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ABSTRACT The integration of photovoltaic (PV) panels has allowed power distribution systems (PDSs)
to regulate their voltage through the injection/absorption of reactive power. The deployment of information
and communication technologies (ICTs), which is required for this scheme, has made the PDS prone to
various cyber threats, e.g., false data injection (FDI) attacks. To counter these attacks, this paper proposes
a data-driven framework to detect FDI attacks against voltage regulation of PV-integrated PDS. Initially,
an attack-free system is modeled along with its voltage regulation scheme, where the grid measurements
are sent to a centralized controller and the control signals are transmitted back to PVs to be used by their
local controllers. Then, a convolutional neural network (CNN) framework is proposed to detect FDI attacks.
To train this framework—which should be able to distinguish between normal grid behaviors and attacks—a
complete and realistic dataset is formed to cover all normal conditions and unpredictable changes of a PDS
during a year. Since normal variations and fluctuations in power consumption lead to changes in the voltage
profile, this dataset is enriched using features such as season, weekdays, weekends, load conditions, and PV
generation power. The performance of the trained framework has been compared with other supervised
Machine Learning-based and deep-learning techniques for FDI attacks against modified IEEE 33- and
141-bus PDSs. Simulation results demonstrate the superior performance of the proposed framework in
detecting FDI attacks.

INDEX TERMS Distribution systems, false data injection, cyberattacks, convolutional neural network,
photovoltaic, voltage regulation.

I. INTRODUCTION

To improve the efficiency of power distribution systems
(PDSs), renewable energy sources, e.g., solar and wind,
have been extensively incorporated into the grid [1]. Among
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these renewable energies, Photovoltaic (PV) systems have
received a high level of consideration due to their efficacy,
low maintenance requirements, and being a viable source
of renewable energy [2], [3]. The deployment of PVs not
only generates electricity but also brings other benefits to
PDSs, for instance, by injection/absorption of reactive power,
which enables the grid to regulate voltage within acceptable
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ranges [4], [5]. In a PV-integrated PDS, voltage readings are
sent to a centralized controller to manage voltage levels at
a specific location, such as the point of common coupling
(PCC). The controller then calculates control signals that
are sent back to the PVs, where they are added to the local
control loops of the PV converters [6]. To have such a voltage
regulation scheme, the central controller and PVs need to
transfer data and commands, which consequently requires the
use of information and communication technologies (ICTs).
Such a deployment, however, makes the entire voltage
regulation scheme vulnerable to various cyberattacks [7],
[8], [9], among which false data injection (FDI) attacks
received significant attention due to their easy execution
and severe impact on the performance of PDSs [10], [11],
[12]. Furthermore, the real-time nature of control systems
makes it difficult to detect and mitigate FDI attacks in a
timely manner. Thus, it is of paramount importance to design
effective detection mechanisms for protecting PV-integrated
PDSs against FDI attacks [13], [14].

Recently, a literature survey has been provided to inves-
tigate the existing challenges associated with distribution
system state estimation and cyber intrusions that mainly
focus on the impacts of FDI attacks, along with devel-
oping the co-simulation platform for investigation of the
vulnerability of cyber-physical systems [15]. In another
literature survey, it is concluded that existing detection
algorithms, which have been developed for cyber attack
purposes in distribution networks, can be classified into two
different groups: (i) model-based approaches, and (ii) data-
based approaches [16]. A novel FDI attack against the
voltage regulation of PDS connected to EV loads has been
investigated in [17] to demonstrate the impacts of such attacks
on voltage stability. Moreover, the potential for a cyber
attack on the measurement signals, that integrate volt-var
control (VVC) in next-generation distribution networks,
has been studied in [18]. Since attackers tend to be
stealthy during cyber attacks, a game-theoretic framework is
defined where system operators can adjust proper settings
to maximize observability with the aim of limiting the
adversary action space. In another work [19], the impact
of cyber attacks on voltage regulation in PDS connected to
photovoltaic systems has been studied. These attacks have
been created by falsifying sensor measurements obtained
from separating switches that can be transmitted to the
centralized control framework in the PDS. On this basis,
a simple detection algorithm is developed whose parameters
can be calculated based on the system behavior under
normal conditions [19]. Another mathematical model, e.g.,
state estimation approaches, can also be deployed for the
detection of FDI attacks in distribution systems [20]. Despite
the effectiveness of model-based methods, they suffer from
several issues, such as requiring accurate knowledge about
the parameters of underlying systems, which may not be
accurately available [21]. Moreover, the designed detection
frameworks are generally restricted to an operational range,
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which can result in non-optimal performance during different
uncertainties in PDSs [22].

