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ABSTRACT Edge computing plays a crucial role in the field of the Internet of Vehicles (IoV), meeting
the resource and latency requirements of time-sensitive vehicle applications. However, the emergence of
numerous compute-intensive and latency-sensitive applications, such as augmented reality and autonomous
driving, has led to a situation where traditional edge computing architectures cannot meet the increasing
application demands of the IoV. This paper extends the paradigm of vehicular edge computing to a collabo-
rative cloud-edge cluster resource provisioning framework. Integrating compute resources from multiple
Edge Service Providers (ESP) and the cloud enables horizontal and vertical collaborative computation
offloading among service nodes. To facilitate resource sharing among different ESPs, we introduce a dynamic
pricing model and utilize software-defined networking (SDN) to tackle this scenario’s complex resource
management challenges. Furthermore, with the optimization objectives of minimizing task computation
latency and maximizing the profits of ESPs, we establish a mathematical model. Before resource allocation,
we employ a clustering algorithm to determine initial offloading decisions, reducing the dimensionality of the
action space. Subsequently, we employ the Double Deep Q-Network (DDQN) algorithm to achieve a rational
allocation of compute resources. Simulation results demonstrate that compared to the Deep Q-Network
(DQN) algorithm and greedy strategy, the proposed approach reduces latency by 18.18% and 34.85%,
respectively, while increasing the profits of edge service providers by 16.25% and 33.33%, respectively.

INDEX TERMS Internet of Vehicles, mobile edge computing, resource allocation, reinforcement learning,
task offloading.

I. INTRODUCTION
With the advent of the Internet of Everything era, Inter-
net of Things technology has been widely used in many
fields, including health care, smart home and transportation.
In the area of transportation, the Internet of Vehicles (IoV)
is a typical application form that has received significant
attention from academia in recent years. Vehicular networks
have been widely recognized as having great potential to
improve driving safety and traffic mobility for both manual
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and autonomous vehicles [1]. However, with the emergence
of various in-vehicle applications, especially delay-sensitive
and computation-intensive applications, IoV systems face
severe challenges due to the limited resources of spectrum
and computing [2].

Cloud computing is widely regarded as a powerful solution
to address the shortage of computing resources in vehicular
networks, as it provides a more abundant pool of comput-
ing resources. However, cloud centers are typically distant
from the vehicle terminals, making it challenging to meet the
latency-sensitive demands of vehicles. In this context, edge
computing has gained increasing attention. Many researchers

10790

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0009-2927-3620
https://orcid.org/0000-0003-0996-4204
https://orcid.org/0009-0009-5285-2903
https://orcid.org/0000-0001-5822-3432


X. Shen et al.: Computing Resource Allocation Strategy Based on Cloud-Edge Cluster Collaboration

in the field of IoV have extensively studied vertical offload-
ing [3], [4], transferring the computational tasks of vehicles
to Mobile Edge Computing (MEC) servers within the edge
network, enabling data and applications to be closer to the
vehicles and achieving real-time processing of in-vehicle
computational tasks [5], [6]. This approach satisfies the
requirements for expanding vehicular computing capabilities
and compensates for the shortcomings of long delays caused
by remote cloud computing.

In fact, in congested urban traffic, the resource
supply-demand conflict intensifies when many vehicle users
simultaneously engage in task offloading and decision-
making. Specifically, during the task offloading process, edge
servers need to continuously obtain the latest network infor-
mation, such as vehicular positions and traffic conditions.
Considering the high vehicle density, edge servers require
frequent communication to coordinate data and resource
allocation. However, due to the limitations of computational
resources, such frequent communication may overload the
servers, leading to delays in responding to vehicular requests
or even communication congestion, further exacerbating the
performance degradation of IoV. Therefore, it is a research
problem worthy of in-depth investigation to explore how to
effectively address the growing vehicular tasks with limited
computational resources through collaborative cooperation
among the cloud, edge, and terminal devices to achieve
complex task offloading and resource allocation decisions.

A feasible solution has been proposed in recent research.
It involves vehicles offloading their computational tasks
to edge servers and then horizontally expanding resources
through collaboration between edge servers or fog nodes.
When the capacity of an edge server is insufficient, tasks
can be migrated to auxiliary edge servers to cope with the
growing demands of vehicles. This collaborative expansion
approach can potentially improve resource utilization and the
performance of IoV. However, it still faces some challenges:

(i) In real scenarios, since each Edge Service Provider
(ESP) tends to establish a private edge environment to
provide services for users, the horizontal expansion of
edge resources is often limited to the private edge envi-
ronment supplied by each ESP. The lack of cooperation
among ESPs limits the edge network’s cooperative
advantages and system performance. In addition, users
are limited to a single-edge environment and cannot
enjoy services and resources across edge environments,
resulting in low resource utilization and potential
resource idleness.

(ii) In a multi-ESP IoV architecture, effectively managing
and optimizing computational resources to achieve task
offloading and resource allocation across two layers is
a challenge that needs to be addressed.

In conclusion, this study addresses the limitations of verti-
cal offloading by constructing a model for resource sharing
and service among multiple ESPs. We achieve horizontal
resource expansion at the edge layer by integrating the private

edge environments provided by multiple ESPs into a shared
resource pool. Additionally, we integrate the abundant com-
puting resources of remote clouds into the shared resource
pool through vertical integration, which can supplement the
areas that edge nodes may not be able to serve [7]. Typically,
in the systems of IoV, the network and resource states exhibit
dynamic variations, necessitating the handling of complex
scenarios such as interactions between vehicles and infras-
tructure, and dynamic changes in network topology [8], [9],
to deal with the complexity of resource management in this
scenario, we introduce software-defined networking (SDN)
to perceive the network state and collect device informa-
tion from a global perspective, enabling vehicles to choose
suitable access methods for task offloading. We propose a
joint optimization strategy for task offloading and resource
allocation, considering the latency requirements of different
tasks. Before using the Double Deep Q-Network (DDQN)
algorithm for resource allocation, we employ clustering algo-
rithms to segment the offloading modes of vehicles, that
is, choosing between local or Vehicle-to-Infrastructure (V2I)
offloading mode, thereby reducing the dimension of the
action space and improving resource allocation efficiency.
This effectively reduces task latency and energy consump-
tion, significantly enhancing the service experience of vehicle
users while maximizing the profit of ESP. The main contri-
butions of this study are as follows.

