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ABSTRACT Camera-based object detection is widely used in safety-critical applications such as advanced
driver assistance systems (ADAS) and autonomous vehicle research. Road infrastructure has been designed
for human vision, so computer vision, with RGB cameras, is a vital source of semantic information from the
environment. Sensors, such as LIDAR and RADAR, are also often utilized for these applications; however,
cameras provide a higher spatial resolution and color information. The spatial frequency response (SFR),
or sharpness of a camera, utilized in object detection systemsmust be sufficient to allow a detection algorithm
to localize objects in the environment over its lifetime reliably. This study explores the relationship between
object detection performance and SFR. Six state-of-the-art object detection models are evaluated with
varying levels of lens defocus. A novel raw image dataset is created and utilized, containing pedestrians and
cars over a range of distances up to 100-m from the sensor. Object detection performance for each defocused
dataset is analyzed over a range of distances to determine the minimum SFR necessary in each case. Results
show that the relationship between object detection performance and lens blur is much more complex than
previous studies have found due to lens field curvature, chromatic aberration, and astigmatisms. We have
found that smaller objects are disproportionately impacted by lens blur, and different object detection models
have differing levels of robustness to lens blur.

INDEX TERMS Object detection, lens blur, ADAS, autonomous vehicles, intelligent transportation system.

I. INTRODUCTION
Cameras that capture the visible spectrum of electromagnetic
radiation are most similar to human vision. The road
environment has been created and tailored for human vision
with visible features such as signs, traffic lights, and lane
markings; thus, object detection aims to enable computers
to perceive objects in the road environment similarly to
humans. In recent years, significant advances in deep
learning architectures, datasets, and hardware accelerators
have solidified deep learning models as the predominant
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approving it for publication was Sukhdev Roy.

architecture in object detection [1], [2], [3]. Object detection
models, utilizing deep learning, learn object representations
from large annotated datasets and achieve state-of-the-art
performance on object detection benchmarks [1]. However,
without explicit testing, it is difficult to determine how much
the characteristics of an object’s appearance can change while
still being detectable by themodel due to the black-box nature
of deep-learning object representations. The appearance of
objects can vary significantly due to occlusions, lighting,
precipitation, and lens soiling. However, even within a
camera system, the appearance of objects can vary due to
defocus caused by temperature, sensor/lens misalignment,
sensor noise, compression artifacts, and different image
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signal processing (ISP) parameters. A safety-critical camera-
based object detection system must detect objects reliably
even when impacted by these factors.

Camera-based object detection is also currently being
considered for smart infrastructure supporting safety-critical
applications [4]. Intelligent transportation system (ITS)
infrastructure nodes are sensor units along the roadside
that communicate with connected and autonomous vehicles
(CAVs) to improve transportation through various applica-
tions, as discussed by Clancy et al. [5]. Cooperative collision
avoidance [6] is one such application in which an infrastruc-
ture node perceives the environment and provides third-party
information to autonomous vehicles to increase their safety
and reliability. Advanced driver assistance systems (ADAS),
autonomous vehicles, and Intelligent Transportation System
(ITS) infrastructure nodes are expected to increase road
safety as the technologies advance [7]. Contemporary ADAS
features [8] such as lane keeping, emergency braking,
and blind spot detection use deep learning models for
environmental perception [9].While the cameras surrounding
the vehicle can provide a much greater field of view and
spatial resolution than a single human driver can achieve,
the robustness of deep learning models to degraded images
is much lower than in humans [10].
To create a camera-based object detection system that is

robust enough to support safety-critical applications for the
entire lifetime of a vehicle, which may be on the order
of decades, all potential sources of degradation must be
characterized. Sharpness is a key performance metric when
manufacturing cameras because a sharper image yields higher
subjective image quality. The sharpness of a camera system is
known as its spatial frequency response (SFR), and it defines
how well the system can resolve details in the environment.
The SFR of a camera system has many determining factors
such as cost, manufacturing variability, and, for fixed focus
lenses, sometimes even drift of the sensor/lens alignment
throughout the camera’s lifespan due to temperature cycling,
vibrations, or impacts. When mass manufacturing cameras,
sharpness is measured at end-of-line (EOL) to ensure the
cameras meet a minimum sharpness threshold. Camera
sharpness is typically measured according to ISO12233:2017
using an edge SFR chart as seen in Fig. 4. The modulation
transfer function (MTF) defines the relative contrast a camera
obtains at a given spatial frequency and is the type of SFR that
is used in camera manufacturing. Processing the edge SFR
chart according to ISO12233:2017 provides MTF values for
a range of spatial frequencies and in camera manufacturing
these values must exceed minimum thresholds. Setting an
appropriateMTF threshold is vital for manufacturing because
setting the threshold far too low would create camera systems
that yield severely blurry images that do not capture sufficient
environmental information to carry out safety-critical object
detection, such as ADAS. However, defining the minimum
acceptable MTF threshold to be, for example, the theoretical
maximum MTF of the sensor and lens would only allow a

small percentage of cameras to meet this threshold, leading
to uneconomic manufacturing. Currently, the minimum
sharpness, or MTF, threshold is challenging to determine as
the relationship between MTF and environmental perception
has not previously been characterized, leading manufacturers
to employ a high MTF value to ensure a margin of
safety. The same MTF threshold is generally utilized in
product validation testing, where the camera systems undergo
accelerated life testing to ensure the system’s SFR does not
degrade to an unacceptable degree over the product’s lifespan.

In this study, the impact of several lower SFR camera sys-
tems on object detection performance is evaluated and corre-
lated to MTF values. Characterizing the relationship between
object detection performance and MTF provides insight into
creating acceptable MTF ranges on manufacturing lines
and in product validation testing. The widely available and
commonly used large object detection datasets [11], [12]
could not be utilized as they include unknown variables that
impact SFR, such as subjectively tuned ISP, compression, and
multiple camera/lens combinations. MTF can be estimated
from natural images [13]; however, it’s not representative of
measuring the MTF at end-of-line and in product validation
testing.