On the other hand, a group of other researchers has
recently deployed machine learning (ML) techniques for
real-time detection of different types of cyber-attacks in smart
grids [23], [24], [25], [26]. For example, a learning method,
that uses a time-series algorithm based on neural networks,
i.e., a discrete-time nonlinear auto-regressive neural network
with exogenous inputs, has been suggested to detect FDI
attacks on the distribution infrastructure and mitigate their
impacts accordingly. Another study suggests a deep learning-
based framework, i.e., Multi-layer Long Short-Term Memory
Network (MLSTM), for detecting cyber attacks in active PDS
using voltage and current measurements [27]. Furthermore,
in another work [28], authors have developed a two-stage
technique that combines machine learning methods, i.e.,
Random Forest (RF) and Logistic Regression (LR), to detect
and locate cyber attacks on control systems with the intent
of regulating voltage in PDSs with distributed generators.
In the mentioned work, first, the authors customize an RF
regression method that uses previous voltage measurements
and weather data to predict current voltage levels. Afterward,
an LR-based method is developed to compare the predicted
voltage levels with the actual measurements to identify
and locate the FDI attack in PDS applications. Despite the
acceptable performance of the obtained results, the predicted
voltage level is not accurate due to high variations in
weather situations and many uncertainties in the operation
of distribution networks. A study conducted in [29] has
investigated the impact of changing voltage measurements
on centralized voltage regulation and control. The findings
demonstrate how variations in sensor readings can impact
the dynamics and reactive power injection capabilities of
PV inverters. It is important to mention that low-margin
coordinated attacks that may occur in PDS cannot be
identified by the detection methods discussed in the previous
works. In other words, the aforementioned methods in the
literature have not thoroughly examined detection strategies
for cyber attacks that specifically aim to manipulate the
voltage regulation mechanism of PV-integrated PDSs in
steady-state conditions. This is particularly important when
considering the uncertainties associated with weather con-
ditions that impact the power generation of PVs and load
variations. Therefore, there is a clear need to investigate
detection approaches that can effectively identify cyber
attacks on voltage regulation mechanisms under these
conditions.

Inspired by the above discussion and narrowing the
existing research gaps, this study customizes a deep
learning-based detection strategy to identify FDI attacks
in the voltage control system of a PV-integrated PDS
in the presence of existing uncertainties. The developed
deep learning framework utilizes a Convolutional Neural
Network (CNN) model, which is trained using a dataset that
consists of some features, e.g., loading conditions and voltage
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FIGURE 1. IEEE 33-bus PDS architecture.

measurements, as well as time-based factors such as season,
days of the week, and holidays. During the training process,
the developed CNN framework can extract practical features
for classification, making this framework a proper tool for
complicated applications with many uncertainties in PDS’s
operation compared to existing supervised and unsupervised
ML-based approaches. The developed framework can also be
added to the PDS operation to establish an online monitoring
system based on realistic data. The performance of the
developed framework is evaluated using modified IEEE 33-
bus and IEEE 141-bus PDSs to demonstrate the efficiency
and scalability of the customized approach. Additionally, the
study demonstrates the method’s noise robustness to enhance
the validity and feasibility of the suggested approach in real-
world scenarios. The main contribution of this paper can be
listed as follows:

1) Developing a deep convolutional neural network (CNN)
as a learning-based detection strategy to identify FDI
attacks in the voltage control system of a PV-integrated
PDS using different time-based features and measure-
ment signals;

2) Validating the proposed detection method for frequent
distribution networks and showing the acceptable per-
formance of this method in the identification of FDI
attacks compared to other machine learning approaches;

3) Adding the developed model to the PDS operation
to establish an online monitoring system based on
realistic data and demonstrating the feasibility of this
CNN-based detection in real applications by testing the
robustness of this method against noise and outlier data.

