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ABSTRACT The task of accurately forecasting the trajectory of a vessel, and in general a moving object
operating in free space until its destination remains an open challenge. This paper addresses this problem
by describing an unsupervised data-driven framework for short and extended horizon forecasts, from the
perspectives of data mining and machine learning. We propose a data-driven algorithmic approach named
‘‘EnvClus*’ that models efficiently historical vessel trajectories at a global scale, forming a mobility graph
that depicts the most likely movements among two ports. EnvClus* is able to make tailored route forecasts
considering the characteristics of the vessels (i.e. length, draught) along with information regarding the
executed trip. The proposed method is able to forecast the most likely realistic and smooth trajectory
from a given query position of a vessel (entire route or underway forecasting) towards its destination
port. We illustrate the accuracy and effectiveness of our method through a series of scenarios for long and
short term forecasting using real world data from around the globe. These experiments indicate an overall
improvement of 33% over state-of-the-art and baseline methods; with the benefits of our approach being
more apparent when dealing with longer trips from container vessels.

INDEX TERMS Trajectory prediction, mobility analytics, vessel route forecasting, trajectory clustering.

I. INTRODUCTION
Smart technologies and sensors are gradually being adopted
throughout the transportation chain and especially sea trans-
port. Monitoring vessel movement has been made possible
by the Automatic Identification System (AIS) [1], with
positional messages transmitted from hundreds of thousands
of vessels worldwide each day. While knowing a vessel’s
current position is important, the ability to accurately forecast
its trajectory into the future, is vital for a wide range of
stakeholders across the industry. Applications of having an
accurate estimation of the vessels’ future paths range from
handling port traffic congestion to avoiding accidents at sea.

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

Nowadays the fields of ‘‘mobility analytics’’ and ‘‘comput-
ing with spatial trajectories’’ have emerged, focusing on
computational methods capable of deciphering the mobility
patterns of various objects (such as people, vehicles, airplanes
etc.). Consequently, the research community has dedicated
significant efforts over the past few years to solving the issue
of moving object trajectory forecasting [2], [3], [4], [5].
Accurate route forecasting leads to better route plan-

ning, a critical component of safe and efficient maritime
operations. Having a reliable route forecast allows for
ports to accurately estimate the time of arrival of vessels,
thus improving port operations efficiency. Additionally,
through combining the predictions for different vessels,
an estimation for the traffic of an area in a specific future
time can be extracted. Such information allows for better
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voyage planning, resulting in turn in more efficient and
environmentally friendly movement from the vessels’ part.
Finally, Vessel Traffic Services and other ships may use these
forecasts to improve the overall situational awareness and
detect current and future dangers (e.g. collisions).

In contrast though with other areas, the maritime domain
exhibits several unique challenges that limit the applicability
of general-purpose methods. The first challenge in respect to
general purpose approaches, is related to the nature of the AIS
data in real world conditions. The non-uniform transmission
rate, noise and network coverage issues induce both spatial
and temporal uncertainties [6], [7], [8] differentiating vessel
movement monitoring from other GPS usecases. Secondly,
unlike the automotive domain, marine vessels operate in
‘‘free space’’ unconstrained by road networks, while heavily
affected by external conditions (such as bad weather).
Vessel trajectories can be understood as constrained only in
specific areas where sea separation schemes are enforced
(e.g port entry areas, heavy traffic areas etc.). Shipping
routes form a dense network of port to port connections
but are far from static over time. They are highly dynamic,
affected by changes in supply and demand, economic growth,
port throughput and specialization, technical advancements,
geopolitical tensions and other external factors. The paths
connecting these ports are often highly affected on a spatial
level (e.g. boundaries, length) and can completely disappear
on various occasions.

As a result, nautical charts used for marine navigation,
that amongst others contain paths connecting different ports,
often face outdated issues. Additionally, such maps (i.e. Open
Street Map1) usually provide a single path connecting an
origin and a destination port, while in practice it is likely
that vessels follow multiple paths which deviate significantly
from each other. For example, after the blockage of the Suez
Canal in March 2021, several ships were rerouted, diverting
around the Cape Horn (the southern tip of Africa) adding
an extra 3,800 miles to their journey and up to 12 days
extra sailing time. On this occasion, the majority of route
forecasting and time of arrival forecasting algorithms used
in of the shelf systems, failed to adapt their forecasts, as they
relied on traditional routing algorithms and cartography, not
including alternative routes to a given destination. The current
weather conditions and vessel characteristics, also highly
affect a captains decision on which route to follow as depicted
in n Figure 1, where the path taken may differ significantly
depending on several factors.

While several works regarding route forecasting in the
maritime domain have been proposed over the years [3], [9],
most approaches focus on short-term predictions. Although
some of these approaches are very accurate for the first
20 or 30 minutes, they suffer in predicting the vessels’ route
after 1 hour. Hence tasks that focus on long-term events
(e.g., Estimation of Time of Arrival, Total amount of fuel
consumption) can not be solved using such mechanisms

1https://www.openstreetmap.org

FIGURE 1. Illustration of the Piraeus-La Spezia trip, from the year of
2019, where the path taken by the vessels near the island of Kithira may
differ significantly depending on the vessel or the journey in question.

and require a separate approach. Moreover, we can see that
the majority of current approaches are based on machine-
learning, and especially neural networks, thus requiring large
amounts of data for training. In order not to limit the size of
training datasets, it is common practice that generic models
are generated, while more often than not additional features
included in the AIS messages are being ignored. This often
results in models that do not consider the vessel’s destination
or characteristics, providing predictions in line with common
behavior, without focusing on the journey in question. For
the purpose of overcoming such issues, some recent works
incorporate the past movement of the vessel during the
prediction [10], [11], thus requiring multiple positions for
each query, without though taking advantage of any static
information within the AIS.