To obtain accurate MTF measurements on cameras in an
object detection dataset, a new dataset was collected and
annotated from the perspective of an ITS infrastructure node.
The cameras used to collect this dataset had their MTF
measured according to the ISO12233:2017 standard in a
controlled image quality lab. The dataset consists of cars
and pedestrians traveling up to 100m away, with different
cars and pedestrians being captured to maximize dataset
variability. The camera’s raw Bayer data was captured to
ensure no unknown image processing was introduced, and a
minimal software ISP [14] was applied. The ISP did not apply
edge enhancement algorithms as they alter camera MTF.
The averaging effect of lens blur disproportionately affects
smaller objects, as it is analogous to reducing the number of
pixels on a camera with a perfectly sharp lens, so it was vital
to include a range of object sizes in the captured dataset.

A physically realistic lens model was implemented, using
the point spread functions (PSFs) of a Cooke triplet lens
model, to create accurate lens blur as described and validated
in [15], [16], [17], and [18]. The benefits of a physically
realistic lens model over previous blur models have also
been discussed in [16]. PSFs describe the response of a lens
to a point light source. They are generally not rotationally
symmetric and vary across the image field, with the edges
generally less sharp than the middle. Lens model PSFs
for three wavelengths, red, green, and blue, were obtained
from Zemax’s ‘‘OpticStudio’’ [19]. The lens model was
then defocused by adjusting the parameters of the Zernike
polynomial to obtain blurred PSFs that represent both positive
and negative defocus. The final degraded dataset contains
three steps of defocus in the positive and negative directions,
yielding seven dataset versions on which the object detection
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models can be evaluated. The defocus is not symmetric
around the nominal position in the positive and negative
directions, with both directions yielding images with unique
optical properties.

Many unique deep learning object detection architectures
achieve state-of-the-art performance on object detection
benchmarks. The main differences between the architectures
utilized in this study are the number of parameters, single-
stage versus two-stage networks, use of anchor boxes,
differing loss functions, and a comparison between con-
volutional neural network and transformer neural network
architectures. The six deep learning models chosen were
FCOS, with a ResNet50 FPN backbone, YOLOv8m, Faster
RCNN, with the ResNet50 FPN backbone, Cascade RCNN,
with the ResNet50 FPN backbone, Faster RCNN, with the
transformer-based Swin backbone, and Deformable DETR.
Model performance will be evaluated over each object class
for small and large objects to investigate how lens blurring
impacts model performance on each variable. Evaluating the
model’s performance on the defocused datasets facilitates
drawing the correlation between MTF and deep learning
model performance.

This paper is organized as follows: related works are
discussed in section II. Section III contains the methodology
for analyzing the performance of six object detection
algorithms on seven degraded datasets and measuring the
MTF of the various degradations. The deep learning model
results and the correlation between MTF and deep learning
models are outlined in section IV, with section V drawing
the conclusions.

II. RELATED WORKS
Deep learning object detection models are currently deployed
in safety-critical systems because they greatly outperform
traditional methods based on handcrafted feature extrac-
tion [20], [21]. The need for these systems to be reliable
in every situation has motivated additional research into
the robustness of deep learning models to outlier cases and
degradations. Popular object detection benchmarks such as
COCO [11] provide metrics to analyze outlier cases by
segmenting performance based on object area. The APsmall
metric, created for the COCO benchmark, specifically
characterizes the performance of objects less than 32 ×

32 pixels. Other object detection dataset benchmarks contain
occlusion annotations [22], [23], [24], [25], [26], enabling
evaluation of occluded object performance. The impact of
other external factors such as precipitation [27], [28], [29],
[30], lighting [27], [28], [29], and lens soiling [27] on deep
learning model performance have also been investigated.
There have also been investigations into degradations that
are applied from within the camera system, such as varying
image exposure [27], [28], [29], compression artifacts [28],
[29], [31], [32], sensor noise [22], [28], [29], [32], [33] and
varying ISP parameters [22], [29], [32], [34].

In 2016, Dodge and Karam [32] evaluated the effect
of Gaussian blurring, alongside other degradations, on

deep-learning classification performance and found that
image blurring significantly impacts classification perfor-
mance. Other studies have analyzed the impact of different
types of blur on deep learning models [22], [27], [28],
[29], [33], [35]. Mitigation strategies against blur and other
degradations such as pre-processing with another deep
learning model and adding degraded data to the training
set [29], [35] have also been investigated. Recent research
into evaluating object detection robustness has led to the
creation of datasets containing images that have undergone
multiple degradation types, including blurring [27], [28],
[29], [36]. Training deep learningmodels with blurred images
has been shown to increase robustness against blurring [35],
[36]; however, there is a limit to the amount of additional
robustness that can be gained as blurring an image reduces the
amount of information contained within the image. In 2019,
Geirhos et al. [36] showed that deep learning classification
currently relies heavily on object texture, whereas humans
also avail of object shape to inform object classification
decisions. Object textures consist of high spatial frequencies
that are removed when blurring occurs, explaining the
considerable impact of blurring on deep learning model
performance.

FIGURE 1. Aerial view of the data acquisition setup showing the
controlled 100m path that the objects traversed and some example car
data at four points along the path.

It is clear that blurring significantly reduces deep learn-
ing model performance; however, the correlation between
optical quality and deep learning model performance is still
unknown. The studies above quantify blur amount based on
the kernel size of a uniform disk-like blur kernel; however,
this can not be directly related to optical quality. The blur
kernels used in the studies above are also not physically
realistic as they yield uniform defocus around the image field
and are color channel independent.

Previous studies simulated blur on widespread object
detection or classification datasets, so the impact of post-
processing steps, such as edge enhancement and image
compression, have not been isolated. The blur level has also
not been correlated to an objective SFR metric to allow
researchers and manufacturers to recreate these results with
real defocused cameras. In 2022, Müller and Braun [15]

3556 VOLUME 12, 2024



D. Molloy et al.: Analysis of the Impact of Lens Blur on Safety-Critical Automotive Object Detection

utilized their physically realistic lens model, the same
methodology as in this study, on the Berkeley Deep Drive
[12] dataset to validate their approach for superposition
approximation by comparing SFR and object detection
performance with a single detection model for the pedestrian
class with no offset on the defocus coefficient. Although no
defocus was applied, adding the Cooke triplet lens model
reduced the object detection AP by 6% due to the reduction
in image sharpness. Another area in need of investigation
is the impact that blurring has on object detection perfor-
mance with smaller or further away objects because both
smaller objects and object textures consist of higher spatial
frequencies, which are disproportionately impacted by lens
blurring.

