
Received 8 November 2023, accepted 25 December 2023, date of publication 1 January 2024,
date of current version 11 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3349021

Optimizing Gossiping for Asynchronous
Fault-Prone IoT Networks With Memory
and Battery Constraints
CARLOS BARROSO-FERNÁNDEZ 1, ERNESTO JIMÉNEZ 2, JOSÉ LUIS LÓPEZ-PRESA 2,
MARTA MORENO-CUESTA2, AND RAMON XULVI-BRUNET 3
1Departamento de Ingeniería Telemática, Universidad Carlos III de Madrid, 28903 Getafe, Spain
2Departamento de Sistemas Informáticos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
3Departamento de Física, Escuela Politécnica Nacional, Quito 170109, Ecuador

Corresponding author: Ernesto Jiménez (ernesto.jimenez.merino@upm.es)

This work was supported in part by the Ministry of Economy and Competitiveness (MINECO) under the QOSDATA Project
PID2020-119461GB-I00; in part by the Regional Government of Madrid (CM) under the EDGEDATA Project P2018/TCS-4499; in part by
the Spanish National Research Agency under the TRUE5G Project PID2019-108713RB[1]C52/AEI/10.13039/501100011033; in part by
Ministerio de Asuntos Económicos y Transformación Digital and European Union (EU)-NextGenerationEU through the Project
Data&Code Continuum: Infraestructura y Sevicios para Datos y Código en el Continuo Cloud/Edge; and in part by Fundación Carolina for
the Fellowship Estancias Cortas Postdoctorales, in 2020.

ABSTRACT A gossip protocol is a procedure by which a device disseminates its rumor to all devices on a
network. The traditional definition of the gossip problem states that, in a systemwith n interconnected devices
where each of them only knows initially its own rumor, after a known finite time of message exchange,
all devices learn the n rumors. This definition considers synchronous systems where devices cannot fail.
Gossip-based protocols can be very useful in Internet of Things (IoT) networks as a means of disseminating
information. Thus, we have reformulated the problem to expand the spectrum of networks in which the gossip
technique can be applied, including asynchrony and device failures, very common features in current IoT
newtwoks. Gossiping consumes valuable memory and battery resources in devices. This can be particularly
problematic for small IoT devices that operate with reduced memory in remote or inaccessible locations,
where battery replacement or recharging is difficult. To address these issues, two efficient gossip protocols
are presented, so that the efficiency and longevity of IoT devices is not compromised. The first protocol
(battery-efficient protocol) allows to reduce battery consumption while still having a good time performance,
but needs quadratic memory, like traditional versions. The second protocol (memory-optimal protocol) only
needs linear memory to store and manage the rumors, and is capable of significantly reducing the number of
messages sent, while obtaining similar (or, in many cases, better) performance than the first protocol. Both
protocols are formally proved to be correct, and upper and lower limits of their number of messages sent are
determined. These theoretical limits, however, differ so much among them that they do not permit to guess
the number of messages that a real case may require. Hence, the practical performance of both protocols is
assessed with experiments.

INDEX TERMS Gossip protocols, crash failures, IoT networks, partial-knowledge ofmembership, unknown
maximum number of failures, reliable links, asynchronous systems, sensor networks.

I. INTRODUCTION
The dissemination of information is a fundamental aspect
of the Internet of Things (IoT), where devices that are

The associate editor coordinating the review of this manuscript and

approving it for publication was Qingchun Chen .

interconnected (not necessarily each pair of them directly
linked) exchange data messages among them [1], [2],
[3], [4]. Traditionally, gossip protocols have been widely
used as an efficient way to ensure that information is
distributed to all devices [5]. Gossip protocols are peer-to-
peer communication procedures that rely on each device

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 4701

https://orcid.org/0009-0009-6491-3937
https://orcid.org/0000-0003-2006-2690
https://orcid.org/0000-0003-3050-1212
https://orcid.org/0000-0002-6013-4831
https://orcid.org/0000-0002-9454-4919

C. Barroso-Fernández et al.: Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks

(called process) broadcasting its values (called rumors) to the
rest of devices of the network (called system) by transmitting
them only to its neighbors (directly linked devices). The
way these procedures work is much like the way epidemics
spread [6], where a person with a virus diffuses a disease by
infecting a neighbor, who in turn infects another person, and
so on. The similarities between gossiping and epidemiology
have attracted a lot of attention in the literature [2], [7], [8],
[9], [10], and [11].

The traditional definition of the deterministic gossip prob-
lem [12], [13] states that, in a system with n interconnected
processes where each of them initially knows only its own
rumor, after a known finite time period of message exchange,
all processes eventually learn the n rumors [5]. Another
family of gossip protocols, denoted as random [14], [15],
is that in which the solution is achieved asymptotically with
probability 1. We shall not consider random gossip protocols
here.

The previous definition of the deterministic gossip problem
considers synchronous systems where no processes can
fail [2], [7], [8], [9], [10], [11], and makes no mention to the
memory limitation that might be present in practice in many
devices.

A. SYSTEM PROPERTIES
Gossip protocols work in rounds of communication, each
round following the same basic framework (called push
scheme [11], [16]). At the initial round, every process pi, that
only knows its own value ri (called the rumor of pi), randomly
chooses another process connected to it, e.g. pj, and sends
value ri to pj. In each subsequent round, this sending action is
repeated by pi, but now adding the new rumors it has received
in previous rounds. Even with this simple push scheme in
mind, the design of efficient gossip protocols in distributed
systems is not an easy task. The following fundamental issues
need to be considered: synchrony, reliability and knowledge
of membership.
• Synchrony [17]. Three main types of distributed sys-
tems have been studied in the literature. In synchronous
systems, both the speed at which processes run and the
time required for a message to reach the destination
are known and bounded. Thus, the key parameters of
the system are the processing time needed at each
round (called δ) and the transmission time (called
d). Conversely, in asynchronous systems, δ and d are
unbounded and, hence, unknown. Finally, partially-
synchronous systems are analogous to synchronous
systems, except that the values of δ and d , which are also
bounded, are not known by the processes. In this paper,
we shall focus on asynchronous systems, the weakest
type of systems, because, from a practical point of view,
IoT networks are often asynchronous.

• Reliability [17]. Two types of elements need to be con-
sidered: processes and links. Regarding the reliability of
the processes, we have a non-crashing system when all
the processes are correct, that is, when processes never

fail (by crashing permanently). Conversely, fault-prone
systems are those inwhich theremay be faulty processes,
in addition to the correct ones. Concerning the reliability
of links, two basic types of links are considered: lossy
links [18], where a message transmitted between two
correct processes may not be received, and, reliable links
[19], where the messages transmitted between correct
processes can never be lost or altered. UDP and TCP are
two examples of protocols that provide lossy and reliable
links, respectively. The protocols we propose in the
following sections assume that links are reliable, since
this choice simplifies the understanding of the protocols
and makes them easier to implement. However, given
that devices often stop working in IoT networks due
to physical damage or battery discharge, our system
considers that processes can fail.

• Knowledge of membership [20]. It relates to the
knowledge each process has about the other processes
in the system, and it is usually associated to the degree
of interconnection among the processes. Thus, in a fully
connected network –where every process is connected
to any other process–, global-knowledge of membership
can be useful or even necessary. However, when
processes can directly reach only a few other processes
(called their neighbors), then global knowledge might
not be necessary in advance, and partial-knowledge of
membership –that is, knowledge of the neighborhood–
might suffice. In the case of IoT networks, devices are
more likely to connect with only a few neighbors, since
fully connected networks place significant constraints
on communication power and network infrastructure.
Thus, we shall asume in this paper that the knowledge
of membership and connectivity of the system is
partial.

B. PROTOCOL FEATURES
Synchrony, reliability and knowledge of membership affect
three essential features of gossip protocols: the frequency of
rounds (shortly, frequency), the selection of rumors to send in
each round (shortly, notification), and the conditions to finish
the protocol (shortly, termination).
Let’s consider the simplest case of a distributed system:

synchronous, non-crashing, global-knowledge of member-
ship with all processes interconnected with reliable links, and
using the push scheme, where, in each round r , all processes
simultaneously perform the r-th sending round during a
discrete time interval. The round frequency can easily be
set depending upon the known values δ and d . With respect
to notification, each process pi transmits the rumors that it
knows to a randomly chosen process. Finally, the termination
condition is reached when all rumors have been received by
all processes. A protocol of this kind, such as that proposed
in [11], can diffuse a rumor in O(log n) rounds and using
O(n log n) messages.
To reduce the number of rounds before termination,

the push–pull scheme [2], [16] was developed for gossip

4702 VOLUME 12, 2024

C. Barroso-Fernández et al.: Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks

protocols. With this scheme, in each round r , every process
pi selects a random neighbor pj and sends to it a message
with the rumors that pi knows (push phase). Then, also in
this same round r , pi selects another random neighbor pk
and sends a request to pk to ask for an update (pull phase).
When pk receives this request, it responds with the rumors
it knows. Note that, in an asynchronous system with faulty
processes, when a process pi is waiting to receive a message
from another process pk and it does not arrive within a given
time, pi cannot know if this delay is because pk has failed or
because pk is slow.

In [15], a gossip protocol with a push–pull scheme is
presented in a synchronous system without any kind of
failures and it is proved that a single rumor spreads, with a
high probability, in O(log n) rounds and that the number of
messages reduces to only O(n log log n).
In distributed systems presenting ‘‘uncertainties’’ (with

respect to synchrony, reliability, or knowledge of member-
ship), deciding the frequency, notification, and termination
in gossip protocols is an active area of research [9], [16],
[20]. For example, if there is not a global knowledge of the
membership, the gossip solution in [11] does not terminate
because a process never knows when it has collected all
rumors. If one includes failure of processes and asynchrony
in the system, the gossip protocol in [15] may not finish,
given that a correct process pi, which may be waiting for
the answer of process pj, never knows if pj is delaying
its message because it is slower than pi or because it has
crashed (recall that δ and d are unbounded in an asynchronous
system). In an asynchronous system, since a process can
never have the certainty of receiving the rumors of all correct
processes, it is impossible to devise a gossip protocol which
satisfies proper termination when there may be an unknown
number of process failures [21] (despite the fact that it is
possible to guarantee that all correct processes eventually stop
sending messages [21]). This quiescence feature is absolutely
necessary to obtain efficient gossip protocols in asynchronous
fault-prone systems.