(i) This paper proposed a Cloud-edge clusters collabo-
ration IoV architecture with integrated SDN, for the
proposed architecture can provide horizontal and ver-
tical offloading between service nodes. At the same
time, we analyzed the response delay of processing task
requests and the profit of ESP when processing tasks
under this architecture. Considering the time-varying
resources in the system, a dynamic pricing model is
introduced to adjust the price dynamically to promote
cooperation among ESPs, and to avoid high computing
latency caused by resource constraints.

(ii) In this scenario, to improve the profit of ESP while
ensuring the task delay performance, the optimization
problem is transformed into the optimal task offloading
and computing resource allocation problem, and it is
modelled as a Markov decision process. We proposed a
joint task offloading and resource allocation algorithm
that combines K-means ++ and DDQN algorithm
(KDDQN-JOARA). Where K-means ++ is used to
determine the initial offloading node, and the DDQN
algorithm is used to allocate computing resources
reasonably.

(iii) A series of simulation experiments are conducted to
verify the necessity of considering cluster cooperation
and the advantages of the proposed approach in terms
of delay and profit.

The rest of the paper is organized as follows: we review
the related work in Section II. Section III presents the net-
work and system model and defines and formulate the delay
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minimization of task and the profit maximization of ESP
problem. In Section IV, we propose the KDDQN-JOARA to
solve this problem. In Section V, we give the experimental
values and discussion and analyze the performance enhance-
ment of the proposed scheme. In Section VI, we conclude
with a discussion of the paper. The conclusions of our study
are presented in Section VII.

II. RELATED WORK
To address the task offloading and resource allocation prob-
lem in the context of MEC-based IoV, Fan et al.) [10]
proposed a vehicle-road cooperative communication-based
algorithm for joint task offloading and resource allocation,
aiming to minimize overall latency and energy consump-
tion. Ren et al. [11] investigated the mutual communication
and computation resource allocation problem under cloud
and edge computing coordination. Yang et al. [12] studied
efficient task offloading strategies in vehicular edge comput-
ing networks, considering optimal decisions for offloading
time selection, communication, and computation resource
allocation. Zhao et al. [13] proposed a distributed com-
putation offloading and resource allocation algorithm in
cloud-assisted scenarios. Most of the research above work
focuses on achieving global resource management through
a vertical collaborative architecture. However, in the context
of IoV, when there is a surge in task demand, considering
only V2I offloading can lead to server overload, while relying
solely on Vehicle-to-Vehicle (V2V) offloading may result in
communication interruptions or difficulties in establishing
connections. Even though some studies have attempted to
integrate both types of offloading frameworks, it remains
challenging to alleviate the resource constraints in IoV.

Some researchers have addressed the limitations of
resource constraints by employing a hybrid architecture that
combines both horizontal and vertical offloading. In this
approach, vehicles offload computational tasks to edge
servers, and then collaborative horizontal resource scaling
is achieved among the edge servers or fog nodes. For
instance, Al-Hammadi et al. [14] primarily investigated a
MEC network with a complete offloading strategy, utiliz-
ing collaborative edge servers for task migration when the
MEC network becomes overloaded. Phan et al. [15] proposed
a dynamic offloading service among fog nodes in a fog
computing system, aiming to select the optimal offloading
node and assist with offloading paths. However, from a cost
perspective, edge servers may belong to different ESPs, and
deploying servers by ESPs incurs costs related to network
infrastructure coverage, energy consumption, maintenance,
and management. ESPs are not likely to provide resources
to others without compensation. Existing research has paid
limited attention to the integration of resources from multiple
ESPs and remote clouds into a unified resource pool for
collaborative computation. Therefore, this paper devises a
rational pricing model to ensure collaboration among ESPs
and integrate the private edge resources offered by different
ESPs. A resource-sharing pool is created at the edge layer

to facilitate collaborative resource-sharing across different
ESPs.

However, despite the expansion of computing capabilities
in IoV systems brought by this hybrid offloading archi-
tecture, it may lead to increased complexity in resource
management. SDN can effectively address this challenge.
Cao et al. [16] proposed a novel 5G vehicular network-
ing architecture based on fog computing and SDN to meet
the requirements of IoV, and they tackled the resource
allocation problem in the fog-cloud system within this archi-
tecture. Phan et al. [15] presented a dynamic fog-to-fog
offloading scheme for SDN-based fog computing systems.
Zhang et al. [17] constructed a new SDN-assisted MEC
network architecture for IoV, aiming to minimize overall
latency and energy consumption through joint optimization
of offloading strategies and resource allocation. Therefore,
introducing an SDN controller on top of the hybrid architec-
ture enables centralizedmanagement of vehicles and resource
information. Based on the information collected from the net-
work and vehicles, an intelligent selection of themost suitable
offloading nodes can be made, facilitating the management of
the offloading process.

In the IoV environment, inappropriate task offloading
and resource allocation strategies can lead to high response
latency and low resource utilization. Traditional algorithms,
which primarily focus on optimizing the performance of
relatively stable quasi-static systems, may not be suitable for
IoV systems due to various uncertainties, such as real-time
requirements of computational tasks and dynamic changes in
resource demands, both of which impact the performance of
task offloading.

To tackle these challenges, Liu et al. [18] proposed a
computation offloading and resource allocation algorithm
based on DDQN to minimize the latency and energy con-
sumption of data fusion computational tasks. Liu et al. [19]
introduced a Deep Reinforcement Learning algorithm that
allocates resources using vehicles as edge devices to provide
computing services to nearby users. Huang et al. [20] pre-
sented a Deep Q-Network (DQN) based algorithm to address
the complex problem of jointly optimizing task offloading
and bandwidth allocation in mobile edge computing net-
works. Motivated by the above research, this paper utilizes
the K-means++ algorithm to initially classify task offloading
models, improving the efficiency of offloading and resource
allocation strategies. Additionally, the DDQN algorithm is
employed to obtain optimal offloading decisions and resource
allocation strategies for tasks within classified edge node
clusters.