The rest of the paper is organized as follows. In Section II,

both under-study power grids, i.e., IEEE 33-bus and IEEE
141-bus, including their photovoltaic systems and centralized
voltage control schemes, are presented. The concept of an
FDI attack and its impacts are discussed in Section III.
In Section IV, the structure of the developed CNN framework
is explained in detail. The simulation results and performance
evaluation of the proposed methods on the IEEE 33-bus and
IEEE 141-bus PDSs are presented in Section V. Finally,
in Section VI, the paper is concluded and key findings are
summarized.

Il. MODELING OF UNDER-STUDY PDS

In this research, without loss of generality, modified versions
of the IEEE 33- and 141-bus PDSs, which are obtained by
adding PV panels to several of their buses, are used as the
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FIGURE 2. 141-bus PDS architecture.
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FIGURE 3. An example of (a) Load profile (b) PV generation profile in
AESO dataset [30].

test system. The physical structure of IEEE 33- and 141-bus
PDSs are shown in Figs. 1 and 2, respectively. In the IEEE
33-bus PDS, the nominal operating voltage is 12.66 kV,
and the maximum active and reactive power components are
3.715 MW and 2.3 MVAr, respectively. The minimum voltage
magnitude in the system is 0.91 per unit (p.u.) at bus 18,
and the maximum voltage magnitude is 1.0 p.u. at bus 1.
In this grid, the PV panels connected to buses 7, 17, and
30 [31]. Furthermore, in the IEEE 141-bus system, the total
load demands were 8.2 MW and 5.1 MVAR, and the voltage
magnitude changes from 0.89 p.u. at bus 52, 87 to 1.0 p.u.
at bus 1. In this system, four PVs are added to buses 52, 77,
106, and 111 [32]. The acceptable voltage range within a PDS
may vary based on the operator’s standards. For instance, the
ANSI C84.1 defines the standard for voltage variations from
0.9 p.u. to 1.05 p.u. [33] and 0.95 p.u. to 1.05 p.u. [34]. In this
study, it is assumed that the desired voltage is adjusted in the
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FIGURE 4. Impacts of VR scheme on the voltage profile of Bus 16.

range of 0.9 p.u. to 1.05 p.u. The operation of PV-integrated
power grids must satisfy the following conditions:

o The operation of the i-th PV panel depends on its
capacity constraint, which enforces that the total active
(Ppv;) and reactive power (Qpy;) output of the converter
must not exceed a predefined value of apparent power
(Spv;) [35]. Itis assumed that the active power generated
by each individual PV unit is 100 kW and its apparent
power capacity is 500 kVA.

o The operation of i-th PV panel must comply with
constraints on the voltage levels of all buses with the
aim of remaining in the acceptable range of normal
operation. During data generation for training the
CNN model, it is assumed that changes in electricity
consumption in all residential areas are similar for
ordinary people. Also, solar power generation depends
on the weather conditions in a specific area. On this
basis, to define load profiles and PV generation capacity
for IEEE 33-bus and IEEE 141-bus models, we have
used the load data and photovoltaic generation data
coming from past records of a regular electrical system
similar to IEEE 33-bus and IEEE 14 1-bus systems on the
website of the Alberta Electric System Operator (AESO)
over a period of two years. This website can provide
valuable data about load voltage profiles and wind
and solar power forecasting distribution networks [30].
Fig. 3 illustrates an example of a daily load profile and
PV generation.

Voltage regulation schemes—which are implemented into
the distribution system control center—maintain voltage
magnitudes at all the grid buses, e.g., PCC, within specified
limits under varying operating conditions, such as changes in
load and generation. Centralized control systems monitor and
adjust the voltage levels by moderating the reactive power
output of the PVs. The details of the voltage regulation
scheme are explained as a pseudo-code in Algorithm 1.
In addition, the details of a voltage regulation scheme for
such a system in transient conditions are explained in [6]. For
example, the impact of the voltage regulation using PVs on
the IEEE 33-bus PDSs’ voltage level is illustrated in Fig. 4.
It can be observed that without injecting enough reactive
power, the voltage at Bus 16 is below 0.9 p.u. limit for some
periods of time. However, the voltage regulation scheme is
able to bring the voltage close to its nominal value.
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Algorithm 1 Voltage Regulation Algorithm