III. METHODOLOGY
A. DATASET
Previous studies investigating the impact of blur on object
detection performance have used publicly available datasets.
Publicly available datasets provide access to a significant
amount of data; however, there are many unknowns sur-
rounding their capture, such as details of the image signal
processing (ISP) algorithms and compression that have been
applied, which may have impacted these studies’ results.
A typical ISP pipeline consists of algorithms to increase
subjective image quality, such as increasing sharpness and
removing noise. These algorithms often modify the spatial
frequencies within the image [37]. Lossy compression
algorithms, such as JPEG, are generally applied to large
image datasets to reduce dataset storage requirements.
Lossy compression exploits the human visual system by
removing higher spatial frequencies from images because
humans tend to perceive object shapes more so than object
texture [36], so the difference in image quality can be
imperceivable while achieving a significant reduction in file
size. Image blurring disproportionately affects these higher
spatial frequencies, so they must be present in the dataset
used to investigate the impact of blur on object detection
models.

In this study, a controlled dataset of uncompressed raw
images was collected using a FLIR BlackFly-S 8.9MP
camera. The images were acquired at a frame rate of 30Hz
in an 8-bit raw Bayer format. The dataset was taken from
an ITS infrastructure node perspective, with the cameras
mounted at a height of 4 meters above the ground and
pointing at an angle of 20◦ towards the ground. The dataset
consists of pedestrians and cars traveling 100 meters away
from the camera on the path shown in Fig. 1. The dataset
was captured to identify the changes in object detection
performance due to lens defocus by minimizing the impact
of external variables such as lighting, weather, and object
occlusions. The test setup in Fig. 1 shows the sensor position
and object path in a car park. The dataset consists of
450 images with 660 object instances, located throughout the
object path, that were labeled in CVAT [38]. The variables
within the dataset are object distance and class. The dataset

was split by class and object size to evaluate the variables
individually. The object size thresholds were determined
by finding the object sizes corresponding to near objects
(between 15m and 30m from the camera) and far objects
(between 50m and 100m from the camera). The resulting
thresholds are 500px2 to 1,500px2 for the small objects
within the person dataset, 3,500px2 to 20,000px2 for the large
person objects, 1,250px2 to 3,500px2 for the small car objects
and 10,000px2 to 40,000px2 for the large car objects. The
individual datasets are evaluated to analyze how the models
perform on different classes and object sizes when impacted
by lens blur.

B. BLUR
Previous works [22], [27], [28], [29], [32], [33], [35] have
utilized a uniform disk-like blur kernel that is spatially
uniform and wavelength independent. However, a real lens
generally has a non-rotationally symmetric point spread
function (PSF) that varies across the field of view, resulting
in different levels of blur in the outer and middle image areas,
as seen in Fig. 2. The PSF is also wavelength-dependent,
with red, green, and blue light refracting differently and
producing varying levels of blur depending on their location
in the image [39]. Production tolerances such as focal length
variations and sensor/lens misalignment can also affect image
quality.

In this study, the Zernike Fringe coefficients of a Cooke
triplet model for three wavelengths were utilized from
Zemax’s software ‘‘OpticStudio’’. The Cooke triplet was
optimized for a wide field of view, resulting in strong
aberrations due to the limited number of lens elements.
The wavefront errors from our Zernike polynomials were
used to simulate the propagation of light through the lens.
The Zernike coefficients (Ac) were linearly interpolated to
produce PSFs at different locations on a 4096 × 2160 pixel
imager. For simplicity, the coefficients are sampled on the
imager’s diagonal and then rotated for the required azimuth,
assuming a rotationally symmetric lens. The resulting PSFs
showed different shapes and levels of aberrations, with the
tendency for the PSF to become smaller and rounder towards
the center. The PSFs were normalized to constant energy
using the l1 norm. The algorithm used for this process is
an approximation of the so-called superposition algorithm
(SP): The iso-planar patches approach [40] assumes that the
PSF does not vary substantially over a particular region,
which allows for approximating the SP with convolution
in overlapping patches. The patches are usually bilinearly
interpolated. The approximation allows for greatly reduced
storage and runtime requirements for the defocused dataset
creation. If all PSFs across the imager have approximately
equal sizes and shapes, the location dependence in the PSF
is eliminated, reducing the equation to a simple convolution.
This study utilizes the iso-planar patches algorithm with
square patches of size 150px2. The PSF for each patch is
taken from the patch’s center. A total of 464× 3 overlapping
PSFs of size 28 × 28 were available for precise simulation.
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FIGURE 2. Defocused image generation pipeline used to generate a defocused dataset with varying levels of physically realistic lens blur.
Example PSFs for the full imager field of view for a single color channel and blur level are shown in the middle of the diagram. Red, green,
and blue PSFs are also shown on the left, highlighting that different wavelengths yield different PSFs. Three defocused images are shown on
the bottom, with defocus coefficients of −1.5λ, 0λ(Nominal), and +1.5λ.

Fig. 2 shows an example of green channel PSFs where
the middle PSFs are more uniform in size and shape than
the outer PSFs. The red, green, and blue PSFs are also
shown, and it is evident that the PSFs across different color
channels have differing sizes and shapes. Larger PSFs cause
more blur and elongated PSFs cause astigmatism to occur
due to the PSF blurring the region non-uniformly in all
directions. An example image from the dataset is on the
right of Fig. 2, and examples of the physically realistic lens
blur are shown at the bottom with varying Zernike defocus
coefficients. Altering the Zernike defocus coefficient yields
different PSFs, changing their size and shape, leading to
unique optical blur and astigmatism for each wavelength.

The lens blur in this study is equivalent to inducing
a sensor/lens misalignment by offsetting the Zernike
defocus coefficient, A4, with different values and using
the wavefront expansion from Eq. 1 with 14 ∈

{−1.5, −1.0, −0.5, 0.0, +0.5, +1.0, +1.5}. Three levels of
lens blur are visualized in Fig. 2.