The current research on task offloading and resource
allocation strategies in IoV scenarios is relatively mature.
However, there are still blind spots in some particular sce-
narios. This paper constructs a hybrid horizontal and vertical
offloading framework in an SDN-integrated IoV scenario.
It adopts a reasonable resource pricingmechanism to promote
the collaboration between ESPs. Finally, the task offloading
and resource allocation problem under the framework was
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FIGURE 1. Cloud-edge clusters collaboration IoV architecture with integrated SDN.

established, the task completion time and the profit of ESP
were jointly optimized, and the Deep Reinforcement Learn-
ing (DRL) algorithm obtained the optimal task offloading
decision and resource allocation strategy.

III. SYSTEM OVERVIEW AND PROBLEM FORMULATION
A. SYSTEM ARCHITECTURE
As illustrated in Fig. 1, we consider the Cloud-edge clus-
ters collaboration IoV architecture with integrated SDN.
There are multiple ESPs in the architecture, and the edge
nodes of each ESP are coordinated and controlled by their
own deployed SDN, aiming to reduce the system delay and
improve the overall performance. SDN divides the IoV sys-
tem into data and control layers through software definition
and virtualization technology. The physical communication
channels of the control layer and the physical communi-
cation channels of the data layer are independent of each
other. The SDN controller broadcasts the global state, includ-
ing channel state information and available resources. After
receiving the offloading request from the vehicle, SDN looks
for the best solution in the control layer, including offload-
ing decision and resource allocation, and then sends control
instructions. The data layer transfers data according to the
instructions of the control layer. Communication between
SDNs deployed by different ESPs is established through
standard network communication protocols (such as TCP/IP)
or interfaces between specific SDN controllers. This allows
for the exchange of resource information from other ESPs in
the cluster, which can be used for collaborative computation
and further optimization of the current resource allocation
strategies.

The detailed description is as follows: suppose the clus-
ter cooperation scenario consists of multiple ESPs, the set
of ESPs is K= {1, 2, 3,. . .k}, each ESP deploys m edge

servers in its managed area to provide services for IoV
users. The edge servers deployed by ESPk are denoted as
Ek = {Ek,1,Ek,2,Ek,3, . . .Ek,m}, and the vehicles served
are denoted by V = {v1, v2, v3, . . . , vn}, and each ESP is
equipped with an SDN controller, in which the collection and
management of vehicular data and information of all edge
nodes are completed, and the task offloading and resource
allocation are uniformly scheduled. Assuming that each vehi-
cle sends only one computing task request per time slot t , and
all vehicles are travelling at a constant speed, the computing
task requests issued by vehicle users can be represented by a
quadruple as follows: Wi = {tmax

i ,Ci, di, feei}, where tmax
i

represents the maximum tolerable execution delay of the
task, Ci represents the amount of computation required to
execute the task, di represents the data size required to upload
the computation task, feei represents the cost price that IoV
users are willing to pay to compute task Wi. Define X as
the task offloading decision, X = {x1, x2, x3 . . . xn}, where
xi = {x li , x

e
i , x

c
i }, x

l
i , x

e
i , x

c
i ∈ {0, 1} and x li + xei + xci = 1. x li

is executed locally in the vehicle, xei is to offload the task to
the edge server provided by ESP, and xci is to offload the task
to the remote cloud for execution. The illustration of main
notations is summarized in Table 1.

B. COMMUNICATION MODEL
In this paper, when the resources of vehicle cannot handle
the computing tasks, the computing tasks are offloaded to the
local edge servers deployed by ESPk or the edge resources
provided by other ESPs in the cluster leased by ESPk . The
orthogonal frequency division multiple access (OFDMA)
technique is used for wireless communication between the
vehicle and the MEC server to avoid severe interference.)
[10]. Therefore, according to Shannon’s formula, the data
transmission rate when vehicle n offloads tasks to the edge
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server m for processing is given by

Rmn = Blog2(1 +
pnhn,m

δ2
) (1)

where B represents the total bandwidth, let δ2 denote the
noise power, hn,m is the channel gain between vehicle n and
edge server m, and pn is the transmit power of vehicle n.
In addition, we use RE2E to denote the transmission rate
between edge servers, and RE2C to denote the transmission
rate between edge servers and cloud servers.

C. DYNAMIC PRICING MODEL
When the resource-demand vehicle offloads tasks to the edge
server, it will occupy the computing resources of the edge
server. Considering the limited resources of the edge server
deployed by a single ESP, it will rent resources from other
ESPs in the cluster scenario at a certain fee when the resource
usage is at its peak. ESP in the cluster should dynamically
adjust the unit resource price with the change in resource
utilization and its load status.

In this paper, the computing resources of the edge server
are dynamically priced according to user demand and com-
puting resource load, and the price of unit computing
resources purchased by the resource demander ESPk is given
by

Uk = Us,m(
πk

1 − Ls,m
) (2)

where Us,m is the initial unit cost price of the resources of
edge server m set by ESPs,Ls,m is the current resource load
percentage of edge server m deployed by ESPs, which is
calculated as follows:

Ls,m =
totals,m − ress,m

totals,m
(3)

where totals,m represents the total amount of computing
resources of edge server m provided by ESPs, and ress,m
represents the remaining amount of its current available
resources.

πk is a willingness value of resource demand, the larger πk
is, the higher demand willingness of ESPk . Use πk ∈ [0, 1] to
denote the current degree of computational demand of ESPk ,
where πk is calculated as follows.

πk =

∑l
i=1 Ck,i∑m
e=1 fk,e

(4)

where Ck,i represents the computing demand of task Wi
served by ESPk , and fk,e represents the available computing
resources of the eth edge server of ESPk .

D. COMPUTATION MODEL
1) LOCAL COMPUTING
Since the tasks are executed locally, the latency only needs to
account for the computation latency, denoted by t li , given by

t li =
Ci
f li

(5)

TABLE 1. Notation definitions.

where Ci represents the computing demand of task Wi, and
f li is the local computing power provided by the vehicle. The
corresponding energy consumption is calculated as follows:

E li = klCi(f li )
2 (6)

where kl is an energy consumption parameter depending on
the chip architecture [21].

2) EDGE CLUSTER COMPUTING
We denote the computational resource allocation vector in
time slot t asτ = {α1, α2, α3 . . . αn}, where αi ∈ [0, 1]
is the computing resource allocated by the edge server to
complete the task Wi. Since the total computing resources
of the MEC server are fmec, αifmec represents the computing
resources allocated to vehicle user i in time slot t . When a
higher proportion of computing resources is assigned to a
particular vehicle user, the task execution time becomes more
minor, but the energy consumption may increase.