An additional feature to be considered in gossip protocols
is the amount of memory needed by processes to keep and
manage the information of the rumors they know, since
gossiping can consume a lot ofmemory and battery resources,
leading to reduced device performance and shortening battery
life. From a practical point of view, memory is therefore
a very important feature in some IoT networks (e.g.,
WSN), where battery and memory can be so constrained
that traditional gossip protocols are unable to properly run
when either the number of network devices or the needed
number of messages to be sent is large [22], [23], [24],
[25], [26], [27].

To sum up, proper determination of frequency, notification
and termination (or quiescence) is vital when configuring
a gossip protocol and is closely related to the properties
of the distributed system at hand. In general, a gossip
solution can be feasible or not depending upon all these
features [20].

C. OUR CONTRIBUTIONS
In this paper, we are interested in amore realistic environment
for IoT networks: asynchronous systems where processes can
fail and have low memory capacity. The system we shall
consider is a small IoT network where the devices are sensors
with very constrained battery and memory resources [22],
[23], [24], [25], [26], [27].

In asynchronous fault-prone systems, where a process
never knows when to terminate, the traditional deterministic
definition is not valid anymore. A new definition, called
quiescent gossip problem, states that termination takes place
when, after an unknown finite time period of message
exchange, each non-faulty process pi learns eventually a set
of rumors Xi that contains, at least, the rumors of all non-
faulty processes [21]. We shall use a stronger version here
related to the so-called uniform quiescent gossip problem,
where all non-faulty processes eventually learn the same set
of values, meaning that there is an unknown finite time after
which Xi = Xj for all non-faulty processes pi and pj.
To ensure that all processes give the same outcome, they

must deterministically choose among values from the same
set. This is necessary in applications where agreement on
a common value or on the next operation to execute is
required [28], [29], [30], [31]. A uniform quiescent gossip
protocol can provide such common set, what makes it very
suitable for this kind of problems.

We shall introduce two deterministic gossip-based proto-
cols for asynchronous IoT sensor networks that allow any
number of processes to fail (as long as the network always
remainsminimally connected). The first protocol (BE-gossip,
for battery-efficient) is based on the push scheme and is
capable of reducing battery consumption, but needs quadratic
memory, like traditional protocols. Our second protocol
(MO-gossip, for memory-optimal) only needs linear memory
to store and manage the rumors known. This second protocol,
that uses a push-pull scheme in order to achieve this important
property of linear memory usage, is also able to significantly
reduce the number of messages sent while still maintaining a
quiescence time similar to that of the first protocol.

D. OUTLINE
In Section II, we introduce our asynchronous fault-tolerant
gossip system and the formal definitions of the gossip
problem. In Section III, we present protocols BE-gossip and
MO-gossip, prove their correctness, and estimate upper and
lower bounds of their number of messages exchanged. (It is
worth noting that the gap between these bounds is sowide that
an experimental evaluation is needed to assess the practical
performance of the protocols. Note also that a theoretical
analysis of quiescence time is not possible in asynchronous
systems). In Section IV, experiments are provided to analyze
the practical performance of both protocols, focusing in
particular on the trade-off between the speed of rumor
diffusion, the number ofmessages that need to be sent, and the
quiescence time. This analysis is done both when the number

VOLUME 12, 2024 4703

C. Barroso-Fernández et al.: Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks

of faulty processes is low and when the number of faulty
processes is large. Additionally, the analysis is repeated for
different values of data transmission rates between devices.
Finally, in Section V, we present some concluding remarks.

II. THE ASYNCHRONOUS FAULT-PRONE SYSTEM S
The system S is composed by a finite set 5 of n processes,
i.e., |5| = n. Each process pi has its own unique identity i.
In some gossip systems, the identities of the processes

in the system are known to all members of the system and
there is a direct all-to-all connection between them. However,
in System S, processes do not need to be connected to all
other members of the system, nor do they need to know
their identities in advance. Instead, a process only needs to
know the identities of the processes with which it has a direct
connection, i.e., its neighbors. The set of neighbors of process
pi is denoted by Ni. Note also that the system where all
processes are neighbors is the particular case of System S
where, for all process pi ∈ 5, Ni = 5.
A process can fail by crashing, i.e., it eventually stops its

execution permanently without having reached the end of its
program.We say that a process pi ∈ 5 is correct if it does not
fail, and faulty otherwise. We denote by C the set of correct
processes and by F the set of faulty processes. In traditional
gossip systems, processes may know f = |F |. However,
since processes do not know n in S, it does not make sense
to know f . Thus, in order to minimize the knowledge of the
processes in the system, we consider that the processes have
no knowledge on faults.

Let L be the set of links connecting processes.G = (5,L)
is the (undirected) graph representing the network, where
each process is a node of the graph and each connection
(i, j) between two processes pi, pj ∈ 5 is an edge. In S,
processes do not need to have the same number of neighbors,
i.e., G does not need to be regular. Let GC = (C,LC), where
LC = {(i, j) ∈ L : pi, pj ∈ C}, be the subgraph induced by
the set of correct processes. Analogously, letGF = (F ,LF),
where LF = {(i, j) ∈ L : pi, pj ∈ F}, be the subgraph
induced by the set of faulty processes.
Property 1: For all pi, pj ∈ C, there is a path in GC

connecting them.
Note that GC must be connected to guarantee that every

rumor from a correct process can reach all other correct
processes. Note that the faulty processes might fail from the
beginning. In fact, Property 1 is the weakest requirement that
the network topology must satisfy for gossiping to be solved.
In system S, there may be any number of faulty processes,
as long as Property 1 holds.

Communication among processes is performed by
exchanging messages among them, i.e., S is a message-
passing system. Thus, a process pi executes send(m, pj) to
sendmessagem to a process pj ∈ Ni. Every message contains
the identity of the sender, so the receiver knows which
process sent the message. Connections between processes
are bidirectional and reliable. The loss, change, duplication
or creation of a spurious message is impossible in a reliable

link [19]. Thus, if a process pi ∈ C executes send(m, pj) and
pj ∈ (Ni ∩ C), then m is received by pj once, and unaltered,
within a finite time. However, this finite time is unknown to
all processes in 5. Note that if pi or pj were faulty processes
and crashed while the transmission was being performed, m
might be delivered to pj or not, but always without change.
The system S is asynchronous in the sense that the

maximum time it takes for a message to be delivered after
it is sent is unbounded, though finite, and the speed at which
processes run is not necessarily the same. Even more, each
process has its own clock and these clocks need not be
synchronized.

The traditional gossip problem in asynchronous fault-
prone systems states that, initially, each process only knows
its own rumor and all correct processes eventually know at
least the rumors of every correct process. Furthermore, every
correct process eventually finishes its execution. A stronger
version of the problem, known as uniform gossip, is widely
studied. It adds the requirement that all the correct processes
eventually know the same set of rumors forever. Let us
formally define this problem.
Definition 1: (T-gossip) Initially each process pi knows

only its own value (called the initial rumor of pi) and the
following properties eventually hold:
• Validity: All rumors known by each process must be
initial rumors.

• Termination: Every process stops running permanently.
• Uniform Agreement: All correct processes know the
same set of rumors, and this set contains the initial
rumors of all correct processes.

In an asynchronous system where n is not known, like S,
a process can never be sure it has the rumors from every
process in the system, so it cannot terminate. Therefore,
traditional gossiping cannot be solved [21]. Then, we define a
relaxed version called uniform quiescent gossipwhere, unlike
traditional gossiping, processes are not required to eventually
stop running, but to stop sending messages.
Definition 2: (Q-gossip) Initially, each process knows

only its own initial rumor and the following properties
eventually hold:
• Validity: All rumors known by each process must be
initial rumors.

• Quiescence: Every process stops sending messages
permanently.

• Uniform Agreement: All correct processes know the
same set of rumors, and this set contains the initial
rumors of all correct processes.

III. GOSSIP PROTOCOLS
When a process wants to communicate something to another
process, it issues a SPREAD message. This is the typical
push action. In some cases, it can be useful to reply to
thesemessages to acknowledge receipt and update each other.
In this case, when one process communicates something to
another, the second responds with its own knowledge, issuing

4704 VOLUME 12, 2024

C. Barroso-Fernández et al.: Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks

an OK message. This follows the push-pull fashion. Both
communication schemes will be studied.

Eager protocols pass on what they know as soon as they
learn something new. This can result in a huge number of
packets being sent, probably with very little information
in each one. In the protocols proposed, a constant τ will
determine the minimum time between two SPREAD actions.
Note that the eager version corresponds to the case of τ=0.
Increasing the value of τ may reduce the number of packets
sent, but delaying SPREAD actions may have an impact on
the time needed to spread the rumors. Therefore, the practical
behavior of the protocols will depend on τ , which will be
analyzed through simulations.

All the protocols proposed in this work are event-driven,
i.e., they are asynchronous and only execute code when some
events occur; otherwise, they are in a waiting state, without
executing instructions, what reduces energy consumption.
The events that trigger actions in the protocols are the
receipt of a message and the need to initiate a SPREAD
action.

To deal with time, the system provides a function named
currentTime() to obtain the current time. It is assumed that
an action can be scheduled for an instant of time in which
a condition is fulfilled both on the state of the process and
on the current time. This is specified with when actions.
These when actions are executed atomically, i.e., for each
process, only one of these clauses may be running at any
instant of time, thus avoiding concurrency issues among
them.

A. BATTERY-EFFICIENT GOSSIP PROTOCOL (BE-GOSSIP)
To start with, we propose a simple protocol to solve Q-gossip
in system S called BE-gossip. As it will be seen, this protocol
becomes quiescent when the process assumes that all its
neighbors have the same knowledge on rumors as itself.
Being event-driven, it does not need to be permanently
executing instructions nor does it need to be activated
periodically. Therefore, it can be considered a battery-
efficient protocol.