Overall, this work provides a framework capable of fore-
casting the full path of a vessel from a given query location
until its destination port. To accomplish this, we propose
a data driven algorithmic approach named ‘‘Envclus*’’ that
efficiently models historical vessel trajectories at a global
scale, forming a mobility graph that depicts the most likely
vessels’ movements among two ports (origin/destination).
Since the proposed algorithm does not rely on expert selected
parameters, it can be applied on highly skewed and non-
uniform datasets, exhibiting good accuracy and performance.
The focus of our work is on designing a real world solution
with the desired properties of practicality and accuracy.

The contributions of this work are as follows:
• A data driven and non-supervised method for extracting
common pathways of movement of vessels between two
ports. As a result, for each origin-destination ports pair,
a mobility graph is created encapsulating patterns of
vessel movement in the area.

• A method that can forecast the full route of a vessel
- from the origin port - while at the same time is
capable to answer to queries submitted while the vessel
is underway, returning the predicted future positions
until the end of its trip. Considering the vessels’ and
the trips’ characteristics, the proposed method is able
to perform tailored route forecasts for each particular
vessel.
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We improve our previous work (EnvClus [12]) with
Envclus*, in the following directions:
• EnvClus* returns vessel-specific forecasts through the
use of classification models, while EnvClus provides the
same route forecast for every query vessel.

• EnvClus* is able to capture in detail the entire space
where vessels moved considering multiple baseline
trajectories, in contrast to EnvClus that only considered
one.

An empirical evaluation of our method is performed, using
real-world data for both passenger and container vessels. The
evaluation focuses on entire trajectory forecasts, underway
forecasts and short-term trajectory forecasting, using state-
of-the-art implementations as baselines.

The remainder of this paper is organized as follows:
first we present related work for route forecasting tech-
niques (Section II). Afterwards, the components of our
proposed method are described in detail (Section III) and the
experimental evaluation is presented (Section IV). Finally,
we conclude our work with a brief summary where we
also provide possible future steps for further improving our
approach (Section V).

II. RELATED WORK
A. TRAJECTORY DATA MINING
Datamining from trajectory data has been the focus of several
works in the last few years [13], [14], especially in the big data
era where rich spatio-temporal data allows for more extensive
analysis [15], [16], [17]. One of the main purposes of such
studies is to better understand and model the behaviour of
moving objects. This can be interpreted as extracting moving
patterns and may be achieved through different techniques,
such as clustering [18], [19] or classification [20]. As an
example, the technique proposed in [21] constructs a traversal
graph by using the road segments that have been traversed by
some reference trajectories. Another technique that extracts
a digital map with rich knowledge from an unstructured
GPS point cloud of moving vehicles was proposed in [22].
The road segments are detected using novel graph-based
clustering techniques.

B. FREE SPACE MOVEMENT PROCESSING
Furthermore, several methods aimed at discovering moving
patterns can be found in literature for objects moving in free
space. Examples of such movement are hiking activities or
the trips performed by vessels and planes. Lee et al. [23]
proposed a trajectory clustering algorithm, named TraClus
that discovers common parts from multiple trajectories.
In TraClus the trajectories are partitioned firstly into a set
of subtrajectories, using the minimum description length
(MDL) principle. Then the different parts are grouped into
clusters introducing an algorithm similar to DBSCAN [24].
Also, a pipelined algorithm for clustering movement data was
proposed by Gudmundsson et al. [25], where the trajectories
are split and a label for each subtrajectory is annotated,

according to its geometric property. Then, the trajectories
are transformed into label sequences and a method for
detecting frequently occurring strings (motifs) is applied.
In the final step, similar subrajectories are detected using
the DBSCAN algorithm. In [26] the authors partition the
space using a grid and introducing a graph that summarizes
the trajectories movements among the cells. Additionally,
the problem of summarizing trajectories into corridors (i.e.
passages where common movement has been noticed) has
been investigated in [27]. In order to extract these corridors
they segmented the trajectories using a mesh grid and group
the parts into clusters, using an agglomerative algorithm that
considers their discrete Fréchet distance. In the end, the
corridors returned were the sequences of the detected clusters
with similar starting/ending locations. Another technique
that detects corridors where the moving objects frequently
traverse together was proposed in [28], partitioning the
trajectories in subtrajectories taking into account spatial areas
that are frequently traversed together.

C. MARITIME DATA MINING
Trajectory mining techniques have been widely applied in the
maritime domain too [9], [29]. For instance, an unsupervised
technique that detects roads of sea has been proposed
in [30], clustering the vessels positions as they are reported
through AIS messages. Other attempts in extracting common
pathways for vessel movement can be found in [31], where
roads are extracted by grid merging, and in [32] through
the use of trajectory clustering and statistical analysis. The
framework described in [33] focuses mainly on container
and tanker vessel activity, to discover commercial routes
and determining shipping trends, using loads of historical
AIS messages, as well as vessel-specific information on
gross tonnage. A pipeline for extracting shipping lanes
from large AIS datasets is proposed in the work by
Kontopoulos et al. [34]. This approach is able to model
vessel movement, as common pathways between waypoints,
through a novel clustering technique based on DBSCAN that
takes the speed and the course attributes of themoving vessels
into account. The inclusion of the Lagrange method for
interpolating the trajectories allows for the approach to handle
even sparse AIS data. The end results include a representation
of common vessel traffic in an area of interest, regardless of
the vessels’ destinations or characteristics.