If vehicle i decides to perform the task Wi by offloading.
There are two options. The task can be executed directly at the
local edge node, when the local edge resources of ESPk are
sufficient. If the load is too high and the resources are insuf-
ficient, the task can be executed by using the edge resources
provided by other ESPs by renting resources. Therefore, the
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decision vector Ak,i is used to represent where ESPk should
execute task Wi, where Ak,i = 1 means the execution is
performed at the local deployed edge node of ESPk , and
Ak,i = 0 indicates the task is offloaded to the edge server
provided by other ESPs. Since the data size of the calculated
result is much smaller than the input data, the backhaul delay
of the calculated result can be ignored.

(1)When vehicle i offloads taskWi to the local deployment
server of ESPk to perform. The total delay includes transmis-
sion and computation delays. Where the transmission delay
is calculated as follows:

t tran1i,e =
di
Rmn

(7)

The computation delay is defined as:

tcompi,e =
Ci

αifmec
(8)

The energy consumption of offloading to local edge server of
ESPk to execute taskWi is given by

Eei = E tran1i,e + Ecompi,e = pnt tran1i,e + Pmecαit
comp
i,e (9)

where Pmec represents the device power when the local edge
server of ESPk uses all computing resources to calculate the
task [22].

Assuming that the unit energy consumption cost of execut-
ing a task at the local edge server of ESPk is θe, the cost of
offloading a task to the local edge server of ESPk is calculated
as follows:

Ce
i = θeEei = θe(E tran1i,e + Ecompi,e ) (10)

Assuming that the unit resource cost of the local edge server
of ESPk is Rei , The profit of ESPk from executing the task on
the local server is calculated as follows:

Qei = feei − (Ce
i + Rei αifmec) (11)

(2) Task is executed by using the edge resources provided by
other ESPs. Therefore, the total delay when using other ESPs
resources for calculation is calculated as follows:

toei = (t tran1i,e + t tran2i,oe + tcompi,oe )

= (
di
Rmn

+
di

RE2E
+

Ci
αifoe

) (12)

where αifoe represents the computing resources of other ESPs
rented by ESPk to perform task Wi, t tran1i,e is the transmission
delay for the vehicle to upload the task Wi to the connected
edge node, t tran2i,oe is the transmission delay for the RSU to
transmit the task to the edge server provided by other ESPs
in the selected cluster, tcompi,oe is the computation delay.
We ignore the energy consumption of offloading tasks from

edge server k to cooperative edge server s, because the energy
consumption between edge servers is much smaller than the
energy consumption between vehicles and edge servers [14].
Therefore, the total energy consumption of offloading tasks
is expressed as follows:

Eoei = E tran1i,e + Ecompi,oe

= pnt tran1i,e + tcompi,oe αiPoe (13)

where Poe is the device power of the edge server which ESPk
leased.

Assuming θoe is the unit energy cost of ESPk when it
offloads tasks to the edge nodes provided by other ESPs in
the cluster, the total energy cost is as follows:

Coe
i = θoeEoei = θoe(E tran1i,e + Ecompi,oe ) (14)

Therefore, the total cost of ESPk renting resources to perform
taskWi is defined as:

Zoei =
Us,mπkαifoe
1 − Ls,m

(15)

Then the profit of ESPk by leasing cluster resources to com-
pute the taskWi is given by

Qoei = feei − (Coe
i + Zoei ) (16)

Therefore, the total delay to execute the taskWi by offloading
to the edge server is given by

tmeci = Ak,itei + (1 − Ak,i)toei (17)

The profit of ESPk executing taskWi is as follows:

Qmeci = Ak,iQei + (1 − Ak,i)Qoei (18)

3) CLOUD COMPUTING
The vehicle will offload its computing tasks to the cloud
server through the core network. Therefore, the upload time to
transfer the input data from the RSU to the cloud server must
be considered. and the latency to perform the task through the
cloud server is expressed as:

tci = t tran1i,e + t tran3i,c + tcompi,c

=
di
Rmn

+
di

RE2C
+

Ci
αifc

(19)

where the αifc represents the cloud server resources rented by
ESPk to perform tasks, and t tran3i,c represents the upload time
of task transmission from RSU to cloud server. tcompi,c is the
computation delay.

The total energy consumption is denoted by Eci is given by

Eci = E tran1i + Ecompi,c

= pnt tran1i,e + Pcαit
comp
i,c (20)

where Pc indicates the device power of the cloud server.
Assuming θc is the unit energy cost when the vehicle

chooses the offloading task Wi to the cloud, the total energy
cost is given by

Cc
i = θcEci = θc(E tran1i + Ecompi,c ) (21)

The number of resources in the cloud is usually to be huge.
Therefore, considering the static pricingmodel, that is, setting
a constant and using dc to represent the unit computing cost
of the cloud server, the total profit of scheduling tasks to the
cloud is defined as:

Qci = feei − (Cc
i + dcαif ci ) (22)
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Therefore, the total delay and the total profit to process task
Wi are respectively,

Ti = x li t
l
i + xei t

mec
i + xci t

c
i (23)

Qi = xei Q
mec
i + xci Q

c
i (24)

E. PROBLEM FORMULATION
In summary, given a set X of task offloading policies and
a set τ of computing resource allocation policies, we can
define the system cost function as the sum of the profit
and the reciprocal of total delay. Where Ti and Qi represent
the delay of executing the task and the profit of the ESP,
respectively, and λ ∈ [0, 1] is used as the weight coefficient
to regulate Ti and Qi. Considering the constraints of variable
and delay tolerance, we can formulate a joint task offloading
and resource allocation optimization problem to obtain the
optimal task offloading and computing resource allocation
strategy, Therefore, the corresponding optimization problem
can be formulated as follows:

max
X ,τ

C(X , τ ) = λ

m∑
e=1

n∑
i=1

Qi + (1 − λ) (
1

m∑
e=1

n∑
i=1

Ti

)

s.t. C1 : xi = {x li , x
e
i , x

c
i }, ∀i ∈ N

C2 : texei ≤ tmax
i , ∀i ∈ N

C3 : Ak,i ∈ {0, 1}, ∀i ∈ N , ∀k ∈ K

C4 : 0 ≤

n∑
i=1,

xiαi ≤ 1, ∀i ∈ N

C5 : Qki ≥ 0, ∀i ∈ N , ∀k ∈ K (25)

where C1 indicates that the task of the vehicle user can only
choose one of three decisions: local computing, offloading
to the edge server provided by ESP, and cloud server, C2
means that the computing delay of the task does not exceed
the maximum tolerable delay of the task, C3 means whether
to rent resources from the edge service provider, C4 means
that the resources provided by the edge server deployed in
ESP are less than the total resources on the edge server, C5
means that the profit of the computing task in ESP cannot be
negative.