Wλ(ρ, ϕ) =

C∑
c=1

(Ac + 1c) · Zc(ρ, ϕ) (1)

Wavefront aberration Wλ is evaluated at polar coordinates
ρ, ϕ of a circular pupil, wavefront coefficient Ac, and

the corresponding polynomial Zc for Fringe index c. The
wavefront is expanded into the first C = 20 polynomials,
which represents a highly non-linear decomposition of the
wavefront. The model additionally depends on wavelength λ.
In this study, three wavelengths λ are sampled to model red,
green, and blue color channels using {0.6563µm, 0.5876µm
and 0.4861µm} mapped to the red, green, and blue color
channels of an image.

In our controlled dataset, the objects are, on average,
located approximately halfway between the center and top
of the imager. The application of the different defocus
models produces different blurring: While the pedestrians
appear relatively sharp with the nominal, or 0λ offset,
model in Fig. 2, the two defocused images, with −1.5λ
and +1.5λ offsets, show that the pedestrians are severely
blurred. Visually, the two defocused images are not identical,
and the blur on the pedestrians appears more extensive for
14 = +1.5λ. The difference in blurring between the
two defocused images, even though they share the same
magnitude, can be understood from Fig. 3: The different RMS
wavefront errors correlate to what is observed in Fig. 2.
At the pedestrian’s location in the imager (dotted line in

Fig. 3), the blue curve, visualizing +1.5λ defocus offset,
proceeds at around 9µm, whereas −1.5λ (red) proceeds
significantly lower.
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FIGURE 3. RMS wavefront error over the field. Higher wavefront error
corresponds to more blur at a particular normalized distance d from the
imager’s center. Different defocus coefficient offsets represent defocusing
the lens. The RMS at −1.5 (red) starts at a lower value compared to +1.5
(blue) and then constantly increases towards the imager’s diagonal.
Conversely, the blue curve flattens at medium field positions and then
decreases towards the imager’s diagonal. The objects within Fig. 2 are
located at d = 0.48 (dotted line). Thus, the cause of the differently
blurred pedestrians in Fig. 2 can be understood by the ±1.5λ (blue and
red) curves.

Furthermore, the refocusing sometimes yields less blurred
regions compared to the nominal position with no defocus
offset: The −0.5λ curve (orange) in Fig. 3 proceeds slightly
lower than the nominal curve (grey) in a region between
approximately 0.2 and 0.5 of the normalized distance from
the imager’s center. The nominal setting has lower sharpness
than the −0.5λ offset lens within this range. However, this
is expected behavior because the overall wavefront error
of the nominal curve is still lower than the −0.5λ offset
curve.

C. DEEP LEARNING MODEL SELECTION
This study investigates six state-of-the-art object detection
algorithms as outlined in Table 1. This selection is a
representative sample of the latest architectures, including
single-single, two-stage, and transformer-based architec-
tures. Representing single-stage algorithms are YOLOv8m
and FCOS with a ResNet50 FPN backbone. Two pre-
dominant two-stage algorithms tested are Faster RCNN
with a ResNet50 FPN backbone and Cascade RCNN with
a ResNet50 FPN backbone. Transformer-based algorithms
utilized in this study are Deformable Detection Trans-
former (DETR) and Faster RCNN with a Swin Tiny FPN
backbone.

The initial deep learning architectures for object detection
included a localization step, in which bounding boxes were
predicted that contained objects, and then a classification
step, in which an object classifier predicted the class within
each bounding box, known as a two-stage architecture.
In 2014, Girshick et al. [41] introduced Regions with CNN
features (RCNN), which utilized Selective Search [42] for
detection and Convolutional Neural Networks (CNNs) paired
with support vector machines (SVMs) for classification.

Subsequent work on RCNN led to the development of
Fast RCNN [43] and Faster RCNN [44] with iterative
improvements in inference speed and performance. This
study evaluates multiple versions of Faster RCNN, which
replaces Selective Search with a CNN-based Region Proposal
Network (RPN) to obtain bounding box coordinates.

In this study, we evaluate Faster RCNN with the ResNet50
FPN backbone. The Residual Network (ResNet) [45] com-
bined with a Feature Pyramid Network (FPN) [46] is a
multi-scale feature extraction backbone that combines the
strengths of both ResNet and FPN. ResNet can learn very
deep feature representations by using skip connections to
bypass a few layers at a time, which helps mitigate the
problem of vanishing gradients. FPN, on the other hand,
is a network architecture that allows for the detection of
objects at multiple scales by combining feature maps of
different resolutions. FPNs use a top-down pathway that
upsamples feature maps from higher layers and fuses them
with feature maps from lower layers to create a feature
pyramid. Combining the strengths of both ResNet and FPN,
the ResNet FPN backbone in Faster RCNNcan generate high-
quality multi-scale features necessary for accurate object
detection.
Cascade RCNN is another two-stage object detection

algorithm under investigation in this study that also uses
the ResNet50 FPN backbone. It was introduced in 2018 by
Cai et al. [47] and builds upon the Faster RCNN framework
by introducing a cascade of classifiers to refine the bounding
box proposals. Cascade RCNN uses a series of increasingly
complex classifiers to filter out false positives at each stage of
the detection process. The first stage uses a relatively simple
classifier to filter out the most apparent background regions,
while the subsequent stages use increasingly complex clas-
sifiers to refine the remaining proposals. By using a cascade
of classifiers, Cascade RCNN achieves higher performance
than Faster RCNN. Cascade RCNN also introduces a novel
IoU (Intersection over Union) balancing technique to address
the class imbalance issue that occurs when the number
of negative samples far exceeds the number of positive
samples, leading to biased classifiers. The IoU balancing
technique used in Cascade RCNN helps mitigate this issue
by assigning different IoU thresholds to positive and negative
samples.
Fully Convolutional One-Stage (FCOS) algorithm [48],

introduced in 2019, is a single-stage object detection
algorithm used in this study. It aims to balance the speed of
single-stage detectors, like YOLO, and the accuracy of two-
stage detectors, like Faster RCNN. The FCOS architecture in
this study has the same ResNet50 FPN backbone as Faster
RCNN and Cascade RCNN. However, unlike all previous
algorithms that predict bounding boxes at predefined anchor
locations, FCOS uses an object-centric approach where each
location on the feature map predicts the center of an object,
its size, and its class. This approach enables FCOS to
handle objects of different scales and aspect ratios more
effectively. FCOS also uses a focal loss function that assigns
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higher weights to hard examples during training, which helps
address the class imbalance issue in object detection.