In this work, the proposed framework is able to extract
common pathways between specific origin and destination
ports, providing a more accurate representation of the vessel
movement for such trips. Moreover, other ship or voyage
characteristics are incorporated into the extracted mobility
graphs in the form of classification models. Finally, our
framework uses these pathways in order to provide accurate
forecasts of the path the vessel will follow. The latter, i.e.
forecasting future movement of vessels, is probably one of
the most popular problems in trajectory maritime analytics in
recent years [3]. As an example, the authors in [35] process
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AIS data in order to predict the vessel’s behavior in the next
30 minutes proposing a clustering algorithm that uses the
Karhunen-Loeve transform and Gaussian Mixture Models.

1) DEEP LEARNING FOR VESSEL TRAJECTORY ANALYSIS
With the rise of neural networks in the past few years,
several works utilize deep learning techniques to predict the
behavior of vessels. These works may focus on different
aspects of movement at sea from predicting a vessel’s heave
motion [36] to providing an estimate about future vessel
traffic flow over an area [37], [38], [39]. Similarly, a number
of frameworks that take advantage of their capabilities for
effective trajectory forecasting have been proposed in recent
years [40]. While there are different types of neural networks,
the most prominent works for route forecasting are based
on Recurrent Neural Network architectures (RNNs). These
works take advantage of the memory capabilities of the
RNNs, dealing with the trajectory as a data series, and
effectively consider the past movement of a vessel for their
predictions.

A specific form of RNNs, the Long Short-Term Memory
(LSTM) architecture, is able to keep an internal state
after processing a data row. This way, the LSTM is able
to encode the vessel’s state of movement and provide
informed predictions, making it a viable solution for the route
prediction problem. Chondrodima et al. [41] showcased the
efficiency of LSTM networks compared to other techniques,
through an experimental comparison over AIS data from
the areas of Brest and the Aegean. For a more complex
approach, the network proposed in [42] consists of an
encoder network aiming to summarize the past movement
of the vessel and a decoder network that forecasts the
next positions of the vessel. A variation of the LSTM
network, called bidirectional LSTM (Bi-LSTM), has been
used recently in some state-of-the-art approaches to achieve
even better accuracy. First, in [10] an the encoder-decoder
architecture allows for forecasting the future locations of the
vessel considering its recent movement. During the encoding
phase, the Bi-LSTM model is used to extract appropriate
information from the vessel’s recent movement. The results
of this network appropriately enrich the input sequence
of positions through an attention mechanism, and allows
for a final LSTM structure to make a prediction of future
movement for an horizon of up to three hours. On the other
hand, Yang et al. rely largely on a denoisingmethod to prepare
the data for their Bi-LSTM network in order to predict future
movement [43]. Finally, in an attempt create a less demanding
architecture, a new model based on Gated recurrent units
(GRUs) was proposed in [44]. An experimental evaluation
conducted on the Chongqing and Wuhan sections of the
Yangzi River indicated that the proposed technique is more
beneficial in terms of training time and accuracy compared
to a similar approach based on LSTMs.

Although these approaches are highly accurate in pre-
dicting the movement of a vessel, they do not provide full
forecasts of each trip until its destination. Additionally, none

of the works mentioned consider the characteristics of the
vessels in their algorithms and provide a common forecast
for all types of ships. Moreover, even if the LSTM-based
approaches have proven to be effective, they all require a
number of past positional messages from the vessels in order
to extract an accurate prediction. The proposed approach
in this work, overcomes these issues by providing full path
forecasts according to the vessel and voyage characteristics
and requiring only its current position.

III. METHODOLOGY
In this section the components of our framework, as seen in
Figure 2, are presented.
Firstly, a preprocessing step selects and transforms the raw

AIS messages to create a training dataset with all trajectories
for a specific port pair (origin-destination) (Section III-A).
Then, using a selected baseline trajectory, we extract a
corridor geometry, by clustering the positional messages
along its path (Section III-B). This last process is repeated
for all remaining trajectories until the full dataset is covered
(Section III-C). Afterwards, wemodel the vessels’ movement
by building a directed graph that depicts the likelihood of
moving between these corridors (Section III-D1). We enrich
this graph by training classification models upon its edges
(i.e. the transitions between corridors) to adjusts appropri-
ately the weights of the graph for each given query vessel
(Section III-D2). After creating the model, a mechanism
for providing a route forecast based on the vessel’s current
position, its selected features and the journey’s characteristics
(Section III-E).

A. AIS DATA PREPROCESSING
With multiple gigabytes of AIS data produced worldwide
everyday, a preprocessing mechanism is required to filter
and select the appropriate data for our model training. This
process (described also in [30]) includes the removal of
erroneous or duplicate messages, noise filtering and trip
extraction. More precisely, the first step simply removes
messages with erroneous or empty positional and movement
fields. Then, a filtering mechanism removes messages that
indicate improbable transitions. In order to do so, for all
consecutive messages of the same vessel, the mean speed
required for the subsequent transition is calculated. Messages
indicating a speed beyond normal movement (i.e. over
50 knots) are discarded. Finally, the AIS messages are
partitioned based on the vessel trip they belong. This was
accomplished considering the geometries of the different
ports around the globe, resulting in an origin-destination pair
for each trip.

