.

2) THE SIMPLE PARTIAL DISCARD METHOD
Let m be the unique positive integer satisfying mm−1 < r ≤
2m (m is uniquely defined by the choice of r). The method to
generate the random number a is as follows.

1) Use the RBG to generate a sequence of m random bits,
(b0, b1, . . . , bm−1).

2) Let c =
∑m−1

i=0 2ibi.
3) If c > r then put a = c, else

a) let d be the unique integer such that 2m−d−1 ≤
c⊕ (r − 1) < 2m−d ,

b) use the RBG to generate a sequence of d +
1 random bits, (bm, bm+1, . . . , bm+d ),

c) let bi = bm+i for 0 ≤ i < d + 1 and bd+1+i = bi
for 0 ≤ i < m− d − 1 and go to step 2.

C. CRYSTALS-KYBER
CRYSTALS-Kyber is a quantum resistant IND-CCA2 (indis-
tinguishability under adaptive chosen ciphertext attack)
secure key encapsulation mechanism (KEM). Its security is
based on the hardness of solving the learning-with-errors
(LWE) problem over module lattices. In 2022, it was selected
for the Post-Quantum Cryptography (PQC) standardization
project by NIST. It has three different parameter sets for
different security levels. Kyber512 is designed to be as
secure as AES-128, Kyber768 is designed to be as secure
as AES-192, and Kyber1024 is designed to be as secure as
AES-256.

Recently, NIST published a draft standard FIPS 203,
Module-Lattice-Based Key-Encapsulation Mechanism Stan-
dard [9]. This standard specifies the algorithms and parameter
sets of the ML-KEM scheme that is derived from the
round-three version of the CRYSTALS-Kyber KEM [6].
Furthermore, ISO/IEC is also developing a standard for
quantum resistant KEMs, including CRYSTALS-Kyber [10].

Algorithm 1 Kyber.CPAPKE.KeyGen(): Key Generation

Output: Secret key sk ∈ B12·k·n/8

Output: Public key pk ∈ B12·k·n/8+32

1: d ← B32

2: (ρ, σ ) := G(d)
3: N := 0
4: for i from 0 to k − 1 do
5: for j from 0 to k − 1 do
6: Â[i][j] := Parse(XOF(ρ, j, i))
7: end for
8: end for

· · ·

For the detailed specifications of CRYSTALS-Kyber we refer
the reader to [6] and [9].

III. THE KEY GENERATION OF CRYSTALS-KYBER
The key generation algorithm of CRYSTALS-Kyber outputs
a secret key sk ∈ B12·k·n/8 a public key pk ∈ B12·k·n/8+32.
To output a public key, the key generation algorithm first
generates a matrix Â ∈ Rk×kq in NTT (Number Theoretic
Transform) domain. The matrix is generated by repeatedly
invoking an algorithm called Parse k2 times. Algorithm
Parse takes a byte stream B = b0, b1, b2 · · · ∈ B∗ and
outputs the NTT-representation â = â0 + â1X + · · · +
ân−1Xn−1 ∈ Rq of a ∈ Rq The input byte stream of
Algorithm Parse is computed using XOF. The function XOF
is recommended to be instantiated with SHAKE-128 or
AES-256 in CTR mode.

To uniformly sample an element in Rq, Algorithm Parse
takes a chunk of twelve bits at a time from the input byte
stream and sets a coefficient of the element only when the
chunk is in the desired range. If the chunk is not in the range,
then it takes another chunk of twelve bits (the simple discard
method). It repeats this process until it has determined all the
coefficients of the element in Rq. So the number of bytes (or
bits) required by Algorithm Parse to output â ∈ Rq is not
fixed. It varies depending on the input byte streams.

Let X0 be a random variable that represents the number
of bits for Algorithm Parse to compute a coefficient in Zq.
It is easy to see that the expected value of X0 is E[X0] =
12 × 4096

3329 ≈ 14.76479. Then the expected number of bits
required by Algorithm Parse to output an element in Rq is
256× E[X0] ≈ 3779.787.
First, suppose that the function XOF that outputs the

input byte stream of Algorithm Parse is instantiated with
SHAKE-128. Since SHAKE-128 outputs 1,344 bits per
squeezing step, the minimum required number of squeezing
steps is ⌈(12× 256)/1344⌉ = 3 and the expected number of
squeezing steps is ⌈256×E[X0]/1344⌉ = 3. So, the reference
code, provided by the designers of CRYSTALS-Kyber, sets
three as a default number of the squeezing steps. This means
that when preparing the input byte stream for Algorithm
Parse, the squeezing step of SHAKE-128 is called three

3478 VOLUME 12, 2024



D. Roh, S. Jung: Applying the Simple Partial Discard Method to Crystals-Kyber

Algorithm 2 Parse: B∗→ Rq
Input: Byte stream B = b0, b1, b2 · · · ∈ B∗
Output: NTT-representation â ∈ Rq of a ∈ Rq

i := 0
j := 0
while j < n do

d1 := bi + 256 ·
(
bi+1 mod+ 16

)
d2 := ⌊bi+1/16⌋ + 16 · bi+2
if d1 < q then

âj := d1
j := j+ 1

end if
if d2 < qandj < n then

âj := d2
j := j+ 1

end if
i := i+ 3

end while
return â0 + â1X + · · · + ân−1Xn−1

times to prepare the first 4,032 bits. If it is unable to
successfully output an element in Rq using the 4,032 bits,
an additional squeezing step is called one at a time until
it is able to do so. However, three squeezing steps are not
always sufficient. We can easily see that the probability that
Algorithm Parse requires more than three squeezing steps is

255∑
i=0

(
336
i

)(
3329
4096

)i (
1−

3329
4096

)336−i

.