In 2016, Redmond et al. [49] developed the You Only
Look Once (YOLO) architecture, the first widely recognized
object detection architecture to employ a single-stage design.
In YOLO, the localization and classification tasks were
unified and solved by a single CNN, allowing for bounding
box predictions and class labels to be generated in a single
pass using the entire input image. YOLO’s single-stage
approach resulted in faster inference times compared to
two-stage models like Faster RCNN, although it did come
at a slight performance cost. The development of YOLO has
been conducted by multiple groups, increasing performance
and speed [50], [51], [52], [53], [54], [55] and for this
study, we utilize YOLOv8 [55] which was released in 2023.
YOLOv8 is the first YOLO architecture since the original
version to have an object-centric prediction output, similar
to FCOS, with neither utilizing anchor boxes.

Another object detection algorithm that does not
utilize anchor boxes is Deformable Detection Trans-
former (DETR) [56]. Deformable DETR is an end-to-end
transformer-based object detection algorithm introduced in
2020 by Facebook AI Research as a follow-on from their
original DETR transformer-based architecture [57]. This
architecture is a two-stage design, as the image is initially
passed through a CNN backbone, in this case, a modified
ResNet50 backbone, to generate a feature map. The feature
map is then passed through a set of transformer encoder
layers that use self-attention mechanisms to encode the
spatial information of the image. It uses a set of learned
object queries to attend to different regions of the image.
The transformer decoder takes the feature map, and the
object queries as inputs and generates a set of bounding
box predictions and class probabilities for each object
query. Deformable DETR uses deformable convolutional
layers in the ResNet backbone and a deformable attention
mechanism to handle the variability of object shapes and
sizes.

Deformable DETR is an end-to-end transformer-based
object detection model; however, transformer-based back-
bones have also been created. In 2021, Liu et al. created
the Swin Transformer [58] vision backbone, which is a
type of CNN architecture that uses a hierarchical vision
transformer to extract features from input images. It divides
the input image into patches of different sizes and applies
convolutional operations on each patch. The patches are
then processed hierarchically, with the features from one
stage being passed to the next for further processing and
aggregation with features from other scales. It also uses a
technique called shifted windows to reduce the computation
cost of processing multi-scale windows, allowing it to be
more computationally efficient than ResNet. In this study,
we investigate a Faster RCNN model with a Swin Tiny FPN
backbone. Swin Tiny, the smallest version of Swin, is used in
this study as it has a similar complexity to ResNet50, as seen
in Table 1.

TABLE 1. Object detection model breakdown.

The six investigated object detection models represent the
latest innovations in object detection. Each object detection
algorithm was trained on the COCO object detection dataset,
with an image size of 640×480, to keep the training constant.

FIGURE 4. Original image of Imatest test chart utilized to measure MTF
with example levels of blur shown beneath. (a) shows the middle slanted
edge feature blurred to the -1.5λ blur level, (b) illustrates the middle
slanted edge with the nominal lens model applied, with no defocus
offset, and (c) refers to the +1.5λ blur level.

D. METRICS
To evaluate the overall performance of an object detection
algorithm on a set of images, the predictions made by
that algorithm are compared with a manually annotated
ground truth. Within the PASCAL VOC [59] object detection
benchmark released in 2012, the standard metric is average
precision (AP) with a static IoU of 50%. This metric, called
AP50, is the area under the precision-recall curve. The curve
is generated by adjusting the confidence threshold over a
set of predictions. At a low confidence threshold, there are
fewer missed objects but more predictions for objects that
do not exist, leading to a higher recall but lower precision.
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FIGURE 5. Heatmap of MTF50 values interpolated throughout the image. The image background shows the custom slanted edge chart used to measure
the MTF50 values for each horizontal and vertical edge. The top row shows the MTF50 values of the horizontal slanted edge interpolated throughout the
imager. The bottom row shows the MTF50 values of the vertical slanted edge interpolated throughout the imager.

Increasing the confidence threshold inverts this relationship
with more missed objects but fewer predictions of objects
that do not exist, leading to a higher precision but a lower
recall. The precision and recall values associated with varying
confidence thresholds are then plotted and interpolated, and
the area under the curve is AP50. A true positive, for AP50,
is defined as any prediction with an IoU greater than 50%
with a ground truth bounding box. The primary metric in
the COCO [11] object detection benchmark, published in
2015, is AP5095. To calculate AP5095, the IoU threshold
varies from 50% to 95% in 5% increments, and the results
are averaged. Given the varying IoU threshold, AP5095
scores more accurate bounding box localization positively.
AP5095 is the standard metric to benchmark object detection
performance because it encompasses true positives, false
positives, false negatives, and IoU and is the primary metric
used in this study. To evaluate the robustness of the detection
models to different levels of lens blur, 1AP is utilized. 1AP
is the absolute difference between the highest AP5095 and
the lowest AP5095 measured across all blurred datasets.

Given the spatial non-uniformity associated with the lens
model in this study, spatially dependent metrics such as the
Spatial Recall Index (SRI) [17] and the Spatial Precision
Index (SPI) [18] could be employed to directly analyze the
lens’s impact on object detection performance. However,
these metrics are most robust on large datasets with hundreds
of object samples at each pixel location, so they have not been
evaluated in this study.