B. DISCOVERING A SINGLE CORRIDOR
In this section we describe an algorithm that detects a
corridor of movement along a selected baseline trajectory.
Initially, a baseline trajectory is selected from a set of given
trajectories. Then, a set of envelopes are generated along
the baseline trajectory and a set of clusters are detected for
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FIGURE 2. EnvClus* components; beginning with the preprocessing of the data (A) to the extraction of the corridors (B) and their enrichment with
classification models regarding the vessels behavior (C). Finally, a query point is used to provide a route forecast until the destination port (D).

each envelope. Finally, a corridor is constructed from the
bounding points of the clusters that surround the positions of
the baseline trajectory. More precisely our technique consists
of the following steps.

1) BUILDING THE ENVELOPES
First, we select one of the historical trajectories as a baseline,
guiding us through this process. The shortest, in terms of
duration, trip is selected in order to minimize noise coming
from outlier trajectories. Then, a set of envelopes is created,
traversing the coordinates of this baseline trajectory T̃r . More
specifically, we traverse two consecutive coordinates pk and
pk+1 of the baseline trajectory and we create a rectangle with
width w rotated in the direction of the vector that joins pk and
pk+1 (Figure 3).
In order to detect the coordinates of the envelope e1,

e2, e3 and e4 we first compute the angle of movement
θ = arctan2(pk+1.lat − pk .lat, pk+1.lon − pk .lon). Then,
we compute the vertical and horizontal distances dy =
w
2 cos(θ) and dx =

w
2 sin(θ) respectively from pk and pk+1,

that will be used in order to compute the coordinates of the
envelope.

2) CLUSTERING LOCATIONS
Density based clustering is employed in order to group
together the vessels’ positions that are spatially close. This

FIGURE 3. An example of two consecutive points pk and pk+1 and the
generated envelope.

way we detect the spatial areas that are frequently traversed
by multiple vessels inside each envelope.

Initially, an envelope is created considering two con-
secutive points pk and pk+1 of the baseline trajectory T̃r ,
as it was described in section III-B1. Then we detect the
vessels’ reported positions that lie inside the envelope and
follow the same direction as the direction of the baseline
trajectory. In order to detect these points, we first single
out the vessels’ positions that intersect spatially with the
geometry of the envelope, considering only the positions
whose moving direction is not greater than θmax degrees from
the direction of the baseline trajectory. For this threshold we
could consider angles between 0 and 90 degrees on each side,
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since any object with a larger difference could be considered
going the opposite way from the baseline trajectory. For
smaller thresholds, more corridors will be included in the
end result, since all trajectories should be covered in the end.
In our experiments we use a medium threshold of 45 degrees
(on each side). If the number of points inside the envelope
does not exceed a pre-settled threshold then the envelope is
extended considering the next point of the baseline trajectory
(i.e. build an envelope considering pk and pk+2). This process
is iterated till the number of points inside the envelope
exceeds the maxEnvPoints threshold. In this way, we avoid
generating envelopes with a limited number of points in areas
with limited sampling coverage. We selected maxEnvPoints
to be equal to the number of training trips of each route (i.e.
each envelope will have approximately one point per trip).

In order to detect the frequently followed locations we
project the vessels’ positions in a line perpendicular to the
direction of the vector that joins the points that form the
envelope, as it is illustrated in Figure 4. Then we group
together the spatially close projected points using DBSCAN.
This procedure detects a set of dense locations inside each
envelope, considering the radius ϵ of a neighborhood around
each point.

FIGURE 4. Example of Projecting the points that lie inside the envelope
on a line perpendicular to the direction of the baseline trajectory and
Detecting clusters inside the envelope.

3) DISCOVERING THE CORRIDOR
For each envelope we detect the bounding points (i.e. a min-
imum and a maximum point along the envelope’s projection
line) of the cluster that surrounds the baseline trajectory,
ignoring the other clusters of the envelope. For instance,
Figure 5 presents the envelopes and the corresponding
clusters that are detected considering a baseline trajectory.
We will only consider the clusters that surround the baseline
trajectory, colored green in Figure 5.

Our next step, is to generate the corridor that summa-
rizes the vessels movement across the baseline trajectory.
The overview of the proposed technique is presented in
Algorithm 1. In order to export the corridor we generate
two linestrings: the first is generated by concatenating the
minimum points of the envelopes’ clusters that are associated
with the baseline trajectory, while the second is generated
similarly by the maximum points of the same clusters.

FIGURE 5. An example of detecting a corridor considering the clusters,
of the different envelopes, that surround the baseline trajectory.

The clusters’ bounding points were noisy in several
cases, due to unusual vessel movement. These unusual
movements resulted to the undesirable fluctuation of the
clusters’ bounding points and the union of two different
clusters inside the envelope. Therefore, we followed a
cleaning step that considers the sequence of bounding points
of all the envelopes. Our technique first detects the clusters
with large fluctuations of the bounding points. For each
envelope we compute the distance between the clusters’
bounding points and the baseline trajectory disti, i ∈
[1, . . . , |Envelopes|]. Then, we estimate how the distances
differentiate among consecutive envelopes, dist ′i = disti −
disti−1, i ∈ [2, . . . , |Envelopes|]. Following that, we anno-
tate the envelopes that contain sudden rises or drops in their
bounding points, detecting those envelopes that have absolute
dist ′ value greater than the standard deviation of all absolute
dist ′ values. Finally, we set as noisy all the bounding points of
the envelopes that have a sharp rise (drop) which is followed
by a sharp drop (rise) in at most the next 4 envelopes.
Finally, we curate these noisy points, by replacing them
with the intersecting point between (i) the projection line
of the envelope and (ii) the previous and the next not-noisy
bounding points. This is illustrated in Figure 5 where the
maximumbound of the second envelope’s cluster is annotated
as noisy and is replaced by a new curated point.