IV. OPTIMIZATION SOLUTION
In this section, we propose a joint computation offloading
and resource allocation algorithm based on K-means++ and
DDQN for delay minimization and profit maximization and
discuss its time complexity. The algorithm meets the delay
requirements of vehicular tasks and improves the profit of
edge providers.

A. MARKOV DECISION PROCESS
In real scenarios, the channel state, the available comput-
ing resources of MEC servers, and the IoV environment all
change dynamically, and at each moment, the system needs
to decide which resources to allocate to which users based
on the current system state. When solving such problems, the

traditional methods need to select the optimal strategy from
the vast decision space, which is challenging to complete.
Deep reinforcement learning can search for effective sam-
ple features from many training samples to train the agent,
dramatically shortening decision-making time. Therefore,
this paper proposes a DDQN-based joint optimization strat-
egy for task offloading and resource allocation. The DDQN
algorithm can estimate the future environmental changes in
interacting with the environment and maximize the long-term
system performance by constantly learning and adjusting the
strategy, even if the total delay of all vehicles is minimized
and the profit of ESP is maximized. In this subsection, the
system performance maximization problem is first trans-
formed into a Markov decision process, and the DRL method
is used to solve the optimal policy. A typicalMDPmodel con-
sists of a tuple with five elements, namely < S, A, P, R, γ >.
S represents the state space, and A is a finite action space. P
is the probability transition distribution, which characterizes
the probability. that the current state of the environment will
change to another state under a specific action. R stands for
the reward function. The parameter γ ∈ [0, 1] is a discount
factor for future rewards.

State: The SDN controller with the ability of global infor-
mation instantaneous collection, can just assume the role
of agent in DRL. In each time slot, the SDN controller
monitors the IoV environment within its communication
range. It also collects state information, including vehicular
tasks and resource availability information of edge servers
and cloud servers provided by ESP under coverage. Defines

the state space as S(t) = {tmaxi ,Ci, di, feei, 1 −

n∑
i=1

xiαi}.

Respectively, the maximum tolerable delay of the vehi-
cle user to calculate the task, the number of tasks needed
to calculate the task, the data size required to calculate
the task, the cost price that the vehicle user is willing
to pay to calculate the task Wi and the available state of
resources.

Action: According to the observed state S(t) in the time
slot, the agent will output an action as the offloading strategy
taken in the current time slot and determine the percentage
corresponding to the resources allocated to the vehicle user in
each time slot t . Therefore, the action space is defined as a(t),
and the action a(t) = {X,τ} in time slot t . X denotes offload-
ing decision-making, X = {x1, x2, x3 . . . xn}, τ denotes the
edge server computing resources allocation strategy,τ =

{α1, α2, . . . αn}.
Reward: The goal of agent is to maximize the rewards for

good behavior. These rewards evaluate the goodness of action
a(t) and guide the updating of the value network parameters.
Our reward function aims to minimize the total latency of all
vehicles and maximize the profit of ESP, and we define the
reward function as follows:

R = λ

m∑
e=1

n∑
i=1

Qi + (1 − λ) (
1

m∑
e=1

n∑
i=1

Ti

) (26)
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B. THE KDDQN-JOARA BASED COMPUTATION
OFFLOADING AND RESOURCE ALLOCATION ALGORITHM
The task offloading method in this paper adopts binary
offloading, and the computing task request issued by the
vehicle either chooses the local computing of the vehicle
or offloads to the server in the cluster for computing. Con-
sidering the complex computing environment in the cluster
collaboration scenario, suppose that the ESPr deploys M
MEC servers in its service area, and the number of vehicles
served is represented byN . The dimension of the action space
will increase with the increase in the number of vehicles
communicating with the MEC server in the cluster. In this
case, there will be 2N possible actions in the action space.
With the exponential growth of the number of vehicles in
IoV, the first part of KDDQN-JOARA uses the K-means ++

algorithm to preprocess the action space so as to reduce the
dimension of the action space and improve the efficiency of
task offloading and resource allocation algorithm.

The specific description is as follows: K-Means++

changes the selection of the initial centre of mass, improving
the performance and stability of the algorithm. First of all,
the initial centroid is determined. Considering that the tasks
of local computing generally have high real-time and low
computing resource requirements, two different centroids,
kloc and koff , are selected as the centres of local cluster wl

and offload cluster wo according to this characteristic. The
characteristics of the task are set as a combination of the data
size di of the data needed to compute the task and the delay
requirement tmaxi , where the delay is a hard constraint. Then,
its task characteristics are extracted for each task, the vehicle
computing task is assigned to two different clusters, and the
centre point of the cluster is updated until convergence.

Furthermore, after the clustering operation is completed,
the tasks that are clustered to local computing mode are
provided with computing resources locally by the vehicle.
In contrast, for the tasks in offloading computing mode, the
cluster collaboration scenario is composed of multiple edge
servers provided by multiple ESPs, and the environment is
more complex. Therefore, The DDQN-based task offloading
and resource allocation joint optimization method was used
to make the optimal decision for the task. Our goal is to max-
imize the profit of ESP while meeting the delay requirements
of task by making the optimal resource allocation scheme
under various offloading decisions.