To compute it, we recall a well-known fact that the cumulative
distribution function F(k;m, p) for a binomial distribution
X ∼ B(m, p) can be computed as follows.

F(k;m, p) = Pr(X ≤ k)

=

⌊k⌋∑
i=0

(
m
i

)
pi(1− p)m−i

= (m− k)
(
m
k

)∫ 1−p

0
tm−k−1(1− t)kdt (1)

Therefore,
255∑
i=0

(
336
i

)(
3329
4096

)i (
1−

3329
4096

)336−i

= F
(
255; 336,

3329
4096

)
= (336− 255)

(
336
255

)∫ 1− 3329
4096

0
t336−255−1(1− t)255dt

≈ 0.008328 ≈ 2−6.9079.

Next, suppose that the function XOF that outputs the
input byte stream of Algorithm Parse is instantiated with
AES-256 in CTR mode. Since AES-256 in CTR mode
outputs 128 bits per invocation to AES-256, the minimum

number and the expected number of invocations of AES-256
are ⌈(12 × 256)/128⌉ = 24 and ⌈256 × E[X0]/128⌉ = 30,
respectively. The reference code, provided by the designers
of CRYSTALS-Kyber, sets 32 as a default number of the
invocations. This means that when preparing the input byte
stream for Algorithm Parse, AES-256 is called thirty-two
times to prepare the first 4,096 bits. If it does not succeed
in using those 4,096 bits to output an element in Rq, the
reference code calls AES-256 four more times, one at a time,
until it does. By using (1), we can see that the probability
that Algorithm Parse requires more than 32 invocations of
AES-256 is
255∑
i=0

(
341
i

)(
3329
4096

)i (
1−

3329
4096

)341−i

= F
(
255; 341,

3329
4096

)
≈ 0.001836 ≈ 2−9.0890.

Andwe can also see that the probability that Algorithm Parse
requires more than 28 invocations of AES-256 is

255∑
i=0

(
298
i

)(
3329
4096

)i (
1−

3329
4096

)298−i

= F
(
255; 298,

3329
4096

)
≈ 0.97866 ≈ 2−0.031123.

IV. APPLYING THE SIMPLE PARTIAL DISCARD METHOD
TO THE KEY GENERATION OF CRYSTALS-KYBER
In this section, we apply the simple partial discard method to
the key generation algorithm of CRYSTALS-Kyber. Accord-
ing to the specifications of CRYSTALS-Kyber, Algorithm
Parse generates polynomials in Rq using the simple discard
method during the key generation. Here, we proposemodified
algorithms where the polynomials are generated using the
simple partial discard method instead of the simple discard
method.

Specifically, we propose three algorithms. The first algo-
rithm employs the simple partial discard method without any
modifications, while the second and third algorithms employ
modified versions of the simple partial discard method.
The reasons why we propose three different (but similar)
algorithms are as follows. The simple partial discard method
offers an advantage over the simple discard method by
utilizing fewer random bits while outputting the same number
of random numbers. However, achieving this advantage
requiresmore computations and/or time to convert a sequence
of random bits into a sequence of random numbers for
the simple partial discard method compared to the simple
discard method. In other words, there exists a trade-off
relationship between the simple discard method and the
simple partial discard method. If generating the input random
bits requires minimal computations and/or time, it would
be advantageous to use the simple discard method, which
requires less computations and/or time. On the other hand,
if generating the input random bits requires more time than
additional computations and/or time, then using the simple

VOLUME 12, 2024 3479



D. Roh, S. Jung: Applying the Simple Partial Discard Method to Crystals-Kyber

Algorithm 3 Parse_SPDM1: B∗→ Rq
Input: Byte stream B = b0, b1, b2 · · · ∈ B∗
Output: NTT-representation â ∈ Rq of a ∈ Rq

i := 0
j := 0
k := 0
while j < n do

if 0 ≤ k < 5 then
d :=

(
2k+4 · bi mod+ 212

)
+ ⌊bi+1/24−k⌋

else

d :=
(
2k+4 · bi mod+ 212

)
+ 2k−1 · bi+1

+ ⌊bi+2/212−k⌋
end if
if d < q then

âj := d
i := i+ ⌊k/4⌋ + 1
j := j+ 1
k := (k + 4) mod+ 8

else
i := ⌊

(
spdm[d]+ k

)
/8⌋

k :=
(
spdm[d]+ k

)
mod+ 8

end if
end while
return â0 + â1X + · · · + ân−1Xn−1

partial discard method would be favorable. The second and
third variations leverage this trade-off between computational
complexity and the number of random bits required. Among
the three modified algorithms, the first requires the fewest
random bits and the most amount of computations and/or
time, while the third requires the most random bits and uses
the least amount of computations and/or time.

A. THE FIRST ALGORITHM
In this subsection, we propose and analyze the first modified
algorithm Parse_SPDM1. As mentioned earlier, Algorithm
Parse_SPDM1 adopts the simple partial discard method
without any modifications.

Here, the table spdm in Parse_SPDM1 is an array of
4,096 numbers indicating the number of discarded bits. That
is, spdm[i] = 0 for 0 ≤ i < 3329 and spdm[i] = x
for 3329 ≤ i < 4096, where x is an integer such that
212−x ≤ (i⊕ 3328) < 211−x . The concrete values of the
table spdm is given in Table 1.