Protocol 1 (BE-gossip) uses the array known_byi (for each
process pi), indexed by the identity of the processes in the
system, to store the knowledge on rumors assumed for each
of its neighbors and itself. This knowledge is a set of pairs
(r, j) where r is the initial rumor of process pj. Therefore,
each member of the array is of size O(|5|), and this array has
|Ni|+1 members. Thus, the total memory requirement of the
protocol, for process pi, isO(|5|×(|Ni|+1)). Two additional
variables are used. Variable Ni is used to store the set of
neighbors supposed to know less rumors than pi, which has
size O(|Ni|). Variable T is used to store the guard time until
which no SPREAD action should be executed. This variable
needs O(1) space.

The protocol works as follows. When it starts, process
pi only knows its own rumor ri (received as a parameter),
so known_byi[i] is set to the set which only contains the pair
(ri, i) (see Line 1). With respect to its neighbors, nothing is

known, as set in Line 2. Therefore, all neighbors are assumed
to know less rumors than pi. Note that pi knows its own
rumor, but its neighbors do not yet. Therefore, a SPREAD
action should be executed immediately (see Lines 3–4), i.e.,
the set of neighbors that know less rumors than pi (Ni) is Ni,
and T is the current time. Then, the event-driven task T1 is
started, which processes two types of events. Thus, the clause
of Lines 11–18 will be ready to be executed.

When a SPREAD action must be executed, one process
pj ∈ Ni is randomly chosen (Line 12), and the set of rumors
known by process pi but not assumed to be known by pj is
sent to this process pj in Line 14. Sending this difference
instead of the whole knowledge of process pi consumes
processing power, but reduces the size of the SPREAD
messages exchanged. Since communication links are reliable,
pi assumes that pj will eventually receive this message and
will store these rumors, so pj will eventually know all the
rumors pi currently knows (see Line 15). Therefore, pj is
removed from Ni (Line 16). Note that pi assumes pj is a
correct process. If pj is a faulty process, pi might send
messages to pj which would consume energy and bandwidth,
but would never reach process pj. Finally, the guard time until
which no other SPREAD action should be executed is set to
the current time plus τ in Line 17.

When a SPREAD message is received from some process
pk , it carries a set of pairs (r, j) where r is the initial rumor
of process pj. This set includes the rumors known by pk ,
but which pi may not know yet. Then, pi learns about these
rumors (Line 7), and it also records they are known by pk
(Line 8). Finally, the set of neighbors supposed to know less
rumors than pi is recomputed in Line 9. This may trigger the
event that starts the when action of Line 11.

Protocol 1 BE-gossip(ri)
Input: rumor of process pi
1: known_byi[i]← {(ri, i)}
2: known_byi[k]← ∅, ∀pk ∈ Ni
3: Ni← Ni
4: T ← currentTime()
5: start Task Push()

Task: Push()
6: when (SPREAD, rumors) received from pk do
7: known_byi[i]← known_byi[i] ∪ rumors
8: known_byi[k]← known_byi[k] ∪ rumors
9: Ni← {pj ∈ Ni : known_byi[j] ⊂ known_byi[i]}

10: end when
11: when currentTime() ≥ T ∧ Ni ̸= ∅ do
12: let pj be a random process in Ni
13: unknown← known_byi[i] \ known_byi[j]
14: send((SPREAD, unknown), pj)
15: known_byi[j]← known_byi[i]
16: Ni← Ni \ {pj}
17: T ← currentTime()+ τ

18: end when

VOLUME 12, 2024 4705

C. Barroso-Fernández et al.: Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks

Let us formally prove the correctness of this protocol.
To be correct, it must fulfill the three properties specified in
Definition 2: validity, quiescence and uniform agreement.
Lemma 1: For each process pi ∈ 5 running protocol

BE-gossip, known_byi contains only initial rumors of pro-
cesses in 5.
Proof: Using recursive induction, note that, initially, for

each pi ∈ 5, known_byi[i] is set to {(ri, i)} and known_byi[j]
is set to ∅ for all pj ∈ Ni (see Lines 1 and 2), so known_byi
contains only initial rumors. Subsequently, it is updated every
time a SPREAD message is sent or received. In the first
case (Lines 11–18), known_byi[j] is set to known_byi[i].
Assuming that known_byi[i] contains only initial rumors,
then known_byi[j] will also contain only initial rumors.
In the second case (Lines 6–10), the rumors that come
in the SPREAD message are added to known_byi[i] and
known_byi[k]. Since the links are reliable, these rumors must
have been sent by process pk in Line 14 and they are a
subset of the messages in known_byk [k]. Assuming that
known_byk [k] only contained initial rumors, then the new
values of known_byi[i] and known_byi[k] will also contain
only initial rumors.
Corollary 1: All rumors known by a process running

protocol BE-gossip must be initial rumors.
Proof: The rumors known by a process pi ∈ 5 are those

stored in known_byi[i]. Hence, from Lemma 1, all rumors
known by a process running protocol BE-gossip must be
initial rumors.
Corollary 2: For each process pi ∈ 5 running protocol

BE-gossip, there is a time after which no more rumors are
added to known_byi.
Proof: Follows directly from Lemma 1 and the fact that

the set of processes 5 (and hence the set of initial rumors) is
finite.
Lemma 2: For each process pi ∈ C running protocol

BE-gossip, there is a time t after which Ni becomes
permanently empty.
Proof: By the way of contradiction, note that, if there is

no time t after which Ni is permanently empty, then there
must be a process pj which never leaves Ni or which gets
into Ni an infinite number of times. Each time the event of
Line 11 occurs, one process leaves Ni in Line 16. If Ni is not
empty, every τ units of time, a process leaves Ni. Therefore,
if some process is never chosen in Line 12, then there must be
at least another process in Ni every time Line 12 is executed.
Hence, both cases reduce to the case where a process pj gets
into Ni an infinite number of times. However, if pj gets into
Ni, then known_byi[j] ⊂ known_byi[i] (see Line 9). Since
known_byi[j] is set to known_byi[i] in Line 15 each time it
is chosen in Line 12, an infinite number or rumors must be
added to known_byi[i]. However, that is not possible from
Corollary 2.
Lemma 3: Eventually, every process running protocol

BE-gossip stops sending messages permanently.
Proof: By the way of contradiction, assume that there is a

process pi which sends an infinite number of messages. Since

these messages are sent in Line 14, the condition of Line 11
must be fulfilled an infinite number of times. Therefore,
Ni ̸= ∅ an infinite number of times. However, that is not
possible from Lemma 2.

Let us show now two invariants satisfied by the when
clauses in protocol BE-gossip. These invariants are state-
ments that hold both before the execution of a clause starts,
and when it ends. Since the when clauses are executed
atomically, these invariants are protocol invariants.
Remark 1: Let pi ∈ 5. For all pj ∈ Ni, known_byi[j] ⊆

known_byi[i].
Proof: It is easy to see that known_byi[j] ⊆ known_byi[i]

in the beginning, since known_byi[j] is set to ∅ in Line 2.
Assume that the claim holds at the beginning of the execution
of a when clause. Then, each time new rumors are received
from a process pj ∈ Ni (when clause of Lines 6–10),
these rumors are included both in known_byi[i] (Line 7) and
known_byi[j] (Line 8), so the claim still holds at the end
of the clause. Considering the when clause of Lines 11–
18, known_byi[j] is modified in Line 15, where it is set to
known_byi[i], so again the claim still holds at the end this
when clause.
Remark 2: Let pi ∈ C. For all pj ∈ Ni, known_byi[j] ⊂

known_byi[i] ⇐⇒ pj ∈ Ni.
Proof: By induction, note that, in the beginning,

known_byi[i] = {(ri, i)} (Line 1), known_byi[k] = ∅,
for all pk ∈ Ni (Line 2), and Ni = Ni, so the claim
holds. Assume that the claim holds before a when clause is
executed. Then, when the clause of Lines 6–10 is executed,
Ni = {pj ∈ Ni : known_byi[j] ⊂ known_byi[i]} (Line 9),
so the claim holds at the end of that clause. In the case of the
clause of Lines 11–18, some process pj is removed from Ni
(Line 16) after known_byi[j] is set to known_byi[i], so again
the claim holds at the end of the clause.

To prove that protocol BE-gossip satisfies uniform agree-
ment, some preliminary results are necessary, which will be
shown by the following remarks.
Remark 3: For each correct process pi running protocol

BE-gossip, there is a time after which for all process pj ∈ Ni,
known_byi[i] = known_byi[j] permanently.
Proof: From Remark 1, for all pj ∈ Ni, known_byi[j] ⊆

known_byi[i]. Furthermore, from Remark nekb[j]->j-in-
N]nekb[j]->j-in-N]2, for all pj ∈ Ni, known_byi[j] ⊂
known_byi[i] ⇐⇒ pj ∈ Ni. However, from Lemma 2,
there is a time t after which Ni becomes permanently empty.
Hence, after time t , no process may be inNi, so for all process
pj ∈ Ni, known_byi[i] = known_byi[j] permanently.
Remark 4: Let pi be a correct process running protocol

BE-gossip. For all pj ∈ (Ni ∩ C), (rk , k) ∈ known_byi[j]
implies that either (rk , k) is already in known_byj[j] or it will
eventually be in known_byj[j].
Proof: Consider the first time (rk , k) is inserted into

known_byi[j]. That can happen either in Line 8 or in Line 15.
In the first case, that rumor came in a SPREAD message
received from pj (see Line 6), and that message was sent by
process pj in Line 14, what implies that (rk , k) was already

4706 VOLUME 12, 2024

C. Barroso-Fernández et al.: Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks

in known_byj[j] when that message was sent. In the second
case, pi previously sent a SPREAD message to pj in Line 14
which included (rk , k) and, since both pi and pj are correct and
the links are reliable, pj will eventually receive that message.
Then, it will be processed by the when clause of Lines 6–10.
Therefore, in Line 7, (rk , k) will be inserted in known_byj[j]
(if it was not yet). Hence, (rk , k) was already in known_byj[j]
or it would eventually be in known_byj[j].
Remark 5: Let pi be a correct process running protocol