In the system scenario, SDN is regarded by us as an agent
in the system, and at each time slot t , SDN observes the
current system environment S(t) = {tmaxi ,Ci, di, feei, 1 −
n∑
i=1

xiαi}, the environment includes the current usage of

system resources, the unit price of system resources, the
requirements of pending tasks, and the corresponding joint
action a(t) = {X,τ} is taken, including the selection of
offloading mode and resource allocation scheme for tasks
based on the current strategy. Then, after the selection of
the action, the state of the environment will be transferred
from s(t) to the next state, s(t+1). At the same time, the

experience tuples (s(t), a(t), R(t), s(t+1)) obtained by the
agent are stored in the experience buffer for parameter updat-
ing, and the agent will receive the corresponding reward R.
The algorithm uses two neural networks to approximate two
action value functions: the main network and the target net-
work, respectively. Among them, the parameters of the main
network are updated in real time. In contrast, the parameters
of the target network are updated every Z step, which can
alleviate the overestimation of theQ value caused by theDQN
algorithm. At the same time, the playback experience pool is
added to solve the correlation between the data. Throughout
the training, the DDQN agent randomly selects a subset of
samples from the experience replay buffer to train, and in each
iteration, we, according to

L(ω) = E
{
YDDQN − Q

[
S(t), a(t); ω2

]}
(27)

calculate the loss.ω is the parameter of the main network, and
YDDQN is the output of the target network, which is used to
calculate the target Q value after taking all possible actions,
Q(S(t), a(t); ω) is the output of the main network, which is
used to calculate the Q value of the execution action in the
current state. In the DDQN algorithm, the output of the target
network

YDDQN = R(t) + γQ(S(t + 1), a∗
; ω−) (28)

The primary network is first used to find the action with the
largest Q value

a∗
= argmax

a
Q(S(t + 1), a; ω) (29)

Then the target network is used to calculate theQ value of the
action a∗. Finally, the loss function is calculated according to
Equation (27), and the main network parameter ω is inversely
updated using gradient descent. TheQ value of action a∗ may
not be the largest in the target network. Choosing this avoids
choosing an overrated action. Through this algorithm, we can
obtain the optimal network parameterω, so that we can obtain
the optimal offload resource allocation in the case of changes
in the size of the input data. The details of this algorithm are
briefly given in Algorithm 1.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of the task clustering method
based on K-means ++ in Algorithm 1 usually depends on
the number of data points, the number of clusters, and the
dimension of the data points. When initializing the cluster
centers, the complexity of this step is O(K × D), where K
is the number of centers and D is the dimension of the data
points. Secondly, the K-means ++ algorithm is constantly
updated and recalculation in the form of iterations to achieve
convergence. Therefore, the number of iterations also affects
the computational complexity of the algorithm. Assuming
thatN is the number of tasks to be processed in the cluster col-
laboration scenario, and I represents the number of iterations,
which usually stops when the algorithm converges, it can be
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concluded that the computational complexity of K-Means++

is O(K × D× I × N ).
The time complexity of deep reinforcement learning in

Algorithm 1 is usually measured in terms of the number of
multiplications computed in iterations. We assume that the
number of layers of the deep neural network in the network
architecture is denoted by L, and these hidden layers have
n1, n2, . . . , nI neuron each. Also, we assume that the number
of iterations of deep reinforcement learning in Algorithm 1
in the training phase is E ; Therefore, the computational
complexity of deep reinforcement learning in Algorithm 1

is: O(E
L∑
i=1

ni × ni−1).

The final implementation of KDDQN-JOARA algorithm
first needs to execute the algorithm k-means++ to obtain
the classification result, and then use DDQN to find the
optimal solution. Then the computational complexity of
KDDQN-JOARA is the sum of the two algorithms.

V. SIMULATION EVALUATION
This section uses Python to simulate the computational
offloading and resource allocation algorithm. The simula-
tion experiments are conducted on a personal computer with
2.4 GHz CPU and 16 GB memory.

A. SIMULATION SCENARIO
The simulation scenario is set to a street area range of
3kmx3km, including MEC servers provided by 4 ESPs and
multiple vehicles, and vehicle users follow the Poisson dis-
tribution and drive at a constant speed of [40km/h, 60km/h].
The number of MEC servers provided by each ESP is [5],
[6], [7], [8], [9], and [10] and is evenly distributed within
the region. The value of computational resources of an
edge server ranges from [10] and [20] GHz. The comput-
ing resource costs of edge servers deployed with different
ESPs are heterogeneous, the value is between [2], [3] $. The
computing resources of the cloud server are set to 1000Ghz
and the resource price is 6$. The data transmission rate
between edge servers provided by different ESPs ranges from
[90,100] MB/s [23], the data transmission rate between edge
servers and cloud server is set to 20 MB/s, in the cluster
collaboration scenario. All emulation settings comply with
the IEEE 802.11p in-vehicle networking standard and spec-
ifications in the MEC white paper. The specific simulation
parameters are set according to the definition in [24] and [25],
as shown in Table 2.

In order to evaluate the effectiveness of the proposed
algorithm, the performance comparison is carried out through
the following four algorithms:
Random: randomly select local or offload computation
and randomly allocate resources to execute tasks under the

condition of meeting the task delay requirement.
Greedy: In this scheme, the system greedily selects the

action in each time slot based on the currently observed
MEC system state without a tradeoff between exploitation
and exploration.

Algorithm 1 The KDDQN-JOARA Based Computation
Offloading and Resource Allocation Algorithm
1:Initialize the environment
2:Initialize the experience replay buffer
3: Initializes task clusters:W l

= W o
= ∅

4: Choose the initial centroid kloc and koff
5: for each taskWi, i = [1, 2, . . . ,N ] do
6: compute the Euclidean distance between the taskWi

and each centroid
7: Assign the task to the cluster with the shortest

distance
8: end for
9: Initialize the main deep neural network with random

weight ω
10: Initialize the target deep neural network with ω = ω−

11: for each episode do
12: Obtain the initial observation S1 and as the beginning

state
13: for each step of episode do
14: for each taskWj in W o do
15: Choose a(t) with a random probability β as
16: if β ≤ ϵ then
17: randomly select an action a(t)
18: else
19: select a(t) = argmaxa (s (t) , a (t) ;ω)

20: end if
21: Execute action a(t) to offload task and allocate

resource, obtain the reward R(t) by calculating the
corresponding
delay and benefit, receive the next observation s (t + 1)

22: Store the experience into the experience replay
buffer

23: Randomly select a minibatch of R sample from
the experience replay buffer

24: Calculate the target Q value using Equation (28)
25: Calculate the loss function using Equation (27)
26: Perform a gradient descent step on L(ω) with

respect to the parameter ω by ∂L(ω)/∂ω

27: Update the target deep neural network parameter
ω− by using weight ω

28: end for
29: end for
30: end for

QoS aware Genetic Algorithm(QGA): Different user QoS
requirements are considered by improving the traditional GA,
and resources are allocated within a given budget.
DQN: An offloading strategy based on deep Q-network is

designed to dynamically fine-tune the offloading ratio of each
user, so as to realize a low-cost MEC system.