Let X1 be a random variable that represents the number of
bits for Algorithm Parse_SPDM1 to compute a coefficient
in Zq. The expected value of X1 satisfies

E[X1] = 12×
3329
4096

+ (E[X1]+ 12)×
1

4096

+ (E[X1]+ 11)×
2

4096
+ (E[X1]+ 10)×

4
4096

+ (E[X1]+ 9)×
8

4096
+ (E[X1]+ 8)×

16
4096

TABLE 1. The table spdm.

+ (E[X1]+ 7)×
32
4096

+ (E[X1]+ 6)×
64

4096

+ (E[X1]+ 5)×
128
4096

+ (E[X1]+ 3)×
512
4096

.

Therefore, E[X1] = 43006/3329 ≈ 12.91859.
Then the expected number of bits needed by Algorithm
Parse_SPDM1 to output an element in Rq is 256× E[X1] ≈
3307.16.
First, suppose that the function XOF that outputs the input

byte stream of Algorithm Parse_SPDM1 is instantiated with
SHAKE-128. The minimum required number of squeezing
steps is ⌈(12× 256)/1344⌉ = 3 and the expected number of
squeezing steps is ⌈256 × E[X1]/1344⌉ = 3. The minimum
required number and the expected number of squeezing
steps of Algorithm Parse_SPDM1 are the same as those of
Algorithm Parse.

However, the probability that Algorithm Parse_SPDM1
requires more than three squeezing steps is different from that
Algorithm Parse requires. Now we compute the probability
that Algorithm Parse_SPDM1 requires more than three
squeezing steps. Let G1(x, y) be the generating function
of F1(α, β), the probability that Algorithm Parse_SPDM1
outputs β coefficients in Zq for given α random bits, where
α and β are non-negative integers. Then the probability
that Algorithm Parse_SPDM1 requires more than three
squeezing steps is

255∑
i=0

∂G1(x,y)
∂x4032∂yi

(0, 0)

4032! · i!
≈ 2−144.0427259

by Proposition 1 in Appendix.
Next, suppose that the function XOF that outputs the input

byte stream of Algorithm Parse_SPDM1 is instantiated with
AES-256 in CTR mode. The minimum number and the
expected number of invocations of AES-256 are ⌈(12 ×
256)/128⌉ = 24 and ⌈256×E[X1]/128⌉ = 26, respectively.
The probability that Algorithm Parse_SPDM1 requires more
than t invocations of AES-256 is

255∑
i=0

∂G1(x,y)
∂x128t∂yi

(0, 0)

(128t)! · i!
.

The probabilities for several values of t are given in Table 2.

3480 VOLUME 12, 2024



D. Roh, S. Jung: Applying the Simple Partial Discard Method to Crystals-Kyber

TABLE 2. The probability that Algorithm Parse_SPDM1 requires more
than t invocations of AES-256.

Algorithm 4 Parse_SPDM2: B∗→ Rq
Input: Byte stream B = b0, b1, b2 · · · ∈ B∗
Output: NTT-representation â ∈ Rq of a ∈ Rq

i := 0
j := 0
k := 0
while j < n do

if k = 0 then
d := 16 · bi + ⌊bi+1/16⌋

else
d :=

(
256 · bi mod 212

)
+ bi+1

end if
if d < 3329 then

âj := d
i := i+ k + 1
j := j+ 1
k := k ⊕ 1

else if 3329 ≤ d < 3344 then
i := i+ k + 1
k := k ⊕ 1

else if 3344 ≤ d < 3584 then
i := i+ 1

else
i := i+ k
k := k ⊕ 1

end if
end while
return â0 + â1X + · · · + ân−1Xn−1

B. THE SECOND ALGORITHM
In this subsection, we propose and analyze the second
modified algorithm Parse_SPDM2. As mentioned earlier,
Algorithm Parse_SPDM2 adopts the simple partial discard
method in a slightly modified form to reduce computations
and/or time. To achieve this, it requires more random bits than
Algorithm Parse_SPDM1, but it still requires fewer random
bits than Algorithm Parse.

Let X2 be a random variable that represents the number of
bits for Algorithm Parse_SPDM2 to compute a coefficient
in Zq. The expected value of X2 satisfies

E[X2] = 12×
3329
4096

+ (E[X2]+ 12)×
15

4096

+ (E[X1]+ 8)×
240
4096

+ (E[X1]+ 4)×
512
4096

.

TABLE 3. The probability that Algorithm Parse_SPDM2 requires more
than t invocations of AES-256.

Therefore, E[X2] = 44096/3329 ≈ 13.24602. Then
the expected number of bits required by Algorithm
Parse_SPDM2 to output an element in Rq is 256× E[X2] ≈
3390.98108.
First, suppose that the function XOF that outputs the input

byte stream of Algorithm Parse_SPDM2 is instantiated with
SHAKE-128. The minimum required number of squeezing
steps is ⌈(12× 256)/1344⌉ = 3 and the expected number of
squeezing steps is ⌈256 × E[X2]/1344⌉ = 3. The minimum
required number and the expected number of squeezing
steps of Algorithm Parse_SPDM2 are the same as those for
Algorithm Parse and Algorithm Parse_SPDM1.
However, the probability that Algorithm Parse_SPDM2

requires more than three squeezing steps differs from
the probabilities that Algorithm Parse and Algorithm
Parse_SPDM1 require. Now we compute the probability
that Algorithm Parse_SPDM2 requires more than three
squeezing steps. Let G2(x, y) be the generating function
of F2(α, β), the probability that Algorithm Parse_SPDM2
outputs β coefficients in Zq for given α random bits, where
α and β are non-negative integers. Then the probability
that Algorithm Parse_SPDM2 requires more than three
squeezing steps is

255∑
i=0

∂G2(x,y)
∂x4032∂yi

(0, 0)

4032! · i!
≈ 2−77.49183682

by Proposition 2 in Appendix.
Next, suppose that the function XOF that outputs the input

byte stream of Algorithm Parse_SPDM2 is instantiated with
AES-256 in CTR mode. The minimum number and the
expected number of invocations of AES-256 are ⌈(12 ×
256)/128⌉ = 24 and ⌈256×E[X2]/128⌉ = 27, respectively.
The probability that Algorithm Parse_SPDM2 requires more
than t invocations of AES-256 is

255∑
i=0

∂G2(x,y)
∂x128t∂yi

(0, 0)

(128t)! · i!
.