In previous works, where the impact of blur on deep
learning models was investigated, blur level was generally
related to the kernel size of a Gaussian blur, limiting the
reproducibility of these studies in the real world. MTF is used
to measure the ability of an imaging system to capture spatial
frequencies [60]. ISO standard 12233:2017 [61] provides
a methodology for determining the resolution and MTF of
digital cameras and specifies a test chart used to measure
these parameters. The standard also provides guidelines for
interpreting MTF measurements, specifying key parameters
such as MTF50, the spatial frequency at which MTF is
50% of its maximum value. MTF50 is the most commonly
used metric from an MTF curve, as it correlates well with
perceived sharpness. In this study, the Imatest eSFR test
chart [62] is used to measure the MTF at different regions
throughout the imager at various levels of blur. An image

of this test chart was captured in a controlled environment,
as seen in Fig. 4, after which the same lens model and defocus
parameters were employed to degrade the image. While an
official eSFR Imatest test chart is utilized to characterize the
MTF of the various levels of blur, in this study, MTF50 is
also approximated at a pixel level. To approximate MTF50
at a pixel level, a test chart was generated with a 13 × 7
grid of slanted edges that were then measured according
to ISO12233:2017. The MTF50 measurements taken from
each slanted edge were bilinearly interpolated throughout the
imager for each pixel. The MTF50 heatmaps are shown in
Fig. 5 with the generated test chart visible in the background.

IV. RESULTS AND DISCUSSION
A. MODULATION TRANSFER FUNCTION
To relate the blur level within the images to MTF, an image
of an Imatest [62] eSFR test chart image was captured in a
controlled environment, and the physically realistic lens blur
was applied with the same defocus parameters, as can be seen
in Fig. 4. The figure also shows that negatively defocused
slanted edge (a) and positively defocused slanted edge (c)
do not have the same defocus despite being defocused by
the same magnitude, illustrating that negative and positive
defocus do not result in the same blurred image, as is the
case also for real lenses. While the nominal model, applied
to the slanted edge (b), shows minimal chromatic aberrations,
aberrations can be seen in (a) and (c), although with different
angles and magnitudes.

Measuring MTF as outlined in ISO12233:2017 yields the
results shown in Fig. 6. The top row shows the MTF curves
for the slanted edge at the imager’s top middle under three
defocus levels: 1.5λ, 0λ, and +1.5λ. The bottom row shows
the MTF curves for the slanted edge in the middle of the
imager under the same three conditions. The solid lines
represent the MTF for the vertical slanted edge, with dashed
lines representing the horizontal slanted edge. As expected,
the middle nominal MTF curve achieves the best result,
with an MTF50 of 0.12098cy/px. In the middle nominal
MTF curve, the vertical edge is slightly sharper than the
horizontal edge, with the green channel being the sharpest,
followed by red and then blue. The top nominal MTF,
however, illustrates a vital aspect of a physically realistic
lens model, astigmatism. The vertical lines are much sharper
than the horizontal lines, even without any defocus applied
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FIGURE 6. MTF plots, measured at the top of the image plane (top row) and the middle of the image plane (bottom row). The nominal lens model is
in the center column, with 0λ defocus offset. The left column shows the -1.5λ defocus, and the right column shows the +1.5λ defocus.

due to the inherent astigmatism of the Cooke triplet lens
model at the top of the imager. The observed astigmatism
inverts when offsetting the defocus parameter to -1.5λ as the
horizontal slanted edge is much sharper than the vertical. The
aspect ratio of the PSF for the top middle region of the imager
shifts from predominantly vertically orientated at the nominal
position to horizontally orientated. Wavelength-dependent
chromatic aberration can also be seen when comparing the
nominal MTF curves to the +1.5λ MTF curves because the
sharpest channel in the nominal, green, gets replaced by red
in the positively defocused MTF curves.

The MTF50 results, shown in Table 2, illustrate the
sharpness of the image given the varying conditions. For
the middle edge position, the highest MTF50 was observed
at 0λ defocus for both the vertical and horizontal slanted
edges. As the defocus deviates from 0λ in the positive
and negative direction, the MTF50 lowers for both vertical
and horizontal slanted edges. Looking solely at the vertical
slanted edge results, the nominal, or 0λ, defocus produces
an MTF50 result of 0.12098cy/px. At +1.5λ defocus,
the MTF50 is reduced to 0.041287cy/px; however, the
−1.5λ defocus sees marginally less of a reduction, down

TABLE 2. MTF50 values for different levels of defocus at different
positions around the imager.

at 0.047575cy/px. This asymmetry in sharpness degradation
is even more apparent at the 0.5λ defocus positions, with
the positive defocus at 0.084495cy/px, and the negative
defocus at 0.11cy/px. At the middle position of the imager,
the MTF50 results from the vertical and horizontal slanted
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FIGURE 7. AP5095 of each model for the person class. Models are represented along the x-axis, with each blur level depicted with varying colors,
outlined in the legend. The top figure contains large objects with areas between 3, 500px2 and 20, 000px2 corresponding to a person 15m to 30m
from the camera. The bottom figure contains small person objects with areas between 1, 250px2 and 3, 500px2 corresponding to 50m to 100m from
the camera.

edges share the same relationship, with the positive defo-
cus causing more degradation than the negative defocus.
This asymmetry in sharpness degradation illustrates that
positive and negative defocus parameters must be evaluated
individually.

Given a spatially uniform lens model, the MTF50 results
would remain constant when looking at the different edge
positions; however, due to the field curvature of the lens
model used in this study, the top edge position results are
significantly different from the middle slanted edge results.
The MTF50 for the nominal defocus at the top edge position
is 0.10096cy/px vertically and 0.053692cy/px horizontally.
The variation between orientations highlights the astigmatism
of the lensmodel, as seen in Fig. 6. The sharpness degradation
at the top edge position, when varying the defocus parameter,
is more symmetric surrounding the nominal defocus when
looking at the vertical MTF50 results. The lowest vertical
MTF50 between the top and middle edge positions are very
similar. However, the top position horizontal MTF50 results
are significantly reduced compared to the middle position.
The highest MTF50 result from the top horizontal slanted
edge is 0.079151cy/px at -1λ defocus, at 28% reduction in
MTF50 when compared to the maximum value at the middle
slanted edge. The chromatic aberration and astigmatism
visible in these results are not replicated with previous,
simpler blur models, such as a uniform Gaussian disk kernel,
in [16], which highlights the importance ofmodeling lens blur
utilizing PSFs.