B. PERFORMANCE COMPARISON
Fig. 2 shows the total reward value obtained by the two
methods in relation to the number of iterations. It can be seen
from the figure that bothmethods gradually converge with the
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TABLE 2. Simulation parameters.

change of the number of iterations, but the KDDQN-JOARA
algorithm proposed in this paper gradually stabilizes and
eventually converges through the interaction between the
agent and the environment when it is iterated to about
750 times. DQN only converges after 1250 iterations. This
is because KDDQN-JOARA uses the k-means++ algorithm
to determine the initial offloading decision of the task and
obtains the offloading decision of the task in the local cluster
and the cluster cooperation cluster, which reduces the scale
of the problem and reduces the dimension of the action set.
Therefore, the KDDQN-JOARA algorithm can realize effi-
cient offloading decisions and resource allocation strategies.

1) THE IMPACT OF CLOUD-EDGE CLUSTERS
COLLABORATION
In order to analyze the profits of cluster cooperation, this
section evaluates the delay and profit in two scenarios, respec-
tively. Fig 3 shows the comparison of ESP profit in the
clustered collaboration scenario and the non-clustered col-
laboration scenario, from which it can be seen that as the
number of tasks increases, the profit of ESP in the scenario
with collaboration considered are consistently higher than
those in the scenario without collaboration considered. When
the number of tasks is small, both scenarios have enough
resources to process the tasks. Therefore, the profit in both
scenarios shows an increasing trend, and when the number of
tasks increases to a certain number, the resources in the usual
scenario are not enough to compute more tasks. Therefore,
the profit of the ESP does not increase anymore. In the col-
laborative computing scenario, ESPs can have more choices
in computing tasks, and when the resources are insufficient,
they can rent the resources of other ESPs at a certain cost
to obtain higher revenue. At the same time, during the low
peak period of task processing, ESPs can also sell their idle
resources at a certain price to increase the additional revenue.
Therefore, in collaborative scenarios, ESP profits show a

FIGURE 2. Convergence of the proposed DDQN method combined with
k-means and the original DDQN method.

continuous upward trend and are always higher than those
in non-collaborative scenarios.

Fig.4 shows that the average latency of tasks in both cluster
collaboration and non-collaboration scenarios is upward with
the increasing number of tasks. When the number of tasks
is less, in the stage of 10-50, there is not much difference
between the average latency of the two scenarios. However,
when the number of tasks exceeds 50, the average latency
in the non-cluster collaboration scenario increases steeply.
When the number of tasks reaches 150, the average latency
in the cluster collaboration scenario decreases by 30% com-
pared to the non-collaboration scenario. This is because one
of the essential features of clustered collaboration is the diver-
sity of edge resources, which can be utilized to reduce the
average latency of tasks even further. In contrast, in the non-
collaboration scenario, when the local resources of the ESP
are used up, even though there is an option to offload the
tasks to the cloud for execution, this also incurs a high trans-
mission latency due to the geographic location of the remote
cloud. Therefore, as the number of tasks grows, the average
latency in cluster collaboration scenarios can increase rela-
tively slowly. In contrast, non-collaboration scenarios, when a
certain number of tasks are reached, inevitably incur a higher
average latency.

2) THE IMPACT OF CHANGE IN THE NUMBER OF TASKS
In order to test the impact of the number of tasks change
on the average delay of system tasks, the number of ESPs
is set to 4, where the number of servers deployed in each
ESP is evenly distributed between 5 and 10. The experiment
considers indivisible tasks, that is, tasks generated by vehicles
are either computed locally or entirely offloaded. The number
of test tasks is the experimental comparison of increasing
from 10 to 150.

Figures 5 and 6 show the performance comparison of the
five methods regarding the average execution delay of tasks
and the profit of ESP as the number of tasks in the system
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FIGURE 3. The impact of cluster collaboration on ESP profits.

FIGURE 4. The impact of cluster collaboration on the average delay.

increases. As the number of tasks increases, the latency of
the five methods will show a certain upward trend. When
the number of tasks reaches 150, the resource utilization rate
will increase, the load on each edge node will increase, and
the resource selectivity during task execution will decrease.
Therefore, the average latency of each method will increase
accordingly. The Greedy method always selects the current
optimal method for resource allocation, which is prone to
falling into local optima. However, the Random method
randomly assigns tasks when the delay threshold is satis-
fied, and the uncertainty is too high. Therefore, it performs
poorly in terms of average delay performance. The QGA
and DQN methods do not perform joint optimization of task
offloading and computing resource allocation to minimize
latency. Therefore, increasing the number of tasks can lead
to a significant increase in average latency. Compared with
other schemes, our scheme preprocesses the offloading deci-
sion for computing tasks, accelerating the efficiency of task
offloading and resource allocation. Compared with the DQN
and QGA algorithms, the average latency is reduced by 16%

FIGURE 5. The effect of task number change on delay.

and 27%, respectively. Compared to Greedy and Random
algorithms, it has decreased by 37% and 39%, respectively.

Fig. 6 depicts the relationship between the profit of ESP
and the number of tasks. From this figure, the ESP’s profit
of the five methods gradually grows as the number of tasks
increases. When the number of tasks is small, at this time, the
system resources are abundant, and there are more choices in
resource allocation. The advantages of the KDDQN-JOARA
method proposed in this paper are not obvious compared
with DQN and QGA. Compared with Greedy and Random
methods, the advantages are apparent. As the number of tasks
increases, this advantage will continue to increase because
the system’s available resources gradually decrease as the
number of tasks increases. The proposed KDDQN-JOARA
method can continuously interact with the environment
through the agent and optimize the computation offloading
strategy and computation resource allocation strategy simul-
taneously to obtain better performance and generate higher
revenue.