The probabilities for several values of t are given in Table 3.

C. THE THIRD ALGORITHM
In this subsection, we propose and analyze the third modified
algorithm Parse_SPDM3. As mentioned earlier, Algorithm
Parse_SPDM3 adopts the simple partial discard method
in a slightly modified form to further reduce computations

VOLUME 12, 2024 3481



D. Roh, S. Jung: Applying the Simple Partial Discard Method to Crystals-Kyber

Algorithm 5 Parse_SPDM3: B∗→ Rq
Input: Byte stream B = b0, b1, b2 · · · ∈ B∗
Output: NTT-representation â ∈ Rq of a ∈ Rq

i := 0
j := 0
while j < n do

d1 := 16 · bi + ⌊bi+1/16⌋
if d1 < 3584 then

i := i+ 1
end if
d2 :=

(
256 · bi mod+ 212

)
+ bi+1

if d1 < q then
âj = d1
j := j+ 1

end if
if d2 < qandj < n then

âj = d2
j := j+ 1

end if
if d2 < 3584 then

i := i+ 2
else

i := i+ 1
end if

end while
return â0 + â1X + · · · + ân−1Xn−1

and/or time. While it requires more random bits than
Algorithm Parse_SPDM1 and Algorithm Parse_SPDM2,
it still requires fewer random bits than Algorithm Parse.
Let X3 be a random variable that represents the number of

bits for Algorithm Parse_SPDM3 to compute a coefficient
in Zq. The expected value of X3 satisfies

E[X3] = 12×
3329
4096

+ (E[X3]+ 12)×
255
4096

+ (E[X3]+ 4)×
512
4096

.

Therefore, E[X3] = 45056/3329 ≈ 13.53439. Then
the expected number of bits required by Algorithm
Parse_SPDM3 to output an element in Rq is 256× E[X3] ≈
3464.80505.

First, suppose that the function XOF that outputs the input
byte stream of Algorithm Parse_SPDM3 is instantiated with
SHAKE-128. The minimum required number of squeezing
steps is ⌈(12× 256)/1344⌉ = 3 and the expected number of
squeezing steps is ⌈256 × E[X3]/1344⌉ = 3. The minimum
required number and the expected number of squeezing
steps of Algorithm Parse_SPDM3 are the same as those of
Algorithm Parse, those of Algorithm Parse_SPDM1, and
those of Algorithm Parse_SPDM2.

However, the probability that Algorithm Parse_SPDM3
requires more than three squeezing steps is different from that
Algorithm Parse requires, that Algorithm Parse_SPDM1
requires, and that Algorithm Parse_SPDM2 requires. Now

TABLE 4. The probability that Algorithm Parse_SPDM3 requires more
than t invocations of AES-256.

we calculate the probability that Algorithm Parse_SPDM3
requires more than three squeezing steps. Let G3(x, y) be
the generating function of F3(α, β), the probability that
Algorithm Parse_SPDM3 outputs β coefficients in Zq for
given α random bits, where α and β are non-negative integers.
Then the probability that Algorithm Parse_SPDM3 requires
more than three squeezing steps is

255∑
i=0

∂G3(x,y)
∂x4032∂yi

(0, 0)

4032! · i!
≈ 2−41.71623662

by Proposition 3 in Appendix.
Next, suppose that the function XOF that outputs the input

byte stream of Algorithm Parse_SPDM3 is instantiated with
AES-256 in CTR mode. The minimum number and the
expected number of invocations of AES-256 are ⌈(12 ×
256)/128⌉ = 24 and ⌈256×E[X3]/128⌉ = 28, respectively.
The probability that Algorithm Parse_SPDM3 requires more
than t invocations of AES-256 is

255∑
i=0

∂G3(x,y)
∂x128t∂yi

(0, 0)

(128t)! · i!
.

The probabilities for several values of t are given in Table 4.

V. EXPERIMENTAL RESULTS
This section demonstrates experimental results of applying
the simple partial discard method to the key generation
of CRYSTALS-Kyber. We compare the performances of
generating a matrix Â during the key generation of
CRYSTALS-Kyber using Algorithms Parse, Parse_SPDM1,
Parse_SPDM2, and Parse_SPDM3. We used the reference
implementation by the designers of CRYSTALS-Kyber when
measuring the performance of generating Â using Algorithm
Parse and made minimal modifications to the reference
implementation when measuring performances of generating
Â using Algorithms Parse_SPDM1, Parse_SPDM2, and
Parse_SPDM3.
All benchmarks were conducted on a single core of an

AMD RyzenTM ThreadripperTM PRO 5995WX processor
running at a fixed 2.7 GHz base clock, with TurboBoost
and hyperthreading disabled. The benchmarking machine is
equippedwith 382GBof RAMand runsUbuntu 22.04.3 LTS.
All implementations were compiled using gcc 11.4.0. The
reported cycle counts and numbers of required bits represent
the averages from one million executions of the respective
function. Similarly, any reported probabilities of exceeding a
predetermined (default) number of calls to the SHAKE-128

3482 VOLUME 12, 2024



D. Roh, S. Jung: Applying the Simple Partial Discard Method to Crystals-Kyber

TABLE 5. Average cycle counts to generate the matrix Â when XOF is instantiated with SHAKE-128.