The next step towards the detection of the corridors is to
extend by ϵ the boundaries of the detected clusters, for each
envelope. This gives the flexibility to our technique to capture
the points near the edges of the corridor. Finally, a corridor
is generated by concatenating and smoothing (using the
B-Spline [45] technique) the detected (i) minimum and
(ii) maximum points of the clusters. Figure 5 depicts a
corridor that connects the extended minimum and maximum
points of envelopes’ clusters.

Finally, the area covered by the detected corridor is
partitioned again into a new set of envelopes. As it is
mentioned above, the envelopes do not have a fixed length
and they are generated considering the number of points they
cover. Therefore, we decided to partition each corridor in
multiple new envelopes of fixed length considering the course
of the baseline trajectory. More specifically, we traverse the
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baseline trajectory and at fixed length intervals we compute
the intersections between the corridors’ boundaries and the
line that is perpendicular to the baseline trajectory.

Algorithm 1 Detecting a Corridor That Covers the
Baseline Trajectory

input : A baseline trajectory T̃r , a trajectories dataset
D, a scalar ϵ

output: A corridor covering the baseline trajectory
envelopes_clusters← Perform envelopes clustering
considering T̃r & D;
envelopes_clusters′← Select the envelopes_clusters
that surround T̃r ;
for bound ∈ envelopes_clusters′.bounding_points do

noisy_clusters← Find the clusters of
envelopes_clusters′ that contain a noisy bound ;
envelopes_clusters′← Curate the noisy_clusters;
envelopes_clusters′← Extend the bound of
envelopes_clusters′ by ϵ;

end
corridor ← envelopes_clusters′;

C. DETECTING MULTIPLE CORRIDORS
In this section we describe an algorithm for detectingmultiple
corridors of movement that cover the entire given dataset,
employing iteratively the one presented in Section III-B. The
overview of this algorithm is presented in Algorithm 2. Here
we start with a baseline trajectory and we detect the corridor
that covers it. Then, we remove all the points that lie inside
each envelope and the trajectories whose points have been
covered by any detected corridor. We then search for another
baseline trajectory from the set of remaining trajectories.
From the selected baseline trajectory we only consider its
parts that do not overlap with any of the existing corridors
and for each part of the baseline trajectory we compute its
corridor. In turn, we only consider the area from the detected
corridor that does not intersect with any other corridor, not
allowing overlapping corridors. This process is repeated till
all the trajectories have been covered, resulting in multiple
corridors (as depicted in Figure 6).

D. MODELING VESSELS MOVEMENT
1) BUILDING A DIRECTED GRAPH
In order to capture the vessels’ mobility patterns, we generate
a mobility graph that depicts the connectivity among the new
envelopes of the corridors. A directed edge-weighted graph
G = (V, E) is constructed. The set of nodes V corresponds
to the spatial area of the corridors with transitions to other
corridors and the set of edges E connects the envelopes.
In order to detect the nodes of G we identify the envelopes
with transitions to other corridors. With this approach,
we avoid adding nodes and edges in consecutive envelopes
were there are no transitions to other corridors. In case
that consecutive envelopes of one corridor are connected to

Algorithm 2 Detecting Multiple Corridors From a
Collection of GPS Trajectories
input : A set of GPS trajectories D
output: A set of corridors
D′← D;
corridors← [ ];
while D′ ̸= ∅ do

T̃r ← Select a baseline trajectory from D′;
T̃no_intersect ← Find parts not intersecting with
corridors;
for t̃r ∈ T̃no_intersect do

corridor ← find corridor of t̃r considering D′;
D′← Remove from D′ the positions that lie
inside the corridor ;
corridor ′← find the part of the corridor that
do not intersect with any of the corridors;
corridors.add(corridor ′);

end
Tcovered ← Find the trajectories in D′ that are
fully covered by the corridors;
D′.remove(Tcovered );
D′.remove(T̃r );

end

consecutive nodes of another corridor then we only maintain
one connection between the two corridors considering the
first envelopes of the two corridors. Three different weights
dist , transitions and w are assigned to each edge e =
(v1, v2). dist depicts the distance between the two envelopes,
transitions indicates the number of transitions from v1 to
v2 and the weight w favors the most likely path from v1 to
v2.

Initially, the envelope and the corresponding corridor for
each point of the trajectories Ti ∈ D is detected transforming
Ti into T ′i . T

′
i is defined as a sequence of corridors’ envelopes

T ′i : C1 C2 . . . CM ′i , where M
′
i is the number of envelopes

of T ′i . If two or more consecutive coordinates of Ti are
mapped into the same envelope then we keep only the first
instance, not allowing T ′i to have consecutive points of the
same envelope, meaning that M ′i ≤ Mi and that Ck ̸=
Ck+1∀k ∈ {1, . . . ,M ′i−1}. Also, in several cases T

′
i connects

non consecutive envelopes, due to data sparsity. Therefore,
we enrich T ′i with all the envelopes that are between two
consecutive points. Finally, a new dataset D′ that contains
the sequences of trajectories’ envelopes is generated, after
iterating this process for each trajectory Ti ∈ D.