BE-gossip. For all pj ∈ (Ni ∩ C), eventually, known_byi[i] =
known_byj[j] permanently.
Proof: Let pi be any correct process. From Remark 3,

eventually, for all process pj ∈ Ni, known_byi[i] =
known_byi[j] permanently. Furthermore, from Remark 4,
if pj ∈ (Ni ∩ C), then (rk , k) ∈ known_byi[j] implies that
either (rk , k) is already in known_byj[j] or it will eventually be
in known_byj[j]. Therefore, for all pj ∈ (Ni ∩ C), eventually,
known_byi[i] = known_byi[j] ⊆ known_byj[j]. Note that
the same argument can be used to pi with respect to pj,
so known_byj[j] = known_byj[i] ⊆ known_byi[i]. Hence,
eventually, known_byi[i] = known_byj[j] permanently.
Lemma 4: Eventually, all correct processes running pro-

tocol BE-gossip know the same set of rumors, and this set
contains the initial rumors of all correct processes.
Proof: Consider any process pi ∈ C. Initially, known_byi[i]

contains the initial rumor of pi (see Line 1). Since
known_byi[i] only grows, known_byi[i] contains the initial
rumor of pi permanently. Besides, fromRemark 5, eventually,
for all process pj ∈ (Ni ∩ C), known_byi[i] = known_byj[j].
Therefore, known_byj[j] eventually contains the initial rumor
of pi permanently. Furthermore, since there is a path from
pi to every correct process in 5, eventually, for all pk ∈
C, known_byi[i] = known_byk [k] and known_byk [k] will
contain the initial rumor of pi. Since this argument can be
extended from pi to every other correct process, it can be
concluded that, eventually, all correct processes know the
same set of rumors, and this set contains the initial rumors
of all correct processes.
Theorem 1: Protocol 1 (BE-gossip) solves Q-gossip.
Proof: Direct from Corollary 1 (validity) and Lemmas 3

(quiescence) and 4 (uniform agreement).
Once correctness has been proved, let us focus on the

performance of protocol BE-gossip. Since the system is
asynchronous, time limits cannot be computed. Therefore,
wewill only consider the number ofmessages and the number
of rumors the protocol exchanges to complete its task.
Theorem 2: The number of rumors exchanged until quies-

cence by protocol BE-gossip isO(|5|×|L|) and�(|C|×|(L\
LF)|).
Proof: Recall that each correct process pi stores the rumors

known by itself and its neighbors in variable known_byi and
only the rumors in known_byi[i] \ known_byi[j] are sent
from pi to pj (see Line 14). Since each time a SPREAD
message is sent from pi to pj, known_byi[j] is set to
known_byi[i] (see Line 15), then each rumor is sent from pi
to pj at most once, for each pair of processes pi, pj ∈ 5.

Furthermore, from Theorem 1, protocol BE-gossip solves
Q-gossip, so known_byi[i] eventually contains the rumors of
every correct process and, maybe, some of the rumors of
the faulty processes. If no process crashes, then each rumor
traverses each link in L at most once in each direction.
Note that it is possible that a process pi sends a rumor r
to pj and pj sends rumor r to pi before it receives r from
pi. Otherwise, if pj has received r from pi, then it will not
send r back to pi, since it will already be in known_byj[i].
Thus, at most 2 × |5| × |L| rumors are sent, and at least
|5| × |L| rumors are sent. In fact, the first time a process
pi sends its own rumor ri, e.g. to some other process pj, it is
impossible that pj can be sending ri to pi, because it does not
know it yet. Then, the maximum number of rumors sent is
2 × |5| × |L| − |5|. Yet, it is O(|5| × |L|). In case there
are faulty processes, then the number of rumors exchanged is
decreased by the number of rumors the faulty processes do
not send. If every faulty process crashes before sending any
message, then the number of rumors exchanged would be at
least |C| × |(L \ LF)| since each rumor would be sent only
once through links shared by at least one correct process and
only correct processes would send messages. Thus, it can be
concluded that the number of rumors sent isO(|5|×|L|) and
�(|C| × |(L \ LF)|).
The number of messages needed by the protocol to become

quiescent depends on the topology of the network and the
instants of time in which the different processes send the
rumors they know, as well as the target processes they
choose. However, a coarse worst case bound on the number
of messages can be considered to be the number of rumors
exchanged, since each message carries at least one rumor.
Therefore, the following corollary can be stated.
Corollary 3: The maximum number of messages

exchanged until quiescence by protocol BE-gossip is
O(|5| × |L|).

Since the system is asynchronous, it is possible to build
an scenario where messages are sent in an order such that
each message is sent at the right time to collect as much
information as possible. Thus, the number of messages
needed in the best case is linear in the number of nodes and
edges in the system, as proved in the following theorem.
Theorem 3: Theminimumnumber ofmessages exchanged

until quiescence by protocol BE-gossip is�(|C|+|(L\LF)|).
Proof: In the best case, all the faulty processes crash before

sending any messages, since in this way the information to
be disseminated is minimal. Since GC is connected (from
Property 1), there is a spanning tree that connects the correct
processes. Hence, in the best case, with |C| − 1 messages,
it is possible to collect all the rumors and carry them to
the root of that spanning tree. Then, with |C| − 1 messages
containing all the rumors, it would be possible to spread
this full knowledge to every correct process. However, the
protocol must send, at least, one message with all the rumors
through every link in L \ LF . Hence, |(L \ LF)| will be
required. Thus, the total number of messages sent in the best
case is �(|C| + |(L \ LF)|).

VOLUME 12, 2024 4707

C. Barroso-Fernández et al.: Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks

B. MEMORY-OPTIMAL GOSSIP PROTOCOL (MO-GOSSIP)
Protocol 2 (MO-gossip) solves Q-gossip in system S. The
main feature of this protocol is that, per process, it only
needs linear memory on the size of the system, i.e. O(|5|),
which is the minimum required to be able to store the rumors
from every process in the system. However, this has some
drawbacks that need to be mitigated as it will be explained.
Since MO-gossip is event-driven, it keeps some advantages
of the previous protocol. Let us start by explaining its main
features.

Each process pi uses an array named knowni of size |5|
to store the rumors it knows. Additionally, it uses an array
named byi of size |Ni| + 1 to annotate how many of these
rumors each of its neighbors and itself know, such that, for
all process pj ∈ Ni, byi[j] ≤ byi[i]. For each process pj ∈ Ni,
process pi knows that pj already knows the rumors knowni[0],
. . . , knowni[byi[j]−1], i.e., pj knows the first byi[j] rumors in
knowni. For the sake of simplicity, in an abuse of notation,
knowni[x..y] is used to denote the set which contains the
elements knowni[x], knowni[x + 1], . . . , knowni[y] (see, for
example, Line 14). Likewise, knowni is sometimes used as
the set which contains the elements knowni[0], knowni[1], . . . ,
knowni[byi[i]] (see, for example, Line 9).
To keep the knowledge about the rumors known by each

of its neighbors up to date while using linear memory to store
these rumors, a push-pull model is used for communications.
Thus, when pi receives a SPREAD message from some
process pk ∈ Ni, pi responds by sending an OK message
to pk . This OK message serves two purposes: it keeps pk
up to date with pi, and it tells pk that pi is still active (i.e.,
it is not crashed). Thus, even if pi and pk are already up
to date with each other, an OK message is sent to pk with
an empty set of rumors. Each process pi uses variable Pi
to store the set of processes from which an OK message is
pending, and variable Si to store the set of processes to which
a SPREAD message must eventually be sent. Thus, process
pi will choose the candidate pj to which to send a SPREAD
message among the processes in Si (but never one inPi), since
it would be of no use if pj is crashed. Once the OK message
from a process in Pi is received, it can be considered again
as a candidate to which to send a SPREAD message (moving
it to Si).
As in the previous protocol, the when clauses are executed

atomically and there is a minimum lapse of time τ between
two SPREAD actions (see Lines 6, 31 and 38), which allows
to reduce the number of messages exchanged. Additionally,
when process pi sends a SPREAD message to pk , pk
is included in Pi (Line 36), so pi will not consider pk
as a candidate to be sent a new SPREAD message (see
Lines 17 and 29) until pi receives an OK message from pk
(Lines 19 and 20).

When a SPREAD message is received from pk , the rumors
communicated by pk which are not already known to pi are
added to knowni (Lines 8–13). Then, in order to keep the
knowledge on rumors up to date between pi and pk , the
rumors known by pi but not already considered to be known

by pk are sent to pk in an OK message (Lines 14–15) and,
then, they are considered known by pk (Line 16).
When an OK message is received from pk (Line 19),

the rumors sent by pk which are not already known by pi
are added to knowni (Lines 21–25). Note that some of the
rumors in knowni[byi[k]..byi[i] − 1] might be also known
by pk (at least those in the message being processed).
Unfortunately, due to the memory management scheme used
by the application, no gaps may exist for any process in
the array that contains the rumors, so it is only possible to
increment byi[k] while the rumor in knowni[byi[k]] is one of
those in the OK message (Lines 26–28).
To be correct, protocol MO-gossip must fulfill the three

properties specified in Definition 2: validity, quiescence and
uniform agreement. Its correctness will be proved below.
Lemma 5: For each process pi ∈ 5 running protocol

MO-gossip, knowni contains only initial rumors of processes
in 5.
Proof: For all process pi ∈ 5, initially, knowni contains

the initial rumor of pi. Hence, it only contains initial rumors.
By induction, assume that, for all process pi ∈ 5, knowni
only contains initial rumors at some instant of time. Then,
when it is updated in Lines 9–13 or Lines 21–25, the new
values added are those sent at Lines 15 or 34 (recall that links
are reliable in System S). These values are rumors previously
stored in knownj for some pj ∈ 5 (see Lines 14–15 and
33–34) which, from the induction hipothesis, only contain
initial rumors. Therefore, knowni still contains only initial
rumors after each update.
Corollary 4: All rumors known by a process running

protocol MO-gossip must be initial rumors.
Proof: The rumors known by a process pi ∈ 5 are those

stored in knowni. Hence, fromLemma 5, all rumors known by
a process running protocol MO-gossip must be initial rumors.
Corollary 5: For each process pi ∈ 5 running protocol