TABLE 6. Average numbers of bits required to generate an element in Rq when XOF is instantiated with SHAKE-128.

TABLE 7. Probabilities that the squeezing step of SHAKE-128 is required more than three times to output an element in Rq when generating Â one
million times.

FIGURE 1. Average cycle counts to generate the matrix Â when XOF is
instantiated with SHAKE-128.

squeezing step or AES-256 are based on one million
executions of the respective function.

We first present the experimental results when XOF is
instantiated with SHAKE-128. Table 5 and Fig. 1 show
the average cycle counts to generate the matrix Â in the
key generation of CRYSTALS-Kyber. Tables 6 and 7 show
the average numbers of bits required and the probabilities of
calling the squeezing step of SHAKE-128 more than three
times to output an element in Rq, respectively. Algorithms
Parse_SPDM1, Parse_SPDM2, Parse_SPDM3, and Parse

FIGURE 2. Average cycle counts to generate the matrix Â when XOF is
instantiated with AES-256 in CTR mode with the default number of
invocations of AES-256 fixed as 28.

required fewer bits, in that order, and these figures are
roughly the same as the theoretical calculations in Section IV.
The average number of bits is naturally independent of
CRYSTALS-Kyber parameter sets. In addition, the probability
that Algorithm Parse requires more than three squeezing
steps was also the same as calculated theoretically. AndAlgo-
rithms Parse_SPDM1, Parse_SPDM2, and Parse_SPDM3
never required more than three squeezing steps, as was
expected. However, the number of bits required by the

VOLUME 12, 2024 3483



D. Roh, S. Jung: Applying the Simple Partial Discard Method to Crystals-Kyber

TABLE 8. Average cycle counts to generate the matrix Â when XOF is instantiated with AES-256 in CTR mode.

TABLE 9. Average numbers of bits required to generate an element in Rq when XOF is instantiated with AES-256 in CTR mode.

TABLE 10. Probabilities that the invocation of AES-256 in CTR mode is required more than 32 or 28 times to output an element in Rq when generating Â
one million times.

algorithm and its speed are inversely proportional. That is,
Parse, which theoretically requires the most bits, was the
fastest, and Parse_SPDM1, which theoretically requires the
fewest bits, was the slowest.

Next, we present the experimental results when XOF is
instantiated with AES-256 in CTR mode. Table 8 and Fig. 2
show the average cycle counts to generate the matrix Â in the
key generation of CRYSTALS-Kyber. Tables 9 and 10 show
the average numbers of bits required and the probabilities
of calling AES-256 more than 32 and 28 times to output
an element in Rq, respectively. Algorithms Parse_SPDM1,
Parse_SPDM2, Parse_SPDM3, and Parse required fewer
bits, in that order, and these figures are roughly the same
as the theoretical calculations in Section IV. As earlier,
the average number of bits is naturally independent of
CRYSTALS-Kyber parameter sets. And they are independent
of the algorithm that instantiates XOF. Not only are they
independent of the algorithm that instantiates XOF, but they
are also independent of the default number of iterations of
AES-256 set by the implementation. Therefore, the numbers
shown in Tables 6 and 9 are nearly identical. The probabilities
of requiringmore than 32 or 28 calls of AES-256 are the same
as theoretically calculated. In particular, in some cases, it did
not happen to call AES-256 more than the default number of
times as was expected.

VI. CONCLUSION
In this paper, we applied the simple partial discard method to
CRYSTALS-Kyber. Specifically, we applied the simple partial
discard method to an algorithm called Parse, which is used

to generate a matrix Â ∈ Rk×kq in NTT (Number Theoretic
Transform) domain in key generation. The reference code
provided by the designers of CRYSTALS-Kyber uses the
simple discard method. We applied the simple partial
discard method, which requires fewer bits than the simple
discard method, and analyzed its impact theoretically and
experimentally. As expected, our theoretical analysis and
experimental results confirm that the utilization of the simple
partial discard method requires fewer bits than that of
the simple discard method. In addition, we experimentally
verified that in certain cases, the simple partial discard
method not only uses fewer bits, but also generates Â
faster.

However, this research is only applicable to implemen-
tations that utilize a single core. While the simple discard
method is highly intuitively parallelizable, the same ease
of parallelization does not apply to the simple partial
discard method. Therefore, the challenge of parallelizing
the simple partial discard method and integrating it into
cryptographic algorithms such as CRYSTALS-Kyber remains
an open problem.

APPENDIX
GENERATING FUNCTIONS
In this appendix, we compute generating functions that
can be used to calculate the probabilities that Algorithms
Parse, Parse_SPDM1, Parse_SPDM2, and Parse_SPDM3
require more than predefined (default) number of calls to the
SHAKE-128 squeezing step or AES-256.