The weight w is introduced for each edge of G. It favors
the most likely movement among envelopes, considering the
number of transitions from one envelope to another and the
distance covered by the edges. More specifically, we iterate
over each detected envelope that connects different corridors
Ck and we compute the total number of output transitions
Ck .out from Ck envelope towards any other envelope.
The weight w is computed using equation 1 favoring the
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FIGURE 6. The raw vessel movement for the trips from Piraeus to Paros in light blue and the corresponding trajectory provided by Open
Street Map in red (left). Our approach is capable of extracting multiple pathways of movement, modelling vessel movement more
accurately (right).

connections with smaller distance and more transitions in the
historical data.

w(Ck ,Cl) =
dist(Ck ,Cl)

transitions(Ck ,Cl)
,∀(Ck ,Cl) ∈ E (1)

Finally, several edges are inserted connecting all the
clusters Ck that belong to the last envelope Envlast with a sink
node with 0 weight, according to equation 2.

w2(Ck , sink) = 0,∀Ck ∈ Envlast (2)

2) ENRICHING THE GRAPH
Here, we generate classification models at branch nodes
of G, as vessels tend to follow specific corridors for their
trips, according to their characteristics. There are several
factors that could determine the vessel’s path, as for instance,
the vessel’s dimensions and draught could pose restrictions
regarding the path it will follow towards the destination port.
These models consider the vessel’s characteristics along with
the temporal characteristics of each trip.

For each node a dataset is generated considering the vessels
that departed from the corridor and those that remained.
More precisely, using the historical data, the vessel transitions
concerning each node are grouped based on whether the
vessel remained at or left the corridor. Using these groups,
as labels, and including vessel-related features (i.e. vessel
ID, vessel type, vessel dimensions and draught), along
with temporal features (i.e. hour of day, day of week and
month), we generate the training dataset. Finally, using
these data we are training a classification model that would
decide whether a vessel will remain at the corridor or
not.

In this work, two classification models were chosen for
experimentation: Decisions Trees [46] and Support Vector
Machines (SVM) [47]. The first creates a tree structure based
on the different features selected in order to classify an input
instance; in our case to decide the most probable corridor the
vessels is going to follow. The same goal is achieved by the
SVM, by creating a set of hyperplanes for the input feature

vectors and generating classification results accordingly. For
each selected branch node both types of models are trained,
and taking into account a validation set, the most accurate is
included within the final model.

E. ROUTE FORECAST
In this section we describe how a route forecast is generated
for a given query location of a specific vessel. Our algorithm
is presented in algorithm 3. Firstly, the corridor’s envelope
qenv that is closest to the given query location qloc is detected.
Then, a temporary graph Gtemp is initialized, considering the
predictions of the classification models that were trained
earlier and penalizes the movement at the not selected
corridors. Following that, the shortest path from the detected
envelope qenv towards the sink node considering the weight
w of Gtemp is computed. Finally, a trajectory is generated
considering the centroids of all the envelopes clusters of the
shortest path.

Algorithm 3 Detecting the Representative Trajectory
input : A query location qloc
output: A representative trajectory repr_traj
qenv← Find the closest corridors’ envelope of qloc;
Gtemp← Copy of G with penalties at the not selected
branches according to the classification models;
envelopes_clusters←
Gtemp.shortest_path(qloc, sink,weight = w2);
trajectory← [ ];
for envelope_cluster ∈ envelopes_clusters do

trajectory.append(envelope_cluster .get_centroid());

end
repr_traj← b_spline(trajectory);

IV. EVALUATION
In this section we present an experimental evaluation of our
proposed technique; incorporating three evaluation scenarios
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FIGURE 7. Indicative trajectories from the different Container trips used
in our evaluation. These trips include voyages from and towards ports of
all continents (except of Antarctica), with their duration ranging from a
few hours to several days.

for both long and short-term route forecasting. First, we pro-
vide details regarding the dataset used and introduce the three
evaluation scenarios. The baseline methods, as well as the
evaluation metrics, are then described. Finally, we conclude
this section by presenting and discussing the performance of
the proposed method.

A. DATASETS
For the purpose of our experiments, we use AIS data from
two types of vessels from around the globe, provided by
MarineTraffic. In order to study the behavior of our approach
in different types of movement, the trips selected include
voyages with little maneuvering required (e.g. Pireaus-
Heraclion) to highly complex trajectories (e.g. Pireaus-
Santorini). Additionally, we included trips whose duration
range from a few hours to days at a time. Regions with
both low and high traffic were considered while selecting
the trips, in order to highlight the effectiveness of the
proposed approach in a variety of circumstances. Focusing
on both Passenger and Container vessels, a separate dataset
was extracted for each type. The first dataset consisted of
9 passenger vessels trips across the Aegean sea for 1 year
(entire 2019). Due to the Aegean sea’s many islands, the
travelling vessels need to follow complex routes to reach their
destination. The second dataset contained four-years of data
(2016-2019) for 16 container trips from and towards some
of the busiest ports around the globe. These trips allowed
us to study the vessel behavior in different parts of the
world, as seen in Figure 7, thus resulting in a more complete
evaluation of our method.

Table 1 provides a more detailed overview of the 25 trips
that we are examining in this study; describing the number
of vessels, the number of distinct trajectories and the number
of AIS messages of the different trips. During training and
evaluation of our models, the trajectories of each route were
split according to their time of occurrence. After sorting
them based on the timestamp of their last AIS message, the
first 70 % of the trajectories (full trips between the ports)
were used for training while the rest were considered for
testing.