MO-gossip, there is a time after which no more rumors are
added to knowni.
Proof: Follows directly from Lemma 5 and the fact that 5

is finite (as well as the set of initial rumors).
Lemma 6: For each process pi ∈ C running protocol

MO-gossip, there is a time t after which Si becomes
permanently empty.
Proof: By the way of contradiction, assume that there is

no time t after which Si becomes permanently empty. Then,
there must be a process pj which never leaves Si or which
gets into Si an infinite number of times. Each time the event
of Line 31 occurs, one process pk leaves Si (Line 35), i.e.
every τ units of time, a process leaves Si. Therefore, if some
process is never chosen in Line 32, then there must be at
least another process in Si every time Line 32 is executed.
Therefore, both cases reduce to the case where a process pj
gets into Si an infinite number of times. However, if pj gets
into Si, then byi[j] < byi[i] (see Lines 17 and 29). Since byi[j]
is set to byi[i] in Line 37 each time it is chosen in Line 32
and it is never decremented, then byi[i] must grow infinitely.
However, byi[i] is only incremented when new rumors are

4708 VOLUME 12, 2024

C. Barroso-Fernández et al.: Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks

Protocol 2 MO-gossip(ri)
Input: rumor of process pi
1: knowni[0]← (ri, i)
2: byi[i]← 1
3: byi[k]← 0, ∀pk ∈ Ni
4: Si← Ni
5: Pi← ∅
6: T ← currentTime()
7: start Task Push-Pull()

Task: Push-Pull()
8: when (SPREAD, rumors) received from pk do
9: updates← (rumors \ knowni)
10: for all (rq, q) ∈ updates do
11: knowni[byi[i]]← (rq, q)
12: byi[i]← byi[i]+ 1
13: end for
14: unknown← knowni[byi[k]..byi[i]− 1] \ rumors
15: send((OK , unknown), pk)
16: byi[k]← byi[i]
17: Si← {pj ∈ Ni : byi[j] < byi[i] ∧ pj /∈ Pi)}
18: end when
19: when (OK , rumors) received from pk do
20: Pi← Pi \ {pk}
21: updates← (rumors \ knowni)
22: for all (rq, q) ∈ updates do
23: knowni[byi[i]]← (rq, q)
24: byi[i]← byi[i]+ 1
25: end for
26: while (byi[k] < byi[i] ∧ knowni[byi[k]] ∈ rumors) do

27: byi[k]← byi[k]+ 1
28: end while
29: Si← {pj ∈ Ni : byi[j] < byi[i] ∧ pj /∈ Pi}
30: end when
31: when currentTime() ≥ T ∧ Si ̸= ∅ do
32: let pk be a random process in Si
33: unknown← knowni[byi[k]..byi[i]− 1]
34: send((SPREAD, unknown), pk)
35: Si← Si \ {pk}
36: Pi← Pi ∪ {pk}
37: byi[k]← byi[i]
38: T ← currentTime()+ τ

39: end when

added to knowni (see Lines 9–13 and Lines 21–25) and, from
Corollary 5, there is a time after which no more rumors are
added to knowni.
Lemma 7: Eventually, every process running protocol

MO-gossip stops sending messages permanently.
Proof: By the way of contradiction, assume that there is

a process pi which sends an infinite number of messages.
Since OK messages are sent in Line 15 as a consequence of
the reception of a SPREAD message (see Line 8), an infinite

number of SPREAD messages must be sent. Since these
messages are sent in Line 34, the condition of Line 31 must
be fulfilled an infinite number of times. Therefore, Si ̸= ∅ an
infinite number of times. However, that is not possible from
Lemma 6.

The following remark states an invariant satisfied by the
when clauses in protocol MO-gossip. This invariant holds
both before the execution of a when clause starts, and when
it ends. Since these clauses are executed atomically, these
invariants are protocol invariants.
Remark 6: For each correct process pi running protocol

MO-gossip, for all pj ∈ Ni, byi[j] < byi[i] implies that either
pj ∈ Si or pj ∈ Pi.
Proof: Note that byi[i] is set to 1 in Line 2, while byi[j] is

set to 0 in Line 3 for all pj ∈ Ni. Then, in Line 4 Si is set to
Ni, and Pi is set to ∅ in Line 5. Hence, the claim holds in the
beginning. It is easy to see that Lines 17 and 29 guarantee
that the claim holds when the execution of the clauses of
Lines 8–18 and Lines 19–30 end their execution. In the case
of the clause of Lines 31–39, since the values stored in byi are
never decremented and byi[i] is not increased in this clause,
if a process pj ∈ Ni was not in Si when the clause started
executing, then byi[j] >= byi[i] after the clause ends its
execution. Therefore, if the claim is satisfied before the clause
is executed, then it must hold after it is executed.

For the sake of clarity, to prove uniform agreement, some
preliminary results will be presented below in an incremental
way.
Remark 7: For each correct process pi running protocol

MO-gossip, there is a time after which, for all pj ∈ Ni,
byi[j] = byi[i] forever or pj ∈ Pi permanently.
Proof: Note that the values stored in byi are never

decremented, so they can only grow. Furthermore, every time
byi[j] is increased (for any pi ∈ Ni), it never exceeds the value
of byi[i] (See Line 16, Lines 26–28 and Line 37). Therefore,
byi[j] ≤ byi[i]. From Lemma 6, there is a time t after which
Si is permanently empty. Recall that, from Remark 6, for
all pj ∈ Ni, byi[j] < byi[i] implies that either pj ∈ Si or
pj ∈ Pi. Therefore, if Si is permanently empty after time t ,
then, after time t , for all pj ∈ Ni, pj ∈ Pi permanently or
byi[j] = byi[i].
Remark 8: Let pi be a correct process running protocol

MO-gossip. If pj ∈ Pi permanently, then pj ∈ F), i.e. pj /∈ C).
Proof: By the way of contradiction, assume that pj ∈ C.

Note that pj is added toPi in Line 36 after a SPREADmessage
is sent (by pi) to pj. Since the links are reliable and both
pi, pj ∈ C from the initial assumption, then pj will eventually
receive that message and, hence, it will execute Line 15,
where it will send an OK message back to pi. Again, since
links are reliable both processes are correct, pi will eventually
receive that OK message. Then, pi will execute Line 20, and
pj will be removed from Pi. Therefore, pj cannot be in Pi
permanently unless pj is not correct.
Remark 9: For all pi ∈ C and pj ∈ (Ni ∩ C) running

protocol MO-gossip, there is a time after which byi[i] =
byi[j] permanently.

VOLUME 12, 2024 4709

C. Barroso-Fernández et al.: Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks

Proof: From Remark 7, there is a time after which, for all
pj ∈ Ni, byi[j] = byi[i] forever or pj ∈ Pi permanently.
Furthermore, from Remark 8, if pj ∈ Pi permanently, then
pj /∈ C. Therefore, if pi and pj are both correct, then there is a
time after which byi[i] = byi[j] permanently.
Remark 10: Let pi be a correct process running protocol

MO-gossip. For all pk ∈ (Ni∩C), (rj, j) ∈ knowni[0..byi[k]−
1] implies that either (rj, j) is already in knownk or it will
eventually be in knownk .
Proof: A rumor is included in knowni[0..byi[k] − 1] by

increasing the value of byi[k]. Consider the moment when
(rj, j) is added to knowni[0..byi[k]− 1]. There are three cases
in which this can happen.

First, in Line 16, when an OK message is sent to pk
(Line 15) with the rumors in knowni[byi[k]..byi[i] − 1] \
rumors (see Line 14) after a SPREAD message has been
received from pk (Lines 8–18). If (rj, j) was in rumors, then
it must have been in knownk , since these rumors must have
been sent in Line 34 where a subset of knownk was sent by
pk to pi (recall that links are reliable, so messages cannot be
lost nor altered in transmission). If it was not in rumors, then
it must have been in knowni[byi[k]..byi[i] − 1]. Then, since
it is sent to pk in the OK message (Line 15) and the links are
reliable, this message will be eventually received by pk and
processed in Lines 8–18, where (rj, j) will be added to knownk
in Lines 10–13, in case it was not already in knownk .
Second, in Line 27, when an OK message from pk is

being processed. Notice that, in this case, (rj, j) must come
in rumors (see Lines 26–28). Hence, since links are reliable,
this rumor was already in knownk when the OK message was
sent by process pk in Line 15.

Finally, the third case corresponds to Line 37. In this case,
all the rumors in knowni[byi[k]..byi[i] − 1], including (rj, j),
are sent to pj in a SPREAD message which will be received
by pk unaltered (since the links are reliable) and processed
in Lines 10–13, where they will be stored in knownk . Hence,
if (rj, j) was not already in knownk , it will eventually be.
Remark 11: For each correct process running protocol

MO-gossip, eventually, for all pk ∈ (Ni ∩ C), knowni =
knownk permanently.
Proof: FromRemark 10, (rj, j) ∈ knowni implies that either

(rj, j) is already in knownk or it will eventually be in knownk .
Therefore, for all pk ∈ (Ni ∩ C), eventually, knowni ⊆
knownk . Since the same argument can be applied to pi with
respect to pk , eventually, knownk ⊆ knowni. Furthermore,
from Remark 9, eventually, for all process pk ∈ (Ni ∩ C),
byi[i] = byi[k] permanently, i.e., knowni[0..byi[k] − 1] =
knowni[0..byi[i]−1] = knowni. Hence, eventually, knowni =
knownk permanently.
Lemma 8: Eventually, all correct processes running pro-

tocol MO-gossip know the same set of rumors, and this set
contains the initial rumors of all correct processes.
Proof: Consider any pair of neighbors pi, pj ∈ C. From

Remark 11, eventually, knowni = knownj permanently.
Note that knowni initially contains (ri, i) and knownj initially
contains (rj, j) (see Lines 1–2). Furthermore, they only grow