3484 VOLUME 12, 2024



D. Roh, S. Jung: Applying the Simple Partial Discard Method to Crystals-Kyber

First we compute the generating function of the probability
F1(α, β) that Algorithm Parse_SPDM1 outputs β coeffi-
cients in Zq for given α random bits.
Proposition 1: Let F1(α, β) be the probability that Algo-

rithm Parse_SPDM1 outputs β coefficients in Zq for given
α random bits, where α and β are non-negative integers.
We assume that the algorithm tries to output a coefficient only
when more than or equal to twelve random bits are left. And
let G1(x, y) be the generating function of F1(α, β). Then

G1(x, y) =

∑12
i=5 f12−ix

i
+ f9x3 − 1

syx12 +
∑12

i=5 f12−ix
i + f9x3 − 1

H1(x),

where s = 3329/4096, f0 = 1/4096, f1 = 2/4096, f2 =
4/4096, f3 = 8/4096, f4 = 16/4096, f5 = 32/4096, f6 =
64/4096, f7 = 128/4096, f9 = 512/4096, and

H1(x) =

∑11
j=5

∑7
i=12−j fix

j
+
∑11

i=3 f9x
i
−
∑11

i=0 x
i∑12

i=5 f12−ix
i + f9x3 − 1

.

Proof: The probability F1(α, β) satisfies the following
recurrence relation.

F1(α + 12, β + 1)

= sF1(α, β)+ f0F1(α, β + 1)+ f1F1(α + 1, β + 1)

+ f2F1(α + 2, β + 1)+ f3F1(α + 3, β + 1)

+ f4F1(α + 4, β + 1)+ f5F1(α + 5, β + 1)

+ f6F1(α + 6, β + 1)+ f7F1(α + 7, β + 1)

+ f9F1(α + 9, β + 1)

Here, F1(i, 0) = 1 for 0 ≤ i < 12 and F1(i, j) = 0 for
0 ≤ i < 12 and 1 ≤ j. These are the boundary conditions.
Before computing the generating function of F1(α, β),

we first compute the generating function of F1(α, 0).
The probability F1(α, 0) satisfies the following recurrence
relation.

F1(α + 12, 0)

= f0F1(α, 0)+ f1F1(α + 1, 0)+ f2F1(α + 2, 0)

+ f3F1(α + 3, 0)+ f4F1(α + 4, 0)+ f5F1(α + 5, 0)

+ f6F1(α + 6, 0)+ f7F1(α + 7, 0)+ f9F1(α + 9, 0)

Let H1(x) =
∑

i≥0 F1(i, 0)x
i be the generating function of

F1(α, 0). From the recurrence relation of F1(α, 0), we obtain∑
i≥0

F1(i+ 12, 0)x i

= f0
∑
i≥0

F1(i, 0)x i + f1
∑
i≥0

F1(i+ 1, 0)x i

+ f2
∑
i≥0

F1(i+ 2, 0)x i + f3
∑
i≥0

F1(i+ 3, 0)x i

+ f4
∑
i≥0

F1(i+ 4, 0)x i + f5
∑
i≥0

F1(i+ 5, 0)x i

+ f6
∑
i≥0

F1(i+ 6, 0)x i + f7
∑
i≥0

F1(i+ 7, 0)x i

+ f9F1(i+ 9, 0)x i.

By substituting
∑

i≥0 F1(i, 0)x
i by H1(x) and using the

boundary conditions, we get

1
x12

(
H1(x)−

11∑
i=0

x i
)

= f0H1(x)+
f1
x

(
H1(x)−

0∑
i=0

x i
)
+

f2
x2

(
H1(x)−

1∑
i=0

x i
)

+
f3
x3

(
H1(x)−

2∑
i=0

x i
)
+

f4
x4

(
H1(x)−

3∑
i=0

x i
)

+
f5
x5

(
H1(x)−

4∑
i=0

x i
)
+

f6
x6

(
H1(x)−

5∑
i=0

x i
)

+
f7
x7

(
H1(x)−

6∑
i=0

x i
)
+

f9
x9

(
H1(x)−

8∑
i=0

x i
)

.

Therefore,

H1(x) =

∑11
j=5

∑7
i=12−j fix

j
+
∑11

i=3 f9x
i
−
∑11

i=0 x
i∑12

i=5 f12−ix
i + f9x3 − 1

.

Now we compute G1(x, y) =
∑

i,j≥0 F1(i, j)x
iyj. From the

recurrence relation of F1(α, β), we obtain∑
i,j≥0

F1(i+ 12, j+ 1)x iyj

= s
∑
i,j≥0

F1(i, j)x iyj + f0
∑
i,j≥0

F1(i, j+ 1)x iyj

+ f1
∑
i,j≥0

F1(i+ 1, j+ 1)x iyj

+ f2
∑
i,j≥0

F1(i+ 2, j+ 1)x iyj

+ f3
∑
i,j≥0

F1(i+ 3, j+ 1)x iyj

+ f4
∑
i,j≥0

F1(i+ 4, j+ 1)x iyj

+ f5
∑
i,j≥0

F1(i+ 5, j+ 1)x iyj

+ f6
∑
i,j≥0

F1(i+ 6, j+ 1)x iyj

+ f7
∑
i,j≥0

F1(i+ 7, j+ 1)x iyj

+ f9
∑
i,j≥0

F1(i+ 9, j+ 1)x iyj

By substituting
∑

i≥0 F1(i, 0)x
i and

∑
i,j≥0 F1(i, j)x

iyj by
H1(x) and G1(x, y), respectively, and using the boundary
conditions, we get
1

x12y
(G1(x, y)− H1(x))

= sG1(x, y)+
f0
y

(G1(x, y)− H1(x))

VOLUME 12, 2024 3485



D. Roh, S. Jung: Applying the Simple Partial Discard Method to Crystals-Kyber

+
f1
xy

(G1(x, y)− H1(x))+
f2
x2y

(G1(x, y)− H1(x))

+
f3
x3y

(G1(x, y)− H1(x))+
f4
x4y

(G1(x, y)− H1(x))

+
f5
x5y

(G1(x, y)− H1(x))+
f6
x6y

(G1(x, y)− H1(x))

+
f7
x7y

(G1(x, y)− H1(x))+
f9
x9y

(G1(x, y)− H1(x)) .