TABLE 1. The number of vessels, trajectories (i.e. full paths) and
messages, for each trip of the datasets used for evaluation.
An abbreviation of each port’s country name is also included.

B. EVALUATION SCENARIOS
In order to provide a more detailed analysis of our method we
propose three evaluation route forecasting scenarios:

1) Entire route forecasting: evaluating the forecasted trip
regarding the full route, i.e. from departure port to the
reported destination port.

2) Underway long-term forecasting: evaluating the fore-
casted path to the reported destination port from query
points along the actual trajectory. For the purposes of
these experiments we split each validation trajectory in
three parts and performed multiple queries at each part.

3) Underway short-term forecasting: evaluating the
short-term path forecasted by our method, compared
to a state-of-the-art technique. The focus here is placed
on the accuracy of the first part of the forecasted path,
performing multiple queries along each trip.

C. BASELINE METHODS
For evaluating our method, we consider a set of state-of-
the-art works for route forecasting in the maritime domain.
These selected methods are based on different algorithmic
categories: from a static set of predetermined paths, a classic
trajectory analysis method based on historical data clustering
and an advanced encoder-decoder mechanism that uses two
types of recurrent neural networks in its core. Additionally,
we consider the forecasts of our previously presented work,
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resulting in a complete performance study of the proposed
framework. More precisely we compare the effectiveness of
EnvClus* with:

• EnvClus: the previous version of our approach [12],
which considered the shortest path from the most
frequently visited cluster of the first envelope towards
the destination (sink) node.

• TraClus: a widely-used trajectory clustering technique
introduced by Lee et al. [23]. In this case, we evaluate
TraClus algorithm using all trajectories that share the
same origin and destination ports (i.e. same trip). Since
multiple clusters could be detected for the same trip,
we are reporting the performance of the trajectory cluster
with the lowest distance from the actual trajectory.

• Open Street Map (OSM): the open-source nautical charts
indicating the detailed paths that connect two ports. The
OSM routes are only available for the passenger trips and
not for the container trips.

• Capo: a recently presented deep learning technique
proposed by Capobianco et al. [10] for forecasting the
vessel’s movement for a short period of time.

D. EVALUATION METRICS
For each evaluation scenario we appropriately post-process
the predicted paths and use the corresponding evaluation
metric for comparing the forecasted route to the actual. For
the first two scenarios, concerning the long-term forecasting
of the vessels path, we employ a metric capable of comparing
series of different lengths, since each method provides a
forecast of non-constant size. For the short term forecasting
scenario the baseline method returns forecasts for specific
times in the future. Hence, in this scenario we are able to
use a metric purposed for similarly constructed trajectories,
as mentioned in [10].
Eval. Scenarios 1 & 2 For the first two scenarios we use
the Dynamic Time Warping (DTW) [48], an algorithm used
to align the two trajectories (the actual and the forecasted),
allowing multiple matches to the same point. Then the
distances between the matched points are computed in km,
employing the haversine distance. The reported value is the
average distance (in km) of all thematched points between the
actual and the forecasted trajectory. The forecasts by OSM
and TraClus are usually sparsely sampled, containing large
gaps among two consecutive points. Thus, we interpolate
both the actual and all forecasted trajectories (EnvClus*,
EnvClus, TraClus and OSM) maintaining the same distance
(1km) among consecutive points.
Eval. Scenario 3 For the third scenario we evaluate the
short-term performance of our technique following the same
approach as [10]. More precisely, we compare the distances
among the positions of the actual and the forecasted
trajectories for the upcoming three hours, using three hours
data as input. We then use the Mean Absolute Error (MAE)
metric, measured in Nautical Miles, for our results. For
each query the Capo implementation receives data from the
past three hours as input, and forecasts the vessel’s next

12 positions sampled at a rate of 15 minutes. Accordingly,
we isolate the part of EnvClus*’s forecasted trip considering
the length of Capo’s predicted path and resample it in 12 equal
intervals.

E. PERFORMANCE RESULTS AND DISCUSSION
1) ENTIRE ROUTE FORECASTING
The performance of EnvClus* and the competing techniques
for forecasting the entire route are presented in Table 2.
We also display the average distance for the different trips
in km along with number of journeys that were used in
order to evaluate our technique. Besides the average DTW
distance, we present the percentage of improvement (i.e.
%impr.) that refers to the reduction of DTW distance that our
technique achieves. Greater percentage improvement means
that the trajectory that is forecasted by EnvClus* is closer
to the actual trajectory, compared to the baseline method in
question.

Overall, the proposed approach provides an improvement
of 33.35% in full path forecasts (43.35% and 20.4%,
against state-of-the-art methods and the previous version
respectively). The improvement for passenger and container
vessels was 33.34% and 33.39% respectively. More precisely,
in the passenger dataset EnvClus* outperforms the other
techniques for the majority of the trips, avoiding large
DTW distances. In more detail, the ability of EnvClus* to
make vessel-specific forecasts results to better predictions
in comparison to EnvClus. The only exception occurs for
the Piraeus → Heraclio trip, where the vessels tend to
follow a single corridor and EnvClus achieves a slightly
better performance. TraClus detects multiple clusters from
the given set of trajectories, with each cluster modeling only
a part of the entire route. There are some parts where vessels
move, that are not modeled by any cluster. Thus, techniques
that simply discover trajectories clusters are not suitable
for accurate route forecasts, especially when vessels follow
multiple pathways. Furthermore, the paths available at OSM
in several cases are close to the actual paths that the vessels
followed (e.g. Piraeus → Santorini), but for the majority
of the trips EnvClus* outperforms OSM significantly. The
vessels’ trajectories for Piraeus→ Santorini are illustrated at
the upper part of Figure 8. As we can see EnvClus* captures
the entire space where vessels moved; different colors are
used for the resulting corridors, while the envelopes are
depicted in yellow.