(see Lines 11–12 and Lines 23–24). Therefore, eventually,
(ri, i) and (rj, j) belong to both knowni and knownj. From
Property 1, there is a path between every two correct
processes in GC , so this argument can be extended to
cover every process in C. Hence, it can be concluded
that, eventually, all correct processes know the same set of
rumors and this set contains the initial rumors of all correct
processes.
Theorem 4: Protocol 2 (MO-gossip) solves Q-gossip.
Proof: Direct from Corollary 4, Lemma 7 and Lemma 8.
Since there is a trade-off between network traffic andmem-

ory space, protocol MO-gossip requires more information
to be exchanged than protocol BE-gossip. Recall that, since
the system is asynchronous, time analysis does not apply.
Thus, only the number of rumors and messages exchanged
is considered. There are two types of messages: SPREAD
and OK . SPREAD messages always carry at least one rumor.
Note that Si only contains a process pj if byi[j] < byi[i]
(see Lines 17, 29 and 32–37). However, OK messages might
not carry any rumor since, as soon as a SPREAD message
is received, the corresponding OK message is sent back (see
Lines 14–15) and there might not be any novelties to notify.
Theorem 5: The number of rumors exchanged until

quiescence by protocol MO-gossip is O(|5| × |L|) and
�(|C| × |(L \ LF)|).
Proof: Note that each rumor is sent through a link at

most once in each direction. This is so because each time a
SPREAD message is sent, its rumors are recorded as already
known by the recipient (see Lines 32–37) and, in the case of
an OK message, its rumors are also recorded (see Lines 14–
16). Hence, in the worst case, each rumor can traverse each
link in two concurrent SPREAD messages. However, it is not
possible to have, in the same link, a SPREADmessage in one
direction and a concurrentOK message in the other direction,
since SPREAD messages are not sent to processes from
which an OK message is pending (see Lines 32–37). When
the OK message from a process is received, it is removed
from Pi (Line 20). Finally, each time Si is recomputed, the
processes in Pi are excluded (see Lines 17 and 29). Hence,
the maximum number of rumors sent is 2× |5| × |L| − |5|
(recall that the first time a process pi sends its own rumor ri,
e.g. to some other process pj, it is impossible that pj can be
sending ri to pi, because it does not know it yet). Therefore,
the number of rumors sent isO(|5|×|L|). Themost favorable
is that in which all the faulty processes crash before sending
anymessage, and each rumor is sent only once per link shared
by at least one correct process. Therefore, the number of
rumors sent is at least |C|×|(L\LF)|, i.e.,�(|C|×|(L\LF)|).

The number of rumors exchanged until quiescence by
protocolsMO-gossip and BE-gossip are analogous. However,
the number of messages is likely to increase. A coarse worst
case bound on the number of messages can be considered
to be the number of rumors exchanged, since each SPREAD
message carries at least one rumor, plus the number of OK
messages sent, since these OK messages might not carry any
rumor.

4710 VOLUME 12, 2024

C. Barroso-Fernández et al.: Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks

Theorem 6: Themaximumnumber ofmessages exchanged
until quiescence by protocol MO-gossip is O(|5| × |L|).
Proof: Recall that the maximum number of rumors sent by

the protocol is 2× |5| × |L| − |5|. In the worst case, every
SPREAD message carries only one rumor, while every OK
message carries no rumor. Since each SPREAD message is
followed by an OK message, then the maximum number of
messages would be 2(2×|5|× |L|− |5|), i.e.,O(|5|× |L|).

Note that the number of potential messages doubles with
respect to protocol BE-gossip, but it remains in the same
order. To find a lower bound on the number of messages
exchanged in the best case, let us take advantage of the fact
that the system is asynchronous, so the most advantageous
sequence of messages can be selected.
Theorem 7: Theminimumnumber ofmessages exchanged

until quiescence by protocolMO-gossip is�(2(|C|−1)+|(L\
LF)| − 1+ |LC |).
Proof: Consider that all the faulty processes crash before

sending any messages, since in this way the information to
be disseminated is minimal. Since GC is connected (from
Property 1), there is a spanning tree that connects the correct
processes. Therefore, it is possible to collect all the rumors
and carry them to the root of that spanning tree with |C| −
1 SPREAD messages. Upon reception of each SPREAD
message, an OK message is immediately sent back. Thus,
|C|−1 OK messages are sent back with partial knowledge of
rumors, what makes a total of 2×(|C|−1) messages. At most,
one of the OK messages sent will give complete information
on rumors. Therefore, |(L\LF)|−1 SPREADmessages will
be sent. Consequently, |LC | OK messages will be sent back
(without information on rumors). Thus the minimum number
of messages is �(2(|C| − 1)+ |(L \ LF)| − 1+ |LC |).

Comparing the minimum number of messages needed by
both protocols, it is easy to see that protocol MO-gossip
requires almost double the messages needed by protocol
BE-gossip. This shows the trade-off between memory
space used and messages exchanged. However, the memory
requirements are reduced from quadratic to linear, while the
number of rumors stays the same and the number of messages
only doubles, so it’s worth it.

IV. EXPERIMENTAL EVALUATION
Despite the theoretical interest in the upper and lower limits
of the number of packets sent, practical performance is
of great importance to evaluate the feasibility of protocol
deployments in real scenarios. In fact, in asynchronous sys-
tems, where time limits cannot be determined theoretically,
performance can only be evaluated in an appropriate way
through experiments. This section compares the practical
performance of both proposed protocols in a particular
simulated scenario.

The scenario we consider is a network with a particular
topology. It is well known that network topology (which,
incidentally, can change when node failures occur) affects the
actual spread of rumors, even if exactly the same protocol
is used. In order to more realistically capture the structure

of a typical sensor network, we run our protocols on a
small network whose degree distribution is that of a random
graph [32], [33], [34] that is ‘‘spatialized’’ to ensure that
nodes connect to nodes that are spatially (or geographically)
neighbors. We build the network by generating first a
classical random graph (with the desired number of nodes and
undirected edges) [35], then rewiring the nodes in such a way
that the length of the new edges is as short as possible, and
finally spliting each undirected edge joining two nodes, say
node A and node B, into two directed edges, the edge going
from A to B and the edge going from B to A. The second step,
the rewiring of nodes, is carried out following a procedure
similar to the one presented in [36], with the only difference
that the selected pair of edges is always that whose total
length, geographically speaking, is the smallest. Our final,
random spatialized network has 100 nodes and 600 directed
edges (or 300 bidirectional edges).

On this network, we run our two protocols with different
parameter values. Note that, depending on parameter values
(such as the data rate at which nodes can transmit information
or the time lapse between two SPREAD messages), the
performance of the protocols may change significantly, even
if they run on exactly the same network.

For simplicity, all network links are set to have the
same data rate. In the simulations, four different data rates
have been used: 10Mbps, 1Mbps, 100Kbps, and 10Kbps.
We have used these low-medium rates because they are very
common in many IoT networks with battery and memory
constraints [37], [38], [39], [40], [41], [42]. The transmission
delays of the edges are considered negligible, since we asume
our sensor network to be spread in a small, geographical area.
In addition, to avoid a systolic behavior, the times at which
each process (node) sends its first SPREAD packet follow a
Gaussian distribution with mean µ = 100µs and standard
deviation σ = 20µs. As it is usual in current gossip protocols,
we also set a waiting time between sending two consecutive
SPREAD messages, but, since we focus on asynchronous
systems, each node has a different waiting time, drawn from
another Gaussian distribution with meanµ = τ (where τ will
change in our simulations from τ = 1µs to τ = 108µs) and
standard deviation σ = 0.2τ . For simplicity, we consider that
the capacity of each link buffer is sufficient to avoid packet
loss. All rumors, again for simplicity, have the same size
(8 bytes). The size of the packets’ header, given that protocol
MO-gossip needs to accomodate theOK , is different for each
protocol: BE-gossip header has 8 bytes, while MO-gossip
header has 12 bytes.

Regarding node failures, only two cases are considered: a
first case where only a few nodes fail and a second case where
a large number of nodes fail. In both cases, nodes are allowed
to fail, following a uniform distribution, along a period of
time ranging from 0µs to 104µs. When a node fails, we make
sure that the subnetwork induced by the correct nodes remains
connected, so that Property 1 always holds.

The simulations have been carried out in a custom
simulator [43], [44] written in Fortran. To validate the

VOLUME 12, 2024 4711

C. Barroso-Fernández et al.: Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks

FIGURE 1. Number of packets sent as a function of τ , for each protocol and data rate. Left panel: Low number of faulty processes (4 out of the
initial 100). Right panel: High number of faulty processes (44 out of the initial 100).

accuracy of this simulator, some of the experiments have
also been carried out in a customized version of the discrete
event simulator Peersim [45], [46], which is much slower, but
guarantees that the results obtained are correct.

Since the simulations have a stochastic component,
1000 simulations have been carried out for each configuration
(different data rate and τ value), and the results shown in the
graphs correspond to the averages obtained. Deviations from
the average were small, so they are not shown in the graphs
for clarity. The results we focus on are the number of packets
sent and the time required to reach quiescence.

A. PACKETS VS. τ

Figure 1 shows the total number of packets transmitted by
both protocols as a function of τ , for the four data rates
considered. On the left, the number of faulty nodes is 4, while,
on the right, the number of faulty nodes is 44.

For high values of τ , the number of packets sent is almost
the same for each protocol, regardless of the data rate.
This is due to the fact that, when τ is high enough, every
node receives the messages of its neighbors before it sends
its next packet. Hence, for large values of τ , the system
becomes systolic and the information collected by each node
before sending the next SPREAD message does not depend
noticeably on the value of τ , nor on the data rate.

Comparing the results for 4 and 44 faulty nodes for high
values of τ , it is easy to see that, while in the case of 4 faulty
nodes, Protocol BE-gossip sends fewer packets than Protocol
MO-gossip, in the case of 44 faulty nodes, the situation is
reversed andMO-gossip sends fewer packets than BE-gossip.
In fact, BE-gossip sends slightly more messages when there
are 44 faulty nodes than when there are only 4, even though
faulty nodes send less. The reason is that the correct nodes
continue to send messages to the faulty nodes, which do not
cooperate in spreading rumors, and the correct nodes must
insist on sending rumors to other nodes. Since MO-gossip
follows the push-pull scheme, one node can choose a crashed
neighbor only once as the recipient of a SPREAD message
which results in reducing the number of sent messages

to nodes that crashed. Therefore, it is more effective than
BE-gossip and sends around one third less messages when
44 nodes crash than when only 4 nodes crash.