Therefore,

G1(x, y) =

∑12
i=5 f12−ix

i
+ f9x3 − 1

syx12 +
∑12

i=5 f12−ix
i + f9x3 − 1

H1(x)

This finishes the proof. □
Next we compute the generating function of the probability

F2(α, β) that Algorithm Parse_SPDM2 outputs β coeffi-
cients in Zq for given α random bits.
Proposition 2: Let F2(α, β) be the probability that Algo-

rithm Parse_SPDM2 outputs β coefficients in Zq for given
α random bits, where α and β are non-negative integers.
We assume that the algorithm tries to output a coefficient only
when more than or equal to twelve random bits are left. And
let G2(x, y) be the generating function of F2(α, β). Then

G2(x, y) =
f0x12 + f1x8 + f2x4 − 1

sx12y+ f0x12 + f1x8 + f2x4 − 1
H2(x),

where s = 3329/4096, f0 = 15/4096, f1 = 240/4096, f2 =
512/4096, and

H2(x) =
f1
∑11

i=8 x
i
+ f2

∑11
i=4 x

i
−
∑11

i=0 x
i

f0x12 + f1x8 + f2x4 − 1
.

Proof: The probability F2(α, β) satisfies the following
recurrence relation.

F2(α + 12, β + 1)

= sF2(α, β)+ f0F2(α, β + 1)+ f1F2(α + 4, β + 1)

+ f2F2(α + 8, β + 1)

Here, F2(i, 0) = 1 for 0 ≤ i < 12 and F2(i, j) = 0 for
0 ≤ i < 12 and 1 ≤ j. These are the boundary conditions.
Before computing the generating function of F2(α, β),

we first compute the generating function of F2(α, 0).
The probability F2(α, 0) satisfies the following recurrence
relation.

F2(α + 12, 0)

= f0F2(α, 0)+ f1F2(α + 4, 0)+ f2F2(α + 8, 0)

Let H2(x) =
∑

i≥0 F2(i, 0)x
i be the generating function of

F2(α, 0). From the recurrence relation of F2(α, 0), we obtain∑
i≥0

F2(i+ 12, 0)x i

= f0
∑
i≥0

F2(i, 0)x i + f1
∑
i≥0

F2(i+ 4, 0)x i

+ f2
∑
i≥0

F2(i+ 8, 0)x i.

By substituting
∑

i≥0 F2(i, 0)x
i by H2(x) and using the

boundary conditions, we get

1
x12

(
H2(x)−

11∑
i=0

x i
)

= f0H2(x)+
f1
x4

(
H2(x)−

3∑
i=0

x i
)

+
f2
x8

(
H2(x)−

7∑
i=0

x i
)

.

Therefore,

H2(x) =
f1
∑11

i=8 x
i
+ f2

∑11
i=4 x

i
−
∑11

i=0 x
i

f0x12 + f1x8 + f2x4 − 1
.

Now we compute G2(x, y) =
∑

i,j≥0 F2(i, j)x
iyj. From the

recurrence relation of F2(α, β), we obtain∑
i,j≥0

F2(i+ 12, j+ 1)x iyj

= s
∑
i,j≥0

F2(i, j)x iyj + f0
∑
i,j≥0

F2(i, j+ 1)x iyj

+ f1
∑
i,j≥0

F2(i+ 4, j+ 1)x iyj

+ f2
∑
i,j≥0

F2(i+ 8, j+ 1)x iyj.

By substituting
∑

i≥0 F2(i, 0)x
i and

∑
i,j≥0 F2(i, j)x

iyj by
H2(x) and G2(x, y), respectively, and using the boundary
conditions, we get

1
x12y

(G2(x, y)− H2(x))

= sG2(x, y)+
f0
y

(G2(x, y)− H2(x))

+
f1
x4y

(G2(x, y)− H2(x))+
f2
x8y

(G2(x, y)− H2(x)) .

Therefore,

G2(x, y) =
f0x12 + f1x8 + f2x4 − 1

sx12y+ f0x12 + f1x8 + f2x4 − 1
H2(x).

This finishes the proof. □
Finally, we compute the generating function of the

probability F3(α, β) that Algorithm Parse_SPDM3 outputs
β coefficients in Zq for given α random bits.
Proposition 3: Let F3(α, β) be the probability that Algo-

rithm Parse_SPDM3 outputs β coefficients in Zq for given
α random bits, where α and β are non-negative integers.
We assume that the algorithm tries to output a coefficient only
when more than or equal to twelve random bits are left. And
let G3(x, y) be the generating function of F3(α, β). Then

G3(x, y) =
cx2 − x2 + cx−x − 1
ax3y+ bx3 + cx − 1

H3(x),

3486 VOLUME 12, 2024



D. Roh, S. Jung: Applying the Simple Partial Discard Method to Crystals-Kyber

where a = 3329/4096, b = 255/4096, c = 512/4096, and

H3(x) =
c
∑11

i=4 x
i
−
∑11

i=0 x
i

bx12 + cx4 − 1
.

Proof: The probability F3(α, β) satisfies the following
recurrence relation.