In the containers dataset, we are comparing EnvClus* only
with EnvClus, since the TraClus available implementation
did not terminate in a reasonable amount of time and OSM
paths are mainly available for passenger vessels. The trips of
container vessels are much longer than those of the passenger
vessels and the DTW distance errors are in general larger.
This is happening since the corridors that container vessels
follow, at the selected trips, are usually much wider; this can
also be seen at the lower part of Figure 8 for the trip New York
→ Savannah. EnvClus* in several cases (i.e. Long Beach →
Manzanillo) is able to provide a remarkable improvement
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TABLE 2. Performance results of entire route forecasting for EnvClus* (EC*), EnvClus (EC), TraClus (TC) and OpenSeaMaps (OSM), as calculated by the DTW
(in km), along with the respective improvement of EnvClus*. For the Container vessels dataset we include the results of the EC approach as a baseline,
since OSM routes are mainly available for Passenger vessels and TC could not terminate in a reasonable amount of time.

TABLE 3. Performance results of underway queries for both EnvClus* (EC*) and EnvClus (EC), as calculated by the DTW (in km).
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in the provided forecasts compared to EnvClus, for the
container dataset. For the trips where EnvClus outperforms
EnvClus*, the differences between the DTW distances of the
two techniques are insignificant, and aremainly caused by the
fact that the latter system centers its forecasts at the middle
of these wide envelopes and not necessarily at the most dense
location.

TABLE 4. Performance results for short-term route forecast. The results
presented are the mean absolute error for the three forecasted hours,
measured in nautical miles.

2) UNDERWAY LONG-TERM PREDICTION
In Table 3 we present the performance of our technique
making route forecast queries at different positions of the
test trajectories. A key aspect of EnvClus* is that it models
the entire space where vessels move, differentiating us from
OSM, that provides a single path between two ports. During
the evaluation, we split each test trajectory into three equal
parts (A, B and C accordingly) and generate 7 query points
for each part.

For the majority of the queries EnvClus* still results to
smaller DTW distance in comparison to EnvClus. The results
indicate that EnvClus* is able to adapt to deviations from the
main path reducing the distance from the actual trajectory
as more information is provided regarding the path followed
by the vessel. This observation is more obvious for complex
routes where vessels tend to follow different paths from
the origin port towards the destination port (i.e. Piraeus→
Santorini and Santos→ Salvador).

3) UNDERWAY SHORT-TERM PREDICTION
For the short-term forecasting experiments we only use trips
that take at least 6 hours to complete, as our experiments need
three hours as input and output respectively. Hence, for this
scenario we have a selection of the evaluation trips (Table 4).
Although our approach does not prevail in all trips, the ones
where it underperforms do not show a difference for more
than 5.2%. On the other hand, there are several occasions with
remarkable improvement, compared to the Capo technique.
Focusing on such trips one may attribute the performance
difference to the trips’ complexity, as in Piraeus→ Santorini
depicted in Figure 8 (a-b). While, for trips like New York
→ Savannah, where the vessels mainly tend to follow one

FIGURE 8. The raw trajectories (blue) and the corresponding envelopes
(yellow) and corridors detected by EnvClus* for the trips: Piraeus →

Santorini (top) and New York → Savannah.

main wide corridor, Capo slightly outperforms EnvClus*.
The reason behind this lies on the fact that the EnvClus* route
forecast considers the centers of the corridors as indicators,
even if the vessel moves at the edge of the corridor. In turn,
this points to the fact that regression techniques are not
that capable for modeling multi-branched scenarios with
significant differences between them, giving our approach the
edge.

V. CONCLUSION
In this paper we present a complete framework for providing
full-path trajectory forecasts for vessels. The proposed
method uses patterns from historical data in order to create
corridors of movement and allows for forecasts tailored to
a vessel’s characteristics, by the addition of effective classi-
fication models upon branch points. Along with presenting
the extended methodology, we provide a comprehensive
evaluation through three different scenarios. The results
of this evaluation indicate a significant improvement over
the current state of the art. For full path and long term
forecasting, a notable improvement over the baselinemethods
is observed (33.35% overall), and especially for the Container
vessels dataset. In terms of short-term forecasting the results
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indicate that our approach can compete with state-of-the-art
approaches, such as neural network architectures, with an
improvement that may rise over 65% in some instances. The
accuracy of our approach in highly complex trips highlights
the importance of the classification models included in our
method. Overall, based on these results along with the
interpretability of our models, the proposed approach has
proven to be a high performing solution, capable of handling
different types of queries in a global scale.

There are several opportunities for exploiting the effective-
ness of our system. Forecasting the representative trajectory
from a given query location could be used in order to estimate
the vessel’s time of arrival or to detect anomalousmovements.
For instance, the case where a vessel moves away from the
detected corridors of its route could refer to an anomaly and
should be further investigated.

In the future, we intend to further improve the accuracy of
our approach by superinducing additional features regarding
the trip characteristics (i.e. weather data) and experimenting
with other classificationmodels. Finally, we intend to develop
a scalable framework for effectively providing forecasts for
multiple vessels at the same time, in a distributed way.
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