In the case of MO-gossip, for each data rate, there is a
value of τ below which the number of packets sent does not
change appreciably. Recall that, if a process sends a SPREAD
message to one of its neighbors, it will not send another until
it receives an OK message from that neighbor. Thus, if τ is
smaller than the round trip time, the speed at which SPREAD
messages are sent is determined by the data rate, and not by
the value of τ . Since BE-gossip does not have any contention
mechanism that prevents it from generating more and more
packets, the number of packets it sends always increases as τ

decreases, although not always in the same proportion.
Comparing the results for 4 and 44 faulty nodes for low

values of τ , in the case of MO-gossip, there is a reduction
on the number of packets sent in the case of 44 faulty
nodes, which is larger for smaller data rates, and almost
unnoticeable for 10Mbps. Recall that faulty nodes crash
following a uniform distribution during the first 104µs. Note
also that quiescence time for the case of 10Mbps, as shown
in Figure 2, when τ < 102µs is much smaller than 104.
Therefore, only a few nodes crash before quiescence, so the
behavior of MO-gossip is almost the same as in the case of
only 4 faulty nodes. As the data rates decrease, the time until
quiescence increases (as shown in Figure 2) and the number
of nodes that crash before quiescence increases, what leads
to a reduction on the number of packets sent, as shown in
Figure 1, right panel.

For intermediate values of τ (between push-pull contention
and systolic behavior), MO-gossip sends more packets
when the value of τ decreases (Figure 1) while time until
quiescence decreases (Figure 2). This fact clearly illustrates
the trade-off between packets sent and quiescence time,
which is best shown in Figure 3.

B. TIME VS. τ

Figure 2 shows how the time to quiescence varies as a
function of τ , for the four data rates considered. Again, on the

4712 VOLUME 12, 2024

C. Barroso-Fernández et al.: Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks

FIGURE 2. Quiescence time as a function of τ , for each protocol and data rate. Left panel: Low number of faulty processes (4 out of the initial
100). Right panel: High number of faulty processes (44 out of the initial 100).

FIGURE 3. Number of packets sent as a function of Quiescence time, for each protocol and data rate. Left panel: Low number of faulty
processes (4 out of the initial 100). Right panel: High number of faulty processes (44 out of the initial 100).

left panel, the number of faulty nodes is 4, while, on the right
panel, the number of faulty nodes is 44.

The most notable difference between Figure 2 and Figure 1
is that, while for small values of τ there is no clear
dependence between the number of packets sent and the data
rate, the time to quiescence clearly depends inversely on the
data rate.

For cases in which only a few nodes fail (left panel),
MO-gossip is better than BE-gossip for most values of τ .
For all data rates, the minimum time is always reached by
BE-gossip. However, that minimum is just slightly better than
the time reached byMO-gossip and the value of τ at which the
minimum is located cannot be easily computed analytically,
since it depends not only on the data rate selected but also on
the very topology of the network.

For cases in which a lot of nodes fail (right panel), both
protocols behave similarly to the case where only a few nodes
fail, but now protocol MO-gossip improves the performance
of protocol BE-gossip only for large values of τ , and its
performance is slightly worse both for small and moderate
values of τ . We must remark, however, that the optimum time
of protocol BE-gossip is just slightly better than the time of
protocol MO-gossip corresponding to the smallest value of τ ,
(τ = 1µs).

Both panels show, however, that the differences in time
between both protocols are not very significant, with the
exception of the difference when τ is large (and also
quiescence times), where MO-gossip is clearly better than
BE-gossip.

C. PACKETS VS. TIME
Finally, the trade-off between quiescence time and packets
sent is shown in Figure 3 for the case in which the number
of faulty nodes is low (left panel) and for the case of a
large number of faulty nodes (right panel). The dots in the
curves are ordered according to the value of τ to which they
correspond.

In the case of BE-gossip, the curves have a very similar
shape both in the case of few faulty nodes and in the
case of many faulty nodes, although in the second case the
minimum time until quiescence is obtained with a slightly
larger number of packets. It is noteworthy that, as the
value of τ decreases, the time also decreases (while the
number of packets increases), until a point where the trend
changes and the time increases (while the number of packets
continues to grow). As discussed above, it is not easy to
analytically determine the value of τ for which the time is
optimal.

VOLUME 12, 2024 4713

C. Barroso-Fernández et al.: Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks

The most striking thing about the curves for Protocol
MO-gossip is that they are much shorter than those cor-
responding to BE-gossip. This is because, below a certain
value of τ , both the time and the number of packets remain
almost constant. Therefore, there are many coincident points
on those curves. Small variations are only observed in the case
of many faulty nodes for the lowest data rates.

The most notable result that can be obtained from
these experiments is that Protocol MO-gossip achieves, for
arbitrarily small values of τ , quiescence times comparable
to the best of BE-gossip, but with a number of packets
that is similar when the number of faulty devices is low
and noticeably lower when the number of faulty devices is
high. Thus, MO-gossip shows that memory optimization can
be achieved without losing performance and demonstrating
remarkable resilience: when there are many faulty devices in
the network, not only is its performance not degraded but it
even improves in some cases.

V. CONCLUSION
In a network of small IoT devices that have limited memory
and battery capacity, traditional gossip protocols are unable
to efficiently disseminate information, specially when the
number of devices or the number of required messages is
large.

Gossip protocols for IoT networks are found in the
literature where devices are allowed to fail and operate
asynchronously. However, this paper is the first to also
consider IoT devices with limited battery and memory.
Two gossip-based protocols have been proposed and their
correctness has been formally proved. They solve the uniform
quiescent gossip problem when the correct devices form a
connected network.

Protocol BE-gossip allows to reduce battery consumption
following a push scheme. Like traditional versions, it requires
quadratic memory in the devices. Protocol MO-gossip fol-
lows the push-pull scheme. Thus, it only needs linear memory
to store and manage rumors, making it a memory-optimal
protocol. MO-gossip is also capable of significantly reducing
the number of messages sent (compared to BE-gossip),
while yielding similar quiescence times, independently of the
number of faulty processes.

It is noteworthy that MO-gossip shows that memory
optimization is not incompatible with achieving good per-
formance even in the case of device failures. In fact, failure
detection can reduce both the number of messages sent
and quiescence time. Hence, MO-gossip presents very good
resilience, which is a notable feature in current IoT networks.
Finally, the performance of MO-gossip does not depend
on the value of the parameter τ , provided that its value is
arbitrarily small enough.

REFERENCES
[1] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky,

‘‘Bimodal multicast,’’ ACMTrans. Comput. Syst., vol. 17, no. 2, pp. 41–88,
May 1999.

[2] A. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson, ‘‘Epidemic
algorithms for replicated database maintenance,’’ in Proc. 6th Annu. ACM
Symp. Princ. Distrib. Comput. (PODC). NewYork, NY, USA: ACM, 1987,
pp. 1–12, doi: 10.1145/41840.41841.

[3] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and
A.-M. Kermarrec, ‘‘Lightweight probabilistic broadcast,’’ ACM Trans.
Comput. Syst., vol. 21, no. 4, pp. 341–374, Nov. 2003.

[4] D. Gavidia, S. Voulgaris, and M. van Steen, ‘‘A gossip-based distributed
news service for wireless mesh networks,’’ in Proc. 3rd Annu. Conf.
Wireless On-Demand Netw. Syst. Services, 2006, pp. 59–67.

[5] R. Tijdeman, ‘‘On a telephone problem,’’ Nieuw Archief Voor Wiskunde,
vol. 3, no. 19, pp. 188–192, 1971.

[6] N. T. Bailey, The Mathematical Theory of Infectious Diseases and its
Applications. HighWycombe, England: Charles Griffin&Company, 1975.

[7] G. Giakkoupis and T. Sauerwald, ‘‘Rumor spreading and vertex expan-
sion,’’ in Proc. 23rd Annu. ACM-SIAM Symp. Discrete Algorithms,
Y. Rabani, Ed., Kyoto, Japan. Philadelphia, PA, USA: SIAM, Jan. 2012,
pp. 1623–1641, doi: 10.1137/1.9781611973099.129.

[8] B. Haeupler, ‘‘Simple, fast and deterministic gossip and rumor spreading,’’
J. ACM, vol. 62, no. 6, pp. 1–18, Dec. 2015.

[9] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman, ‘‘A survey
of gossiping and broadcasting in communication networks,’’ Networks,
vol. 18, no. 4, pp. 319–349, Dec. 1988, doi: 10.1002/net.3230180406.

[10] J. Hromkovič, R. Klasing, B. Monien, and R. Peine, Dissemination of
Information in Interconnection Networks (Broadcasting & Gossiping).
Boston, MA, USA: Springer, 1996, pp. 125–212.

[11] B. Pittel, ‘‘On spreading a rumor,’’ SIAM J. Appl. Math., vol. 47, no. 1,
pp. 213–223, Feb. 1987, doi: 10.1137/0147013.

[12] J. Liu, S. Mou, A. S. Morse, B. D. O. Anderson, and C. Yu, ‘‘Deterministic
gossiping,’’ Proc. IEEE, vol. 99, no. 9, pp. 1505–1524, Sep. 2011.

[13] J. Tsitsiklis, D. Bertsekas, and M. Athans, ‘‘Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,’’ IEEE
Trans. Autom. Control, vol. AC-31, no. 9, pp. 803–812, Sep. 1986.

[14] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, ‘‘Randomized gossip
algorithms,’’ IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508–2530,
Jun. 2006, doi: 10.1109/TIT.2006.874516.

[15] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, ‘‘Randomized
rumor spreading,’’ in Proc. 41st Annu. Symp. Found. Comput.
Sci., Redondo Beach, CA, USA, 2000, pp. 565–574, doi:
10.1109/sfcs.2000.892324.