F3(α + 12, β + 1)

= aF3(α, β)+ bF3(α, β + 1)+ cF3(α + 8, β + 1)

Here, F3(i, 0) = 1 for 0 ≤ i < 12 and F3(i, j) = 0 for
0 ≤ i < 12 and 1 ≤ j. These are the boundary conditions.
Before computing the generating function of F3(α, β),

we first compute the generating function of F3(α, 0).
The probability F3(α, 0) satisfies the following recurrence
relation.

F3(α + 12, 0) = bF3(α, 0)+ cF3(α + 8, 0)

Let H3(x) =
∑

i≥0 F3(i, 0)x
i be the generating function of

F3(α, 0). From the recurrence relation of F3(α, 0), we obtain∑
i≥0

F3(i+ 12, 0)x i

= b
∑
i≥0

F3(i, 0)x i + c
∑
i≥0

F3(i+ 8, 0)x i.

By substituting
∑

i≥0 F3(i, 0)x
i by H3(x) and using the

boundary conditions, we get

1
x12

(
H3(x)−

11∑
i=0

x i
)

= bH3(x)+
c
x8

(
H3(x)−

7∑
i=0

x i
)

.

Therefore,

H3(x) =
c
∑11

i=4 x
i
−
∑11

i=0 x
i

bx12 + cx4 − 1
.

Now we compute G3(x, y) =
∑

i,j≥0 F3(i, j)x
iyj. From the

recurrence relation of F3(α, β), we obtain∑
i,j≥0

F3(i+ 12, j+ 1)x iyj

= a
∑
i,j≥0

F3(i, j)x iyj + b
∑
i,j≥0

F3(i, j+ 1)x iyj

+ c
∑
i,j≥0

F3(i+ 8, j+ 1)x iyj.

By substituting
∑

i≥0 F3(i, 0)x
i and

∑
i,j≥0 F3(i, j)x

iyj by
H3(x) and G3(x, y), respectively, and using the boundary
conditions, we get

1
x12y

(G3(x, y)− H3(x))

= aG3(x, y)+
b
y

(G3(x, y)− H3(x))

+
c
x8y

(G3(x, y)− H3(x)) .

Therefore,

G3(x, y) =
bx12 + cx4 − 1

ax12y+ bx12 + cx4 − 1
H3(x).

This finishes the proof. □

REFERENCES
[1] National Institute of Standards and Technology (2013), Digital Signature

Standard (DSS), Standard FIPS PUBS 184-6, U.S. Department of
Commerce, Washington, DC, USA, Jul. 2013.

[2] D. Bleichenbacher, ‘‘On the generation of one-time keys in DL signature
schemes,’’ in Proc. Work. Group Meeting, 2000, p. 81.

[3] Information Technology—Security Techniques—Random Bit Generation,
Standard ISO/IEC 18031, 2011.

[4] American National Standards Institute (2006), Random Number
Generation—Part 1: Overview and Basic Principles, Standard ANSI
X9.82-1-2006, R2013, Jul. 2006.

[5] National Institute of Standards and Technology (2015), Recommendation
for Random Number Generation Using Deterministic Random Bit
Generators, Standard 800-90ARevision 1, U.S. Department of Commerce,
Washington, DC, USA, Jun. 2015.

[6] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, ‘‘Crystals-kyber
algorithm specifcations and supporting documentation,’’ Third-round
submission to the NIST’s post-quantum cryptography standardization
process,’’ Nat. Inst. Standards Technol., Tech. Rep., 2020. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/post-quantum-
cryptography/documents/round-3/submissions/Kyber-Round3.zip

[7] National Institute of Standards and Technology (2023), SHA-3 Stan-
dard: Permutation-Based Hash and Extendable-Output Functions, Stan-
dard FIPS PUBS 202, U.S. Department of Commerce, Washington, DC,
USA, Aug. 2015.

[8] B. Koo, D. Roh, and D. Kwon, ‘‘Converting random bits into random
numbers,’’ J. Supercomput., vol. 70, no. 1, pp. 236–246, Oct. 2014.

[9] National Institute of Standards and Technology (2023), Module-Lattice-
Based Key-Encapsulation Mechanism Standard, Standard FIPS PUBS
203, U.S. Department of Commerce, Washington, DC, USA, Aug. 2023.

[10] Information Technology—Security Techniques—Encryption Algorithms—
Part 2: Asymmetric Ciphers—Amendment 2, Standard ISO/IEC 18033-2,
2006.

DONGYOUNG ROH (Member, IEEE) received the B.S., M.S., and Ph.D.
degrees in mathematics from the Korea Institute of Science and Technology,
Daejeon, Republic of Korea, in 2011.

From 2011 to 2012, he was a Researcher with National Institute for
Mathematical Sciences. Since 2012, he has been a Principal Researcher with
The Affiliated Institute of Electronics and Telecommunications Research
Institute. He is the author of more than ten articles, the editor of three
ISO/IEC standards, and holds two patents. His research interests include
designing and analyzing cryptographic algorithms and relations between
discrete logarithm related problems.

Dr. Roh was a recipient of the Mid-Career Professional in Global
Achievement Awards by (ISC)2, in 2020.

SANGIM JUNG (Member, IEEE) received the B.S. degree in mathematics
from Sookmyung Women’s University, Seoul, Republic of Korea, in 2010,
and the M.S. degree in information security from Korea University, Seoul,
in 2012. Since 2011, she has been a Senior Researcher with The Affiliated
Institute of Electronics and Telecommunications Research Institute. Her
research interest includes designing and analyzing cryptographic protocols.

VOLUME 12, 2024 3487