Figure 7 shows the performance comparison of the five
methods in terms of total energy consumption under different
strategies as the number of tasks sent by the vehicle increases.
From the figure, as the number of tasks continues to increase,
the total energy consumption of the system will also con-
tinue to increase. At the same time, the KDDQN- JOARA
method proposed in this article can generate lower energy
consumption compared to the other four algorithms. This is
because the DQN algorithm is easy to lead to over-estimation
when obtaining the Q value, and the convergence is slow
and unstable, so it performs generally in terms of energy
consumption. Greedy schemes choose fixed actions without
learning, which can easily fall into local optima, leading
to significant performance losses. The QGA algorithm per-
forms worse than the KDDQN-JOARA method in solving
large-scale edge resource allocation problems like cluster col-
laboration. Therefore, Figures 5, 6, and 7 show that compared
with the other four methods, the KDDQN-JOARA method
can minimize the average execution delay of task and reduce
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FIGURE 6. The effect of task number change on profit.

FIGURE 7. Energy consumption versus the number of tasks.

the energy consumption of system while balancing the profit
of ESP.

3) THE IMPACT OF CHANGE IN THE COMPUTATION
RESOURCE REQUIRED OF TASKS
Next, we compare the impact of different computational
resource demands on latency, where the number of tasks is
set to 70, and the number of ESPs is set to 4. shown in
Fig. 8, we tested the delay variation results of the amount of
computing resources required by the task from 1500 to 4000
Megacycles, respectively. It can be observed that for all meth-
ods, the average latency grows as the computational resources
required by the task increase. It can be seen from the figure
that the proposed KDDQN-JOARA-based method consis-
tently outperforms the other methods. Specifically, when
the amount of required computing resources is as high as
4000 trillion cycles, compared with DQN, QGA, Greedy
and Random, KDDQN-JOARA reduces the average delay by
18%, 24%, 35% and 39%, respectively.

Similarly, for the ESP’s profit of executing the task,
as shown in Fig. 9, the ESP’s profit of all methods increases

FIGURE 8. Average delay versus the number of CPU cycles required by
tasks.

with the computational resources required. This is because
an increase in the amount of computing resources required
for task computing means that resources with higher com-
puting power must be allocated to tasks, and resources with
higher computing power will be priced higher. The Random
scheme will randomly choose between high and low bene-
fits. The overall revenue will significantly reduce when too
many low benefits are selected. At the same time, the greedy
algorithm makes it difficult to achieve the optimal solution.
In addition, both DQN and QGA methods are inferior to the
KDDQN-JOARA algorithm in terms of revenue and aver-
age delay because, through the interaction between agent
and environment, the KDDQN-JOARA algorithm can realize
efficient offloading decision and resource allocation strategy.
Our algorithm can better perceive the global environment and
obtain higher revenue through the interaction between the
agent and the environment.

As shown in Fig. 10, when the resource demand of comput-
ing tasks increases, the energy consumption generated by the
KDDQN-JOARA algorithm is still less than that of the other
four methods. Specifically, when the required computing
resources are up to 4000Megacycles, compared with DQN,
QGA, greedy algorithm and randommethod, The total energy
consumption generated by the KDDQN-JOARA method is
reduced by about 14%, 24%, 37% and 43%, respectively,
because introducing our SDN concept can more reasonably
realize the unified scheduling of global variables. At the
same time, the proposedmethod can achieve efficient offload-
ing decisions and resource allocation strategies. Therefore,
we show that the proposed method is the best among the five
methods.

VI. DISCUSSION
This paper proposes an SDN-driven cloud-edge cluster col-
laborative IoV architecture. In our scenario, there aremultiple
ESPs, which form a rich shared resource pool. Aiming at
solving the resource shortage problem faced by traditional

VOLUME 12, 2024 10801



X. Shen et al.: Computing Resource Allocation Strategy Based on Cloud-Edge Cluster Collaboration

FIGURE 9. Profit versus the number of CPU cycles required by tasks.

FIGURE 10. Energy consumption versus the number of CPU cycles
required by tasks.

edge computing architecture when dealing with the growing
in-vehicle applications, a dynamic pricing model for resource
sharing in the cluster is adopted. It reflects the dynamic nature
of the resource provision market and makes ESP more flex-
ible and effective in setting resource prices and participating
in resource-sharing mode. In order to realize the efficient
search for the best offloading and computing resource allo-
cation decision in this complex scene, this paper proposed
a task offloading and resource allocation algorithm based
on KDDQN-JOARA, which adopted the idea of clustering
algorithm and took the task requirements and delay as the
basis, so as to quickly determine the task should choose
local computing mode or offloading computing mode in the
early stage of the algorithm. The formation of task-offloading
computing clusters provides more specific environmental
information for the DDQN algorithm. By learning resource
allocation decisions under different states, DDQN can grad-
ually optimize the algorithm to improve task efficiency and
resource utilization and finally obtain the optimal offloading
and computing resource allocation decision. Finally, the sim-
ulation and analysis of our proposed method are carried out.

The simulation results show that considering the cloud-edge
cluster collaboration scenario, ESP has more choices when
executing tasks to allocate computing resources and can
select the computing resources with lower execution costs
when meeting the task delay requirements. Compared with
other existing algorithms, our algorithm has great advantages
in terms of task’s average response delay and ESP’s profit.

Face the future, considering the resource-sharing mode
of cloud-edge cluster collaboration scenario, it can be fur-
ther applied to intelligent traffic management systems to
help cities monitor and manage traffic flow, reduce con-
gestion, and improve energy efficiency. However, there are
also limitations, such as cost considerations, infrastructure
requirements, and security and privacy issues. Since security
is a very important section, therefore, next, we must con-
sider the authentication and authorization mechanism when
resources are shared between different ESPs to ensure that
only legitimate users and devices can access edge computing
resources and data. Use multi-factor authentication for added
security.

VII. CONCLUSION
In the IoV scenario, this paper proposed a collaboration
architecture integrating SDN into IoV cloud-edge clusters
to expand resources and effectively handle task offloading
during peak hours. A dynamic pricing model was intro-
duced to facilitate resource sharing among different ESPs.
Based on this framework, the joint optimization problem of
task offloading and resource allocation was formulated with
the objective of minimizing the completion delay of tasks
and maximizing the profit of ESP. The KDDQN-JORAR
algorithm was employed to solve this problem. Firstly, the
task delay was treated as a hard constraint, and the initial
offloading node was selected. Then, the DDQN algorithm
was used to find the optimal solution for task offloading
and resource allocation, satisfying the requirements of both
vehicles and ESPs. Experimental results demonstrated that
the proposed algorithm achieved significant improvements in
reducing the delay of task, decreasing the energy consump-
tion of system, and enhancing the profit of ESP compared to
other algorithms.
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