[16] M. Jelasity, ‘‘Gossip,’’ in Self-Organising Software—From Natural
to Artificial Adaptation. Germany: Springer, 2011, pp. 139–162, doi:
10.1007/978-3-642-17348-6.

[17] D. Dolev, C. Dwork, and L. Stockmeyer, ‘‘On the minimal synchronism
needed for distributed consensus,’’ J. ACM, vol. 34, no. 1, pp. 77–97,
Jan. 1987, doi: 10.1145/7531.7533.

[18] A. Basu, B. Charron-Bost, and S. Toueg, ‘‘Simulating reliable links
with unreliable links in the presence of process crashes,’’ in Distributed
Algorithms, Ö. Babaoğlu andK.Marzullo, Eds. Berlin, Germany: Springer,
1996, pp. 105–122.

[19] T. D. Chandra and S. Toueg, ‘‘Unreliable failure detectors for reliable
distributed systems,’’ J. ACM, vol. 43, no. 2, pp. 225–267, Mar. 1996, doi:
10.1145/226643.226647.

[20] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulie,
‘‘Epidemic information dissemination in distributed systems,’’ Computer,
vol. 37, no. 5, pp. 60–67, May 2004, doi: 10.1109/MC.2004.1297243.

[21] C. Georgiou, S. Gilbert, R. Guerraoui, and D. R. Kowalski, ‘‘Asyn-
chronous gossip,’’ J. ACM, vol. 60, no. 2, pp. 1–42, Apr. 2013, doi:
10.1145/2450142.2450147.

[22] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, ‘‘Wire-
less sensor networks: A survey,’’ Comput. Netw., vol. 38, no. 4,
pp. 393–422, 2002, doi: 10.1016/S1389-1286(01)00302-4.

[23] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
4th Quart., 2015.

[24] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta, ‘‘Com-
putation in networks of passively mobile finite-state sensors,’’ Distrib.
Comput., vol. 18, no. 4, pp. 235–253,Mar. 2006, doi: 10.1007/s00446-005-
0138-3.

[25] Y. Cho, M. Kim, and S. Woo, ‘‘Energy efficient IoT based on wireless
sensor networks,’’ in Proc. 20th Int. Conf. Adv. Commun. Technol.
(ICACT), Feb. 2018, pp. 294–299.

4714 VOLUME 12, 2024

http://dx.doi.org/10.1145/41840.41841
http://dx.doi.org/10.1137/1.9781611973099.129
http://dx.doi.org/10.1002/net.3230180406
http://dx.doi.org/10.1137/0147013
http://dx.doi.org/10.1109/TIT.2006.874516
http://dx.doi.org/10.1109/sfcs.2000.892324
http://dx.doi.org/10.1007/978-3-642-17348-6
http://dx.doi.org/10.1145/7531.7533
http://dx.doi.org/10.1145/226643.226647
http://dx.doi.org/10.1109/MC.2004.1297243
http://dx.doi.org/10.1145/2450142.2450147
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1007/s00446-005-0138-3

C. Barroso-Fernández et al.: Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks

[26] S. Lee, M. Bae, and H. Kim, ‘‘Future of IoT networks: A survey,’’ Appl.
Sci., vol. 7, no. 10, p. 1072, Oct. 2017.

[27] F. Samie, L. Bauer, and J. Henkel, ‘‘IoT technologies for embedded
computing: A survey,’’ in Proc. Int. Conf. Hardw./Softw. Codesign Syst.
Synth. (CODES+ISSS), Oct. 2016, pp. 1–10.

[28] S. Kar and J. M. F. Moura, ‘‘Sensor networks with random links: Topology
design for distributed consensus,’’ IEEE Trans. Signal Process., vol. 56,
no. 7, pp. 3315–3326, Jul. 2008.

[29] C. C. Moallemi and B. van Roy, ‘‘Consensus propagation,’’ IEEE Trans.
Inf. Theory, vol. 52, no. 11, pp. 4753–4766, Nov. 2006.

[30] R. Olfati-Saber and R. M. Murray, ‘‘Consensus problems in networks of
agents with switching topology and time-delays,’’ IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[31] L. Xiao, S. Boyd, and S. Lall, ‘‘A scheme for robust distributed sensor
fusion based on average consensus,’’ in Proc. 4th Int. Symp. Inf. Process.
Sensor Netw. (IPSN), Apr. 2005, pp. 63–70.

[32] P. Erdös and A. Rényi, ‘‘On random graphs. I,’’ Publicationes Mathemati-
cae, vol. 6, pp. 290–297, Jun. 1959.

[33] B. Bollobás, Random Graphs (Cambridge Studies in Advance Mathemat-
ics), 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2001.

[34] E. N. Gilbert, ‘‘Random graphs,’’ Ann. Math. Statist., vol. 30, no. 4,
pp. 1141–1144, 1959.

[35] M. E. J. Newman, Networks: An Introduction. New York, NY, USA:
Oxford Univ. Press, 2010.

[36] S. Maslov, K. Sneppen, and A. Zaliznyak, ‘‘Detection of topological
patterns in complex networks: Correlation profile of the Internet,’’
Phys. A, Stat. Mech. Appl., vol. 333, pp. 529–540, Feb. 2004, doi:
10.1016/j.physa.2003.06.002.

[37] C. C. Byers, ‘‘Architectural imperatives for fog computing: Use cases,
requirements, and architectural techniques for fog-enabled IoT networks,’’
IEEE Commun. Mag., vol. 55, no. 8, pp. 14–20, Aug. 2017.

[38] J. de Carvalho Silva, J. J. Rodrigues, A. M. Alberti, P. Solic, and
A. L. Aquino, ‘‘LoRaWAN—A low power wan protocol for Internet of
Things: A review and opportunities,’’ in Proc. 2nd Int. Multidisciplinary
Conf. Comput. Energy Sci. (SpliTech), Jul. 2017, pp. 1–6.

[39] A. El Hakim, ‘‘Internet of Things (IoT) system architecture and
technologies,’’ Researchgate, Berlin, Germany,White Paper, vol. 10, 2018,
doi: 10.13140/RG.2.2.17046.19521.

[40] R.-A. Koutsiamanis, G. Z. Papadopoulos, X. Fafoutis, J. M. D. Fiore,
P. Thubert, and N. Montavont, ‘‘From best effort to deterministic packet
delivery for wireless industrial IoT networks,’’ IEEE Trans. Ind. Informat.,
vol. 14, no. 10, pp. 4468–4480, Oct. 2018.

[41] Z. Qin, F. Y. Li, G. Y. Li, J. A. McCann, and Q. Ni, ‘‘Low-power wide-
area networks for sustainable IoT,’’ IEEEWireless Commun., vol. 26, no. 3,
pp. 140–145, Jun. 2019.

[42] U. Raza, P. Kulkarni, and M. Sooriyabandara, ‘‘Low power wide area
networks: An overview,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 2,
pp. 855–873, 2nd Quart., 2017.

[43] C. Barroso-Fernáandez, E. Jiménez, J. L. López-Presa, M.Moreno-Cuesta,
and R. Xulvi-Brunet. (2023). Simulator Fortran. [Online]. Available:
https://github.com/resilient-gossiping/event-driven-simulator

[44] R. Xulvi-Brunet. (2023). Simulator Fortran. [Online]. Available: https://
blog.epn.edu.ec/ramon_xulvi-brunet

[45] C. B. Fernández. (Jul. 2021). Simulación, Análisis y Evaluación de
Algoritmos Epidémicos. No Publicado. [Online]. Available: https://oa.
upm.es/70672/

[46] F. D. Muñoz. (Oct. 2020). Optimización de Peersim: Un Simulador de
Eventos Discretos Para Redes 5G. No Publicado. [Online]. Available:
https://oa.upm.es/68357/

CARLOS BARROSO-FERNÁNDEZ received the
degree in telematics from Universidad Politéc-
nica de Madrid, in 2021, and the M.Sc. degree
in computational and applied mathematics from
Universidad Carlos III de Madrid, in 2022, where
he is currently pursuing the Ph.D. degree. His main
research interests include appliedmathematics and
artificial intelligence.

ERNESTO JIMÉNEZ received the Graduate
degree in computer science from Universidad
Politécnica de Madrid, Madrid, Spain, in 1995,
and the Ph.D. degree in computer science from
Rey Juan Carlos University, Madrid, in 2004. He is
currently an Associate Professor with Universidad
Politécnica de Madrid. His research interests
include fault tolerance in distributed systems,
computer networks, and parallel and distributed
processing.

JOSÉ LUIS LÓPEZ-PRESA received the B.S.
degree in computer science from the University
of the Basque Country (UPV/EHU), in 1987, and
the Ph.D. degree (Hons.) from Rey Juan Carlos
University (URJC), in 2009.

From 1987 to 2012, he was an Assistant
Professor with the Technical University of Madrid
(UPM). Since 2012, he has been an Associate Pro-
fessor. His main research interests include com-
puter networks, traffic engineering, distributed

systems, fault-tolerant systems, parallel and distributed processing, and
graph theory, with a special focus on graph isomorphism.

MARTA MORENO-CUESTA received the Grad-
uate degree in telecommunication engineering
from Universidad Politécnica de Madrid, Madrid,
Spain, in 2005, where she is currently pursuing
the Ph.D. degree in computer science. Her main
research interests include computer science and
technology applied to smart cities, with a special
focus on fault tolerant distributed systems.

RAMON XULVI-BRUNET received the degree in
physics from Universitat de València, Spain, and
the Ph.D. degree in theoretical physics from Hum-
boldt Universitaet zu Berlin, Germany. He was
a Postdoctoral Researcher with The University
of Sydney, Australia, Upenn, Harvard Univer-
sity, NECSI, and UCSB, USA. He is currently
an Associate Professor with Escuela Politécnica
Nacional, Ecuador. His research interests include
complex systems, statistical physics, complex

networks, systems biology, neuroscience, complexity economics, self-
organized criticality, epidemiology, and artificial neural networks.

VOLUME 12, 2024 4715

http://dx.doi.org/10.1016/j.physa.2003.06.002
http://dx.doi.org/10.13140/RG.2.2.17046.19521