To characterize the relationship between object detection
performance and MTF, it was necessary to obtain an approx-
imation of MTF for each pixel, and this was completed by
generating a custom slanted edge chart with 91 slanted edges,
yielding 364 MTF measurements, which were then bilinearly
interpolated across the entire image. Fig. 5 illustrates the
MTF50 values for horizontal edges in the top row and vertical
edges in the bottom row for each level of defocus. As seen
in Fig. 5, different regions within the image become sharper
as the field curvature of the lens intersects the image plane
caused by the defocus offset. At a defocus of −0.5λ, the
area with the highest MTF50 on the horizontal slanted edge
is between the middle and top of the image, a region that
contains many of the objects in our controlled dataset.

B. OBJECT DETECTION PERFORMANCE
The six representative object detectionmodels were evaluated
on the seven degraded datasets with various defocus parame-
ters, and the results for the person class can be seen in Fig. 7.
Overall performance ranged from 6.15% AP5095 to 97.59%
across all models, blur levels, and object sizes. In Fig. 7,
the top row relates to model performance on large objects,
between 3,500px2 and 20,000px2, corresponding to 15m to
30m away from the camera. The bottom row relates to the
model’s performance on small objects between 500px2 and
1,500px2, corresponding to 50m to 100m from the camera.
Across all models and levels of blur, the average performance
on the large objects is 82.42% AP5095 and 47.85% on the

VOLUME 12, 2024 3563



D. Molloy et al.: Analysis of the Impact of Lens Blur on Safety-Critical Automotive Object Detection

FIGURE 8. AP5095 of each model for the car class. Models are represented along the x-axis, with each blur level depicted with varying colors, outlined
in the legend. The top figure contains large objects with areas between 10, 000px2 and 40, 000px2 corresponding to a car 15m to 30m from the
camera. The bottom figure contains small objects with areas between 1, 250px2 and 3, 500px2 corresponding to 50m to 100m from the camera.

small objects, a substantial performance reduction, indicating
that the small object dataset is a significantly more difficult
task for the object detection models.

The percentage performance difference between large
and small objects, across all models and blur levels, is a
41.94% reduction; however, when analyzing just the nominal
defocus dataset, there is only a 30.34% reduction. The
additional performance degradation between the large and
small datasets, when including the various blur levels, proves
that image blur disproportionately impacts small objects. For
the large object dataset, the models performed best with a
nominal defocus; however, -0.5λ defocus closely follows
the nominal and is even the top-performing blur level for
YOLOv8m and Faster RCNNResNet50 FPNmodels with the
large object dataset. Objects within the large object person
dataset are approximately centered or slightly above the
center of the image. Fig. 5 shows that the 0λ defocus position
has the highest MTF50 value for objects in the center of the
imager, with the -0.5λ having the next highest; however, the
-0.5λ peaks in MTF50 slightly above the imager’s center.
Within our ITS infrastructure node perspective dataset, the
camera is angled at 20◦ towards the ground, resulting in
more distant objects appearing higher up on the image plane.
For the small person object dataset, the positions of most
objects are between the center and top of the imager, aligning
more closely with the MTF50 hotspot in the -0.5λ defocus
position as seen in Fig. 5. The alignment of objects in the
small person object dataset, within the higher MTF50 region
of the -0.5λ defocus, likely explains why the models achieve

a higher AP5095 on the -0.5λ compared to the 0λ across
each model. For this dataset, the models performed best when
blurred with a defocus offset due to object positions aligning
with the lens’ field curvature, highlighting the importance of
validating a safety-critical object detection system utilizing a
physically realistic lens model alongside spatially dependent
performance metrics such as SRI and SPI.

TABLE 3. The difference in AP5095, or 1AP, between the maximum and
minimum performance for each model on the large and small person
object datasets. A lower 1AP represents higher robustness to image
blurring.

The model with leading performance is YOLOv8m at
97.59% AP5095 on the large person object dataset and
77.72% on the small person object dataset. The next top per-
former in the large object dataset is Cascade RCNNResNet50
FPN at 87.94% AP5095, and in the small object dataset is
Deformable DETR with 64.65% AP5095. While YOLOv8m
significantly outperforms other models on average, and with
almost half the number of parameters, its performance on the
+1.5λ defocused dataset drops beneath most other models.
The robustness of eachmodel to blur is evaluated based on the
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difference between its best and worst AP5095 performance
(1AP) over the seven degraded datasets, as shown in Table 3.
In the person dataset, the Swin-based Faster RCNN model
is the most robust model for image blurring, losing just
7.22% AP5095 on the large object dataset and 20.72% on
the small object dataset. This model’s high robustness is
achieved mainly by retaining a significant amount of AP5095
on the dataset blurred with the +1.5λ defocus parameter
as this defocus parameter has the lowest MTF50 values,
as seen in Fig.5 and is the defocus parameter causing
the highest performance degradation. The transformer-based
Swin Tiny FPN backbone appears to be more robust to
blurring than the ResNet50 FPN backbone with the main
difference between the two backbones being that ResNet50
utilizes a CNNs architecture and Swin utilizes a transformer-
based architecture. Across all blur levels and object sizes,
the Faster RCNN model with the Swin Tiny FPN backbone
achieved 69.97% AP5095 compared to just 60.65% AP5095
for the ResNet50 FPN backbone. The Faster RCNN model
with a ResNet50 FPN backbone, Cascade RCNN model, and
Deformable DETR model all appear similarly robust with
a 1AP of 11.79 - 14.48% on the large object dataset and
41.84 - 46.18% on the small object dataset. YOLOv8m is
the least robust model averaged across both the small and
large object datasets; however, while robustness is the worst,
it outperforms the other models in AP5095 on all blurred
datasets except the dataset with a +1.5λ defocus applied
that severely affects the model’s performance. YOLOv8m’s
low performance on the +1.5λ defocus data could be due
to its smaller number of parameters, single-stage design,
or not utilizing anchor boxes. FCOS shares many of these
attributes with a single-stage design, no anchor boxes, and
fewer parameters compared to the two-stage and transformer-
based models, but with more parameters than YOLOv8m.
FCOS’ robustness to image blur is average on the large object
dataset, with a 12.74% 1AP, but much worse on the small
object dataset, with a 52.5% 1AP. Deformable DETR also
does not use anchor boxes, but it has similar blur robustness
to the models that do, suggesting that the fewer parameters
and single-stage design of YOLOv8m and FCOS could be
the cause of the worse blur robustness.

TABLE 4. The difference in AP5095, or 1AP, between the maximum and
minimum performance for each model on the large and small car object
datasets. A lower 1AP represents higher robustness to image blurring.

In Fig. 8, the top row relates to the performance of
models on large objects, between 10,000px2 and 40,000px2,
corresponding to cars that are 15m to 30m away from the

camera. The bottom row shows performance on small objects
between 1,250px2 and 3,500px2, corresponding to 50m to
100m from the camera. Across all models and levels of blur,
the average performance on large objects is 80.97% AP5095
for the car class, a similar result to the large-person object
dataset. The average performance for the small car object
dataset is 66.96% AP5095, an increase of 19.11% AP5095
over the average performance on the small person object
dataset due to cars being physically larger than people, thus
are represented bymore pixels within the normalized distance
threshold. When analyzing the car dataset, the percentage
performance difference between the large and small objects,
over all the models and blur levels, is a 17.3% reduction;
however, when analyzing just the nominal defocus dataset,
there is only a 10.65% reduction. Comparing the large and
small car datasets, it is clear that the small dataset is more
difficult for the models and even more so when there is
image blurring. The performance reduction due to blurring is
slightly less with the car object dataset than with the person
object dataset. This is likely due to the higher number of
pixels representing the car objects and their wider aspect
ratios. The best-performing model on the car object dataset
was YOLOv8m for both large and small object datasets.
As seen in Table 4, the most robust model for the small car
object set is the same as for the small person object dataset,
Faster RCNN Swin Tiny FPN, and when the robustness
score is averaged between the large and small object sets,
this model is the overall most robust. Unexpectedly, the
most robust object detection model for the large object
dataset is Faster RCNN with the ResNet50 FPN backbone
at 12.48% 1AP while having the worst small object dataset
robustness at 63.23%. The high robustness of the Faster
RCNN ResNet50 FPN model could be due to the larger pixel
area or the more horizontal aspect ratio of the car objects.
Due to lens astigmatism, the aspect ratio of objects within
a safety-critical object detection system will likely influence
the object detection system’s performance on that object,
given that the vertical or horizontal features may have a
different level of sharpness.

C. OBJECT DETECTION PERFORMANCE VS. MTF
The MTF measurements captured throughout the imager,
as discussed in Section III-D, are utilized to populate the
MTF50 heatmaps seen in Fig. 5. This method allows us
to approximate MTF50 at each pixel location. The average
MTF50 for the overall dataset, including person and car
classes with small and large objects, is measured by getting an
MTF50 value associated with each object within the ground
truth annotations and averaging them. Each dataset, blurred
with a different defocus parameter, has an associated MTF50
value and AP5095, averaged over the person and car classes,
utilizing both the large and small datasets, making it possible
to evaluate the correlation between MTF50 and object
detection performance. Fig. 9 shows the relationship between
MTF50 and each model’s AP5095 performance on our
dataset. There appears to be a strong non-linear correlation
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FIGURE 9. The lens model, with a 0λ defocus offset, three positive and three negative defocus offsets were applied to our dataset, and a slanted
edge chart. MTF50 values for each defocus offset were measured from the test chart over the imager and bilinearly interpolated to approximate an
MTF50 value for each pixel within the imager. The average MTF50 was measured based on the MTF50 associated with each object location. Each
object detection model predicted objects within the blurred datasets. The object detection model’s AP5095 metrics are plotted against the average
MTF50 metric.

betweenMTF50 and AP5095, proving that sharpness directly
impacts object detection performance. While it is clear that
there is a correlation, the positive defocus parameters do not
align with the negative defocus parameters, as seen by the
figure’s annotations, causing an oscillation between the two.
The difference between the positive and negative defocus
parameters is likely due to the wavelength-dependent nature
of the lens model, causing different chromatic aberrations
that may improve or degrade object detection performance
for the severely blurred datasets. An overall limitation of the
methodology is that this lens model, containing just three lens
elements, produces MTF50 results that are relatively low at
a maximum of 0.22cy/px, whereas typical wide-angle lenses
generally achieve an MTF50 of0.3cy/px with a six-element
lens.

V. CONCLUSION
In this study, a controlled raw image dataset was acquired
and annotated, and a physically realistic lens model was
utilized to blur the images to varying amounts by off-
setting the defocus coefficient of the model’s Zernike
polynomials expansion. The sharpness of blurred images
was then characterized utilizing MTF measurements that
were taken with the same camera as the raw dataset in
a controlled environment, according to ISO12233:2017.
The RMS wavefront error and MTF50 heatmaps were
generated to illustrate the non-uniform sharpness present

in the blurred dataset. The performance of six state-of-
the-art object detection models was benchmarked on the
blurred datasets. The AP5095 performance of the models was
evaluated against the differing defocus parameters for person
and car classes and split into large and small objects. While
YOLOv8m performed best overall in AP5095 performance
across the various datasets, the Faster RCNN Swin Tiny
FPN was the most robust model against image blurring.
Each model was significantly degraded at extreme levels
of blur; however, this degradation was inconsistent across
each model. For a safety-critical object detection system,
the same methodology utilized in this study is needed to
determine the minimum MTF50 allowable to achieve the
minimum object detection performance required to meet a
safety standard. Having characterized the MTF50 and object
detection performance associated with the various defocus
parameters, the relationship between MTF50 and object
detection performance was evaluated, making it possible to
see that MTF50 and AP5095 are strongly correlated.We have
shown, in this study, that a physically realistic lens model
must be utilized when validating mass-produced safety-
critical object detection systems because lens field curvature
causes the image sharpness to be spatially non-uniform,
leading to different levels of object detection performance
within a single image frame.

The next step in investigating the relationship between
MTF and object detection performance is to utilize a
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larger dataset with many object samples covering the entire
image frame. More defocus parameters and object detection
models would provide more data points to characterize the
relationship fully. Spatial metrics such as SRI and SPI
must be utilized to measure the spatially non-uniform object
detection performance caused by the lens field curvature.
An investigation is necessary into how robust an object
detection model can become by using the physically realistic
lens model defocus parameter as a data augmentation step.
The robustness of the trained models can also be quantified
by utilizing the same methodology in this study.
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