Input: Power flow data (PFD) of the system model,
Acceptable voltage range (VR), Maximum
reactive power limit (RPL), Time step size
(TS), Analysis Window (AW)

Output: Regulated voltage value (RV)

1 Extract voltage measurements (VM) from PFD for
buses with PVs and voltage regulation system;

2 while Simulation duration < AW do
3 VM' = VM,
4 while VM’ not in Acceptable voltage range VR do
5 Reactive power RP = 0;
6 if VM’ < VR,,,, then
7 | RP=RPL;
8 end
9 if VM’ > VRpign then
10 | RP = —RPL;
11 end
12 Inject or absorb reactive power RP to regulate
voltage; Check constraints such as the
apparent power of the PV’s converter; Run
power flow to get updated VM’
13 end
14 Wait for 7S minutes; Simulation duration
=AW 4 TS;
15 end

16 return Regulated voltage value RV;

To estimate the flow of electric power in power grids,
performing a power flow analysis is required. The main
objective of this analysis is to determine the steady-state
behavior of a system, i.e., voltages and their corresponding
phase angle, which is then used to calculate the flow of
power at each bus under normal operating conditions and
contingency scenarios. Loads of the system are assumed to
absorb current I; when their terminal voltage is equal to V;.
Such relation can be expressed as [36]:

Pi + Ppy; +jOi + QOpy,
Vi

L=1I +jI = )" )]
where P; 4+ jO; is the power consumption of the load in
complex format, Ppy, + jOpy, are the power generation of
the i-th PV, V; is the voltage of the load, and /] and Iii are
the real and imaginary parts of the load currents. By applying
Kirchhoff Current and Voltage laws (KVL/KCL), describing
equation of the PDS can be obtained as [37]

[Bl I
Ip, I
133 I3
— BIBC] | . )
Iny, Iy,
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In this equation, the bus-injection to branch-current (BIBC)
matrix represents the connections and topology of the
distribution system; Ny is the number of loads, and N} is
the number of branches. It should be noted that this matrix
depends on the topology of the system. Moreover, following
the proper numbering of the system nodes, this matrix is
upper triangular. The relation between the node voltages and
the branch currents can also be calculated as follows [37]:

Vi V2 Ip,
Vi V3 I,
Vi Vy Ip,
~| . | =mcBv]| . 3)
Vi Vi, Iy,

It should be mentioned that the branch-current to bus-
voltage BCBV matrix is also dependent on the topology
of the system. Using both of these equations and load
characteristics, the describing equations of the system can be
written as [37]:

V=V, +[BCBV][BIBC]I = V| + [DLF]I “)

It can be observed that the matrix DLF is a function of
the system topology. By solving the equation above, in an
iterative manner, the system states can be obtained.

Ill. THREAT MODEL

The FDI attack on voltage profiles of a PDS is defined
as the deliberate manipulation of sensor measurements to
disrupt the system’s voltage regulation scheme as depicted
in Fig. 5. This type of attack can cause power outages and
financial losses in PDSs. In order for an attack to achieve
this aim, adversaries must inject false data into the voltage
measurements that can result in incorrect computation of
the voltage regulation controllers. This attack vector can be
formulated as follows [38]:

z=axV()+p &)
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where V is the measurement vector of PDSs, ¢ is time,
o and B are attack parameters, and z is the obtained attack
vector. To design an attack, an adversary needs to obtain
good values for a and S. It should be noted that the values
of o and B are selected such that the attack vector does
not trigger the bad data detection (BDD) algorithms of
PDS.

Particle Swarm Optimization (PSO), which is a popular
meta-heuristic optimization algorithm, can be used for
optimizing the parameters of an FDI attack, i.e., « and
[39]. The main aim of this parameter optimization is that
the measured voltage at Bus 16 in the IEEE 33-bus and
Bus 52 in the 141-bus system goes below 0.9 p.u. The
objective function is defined as minimizing the difference
between the measured voltage and the target value of 0.9 p.u.
The search space includes the possible values of o and
B. The PSO algorithm is initialized by setting the number
of particles (50), the maximum number of iterations (100),
inertia weight (0.8), and learning factors. The fitness value
is calculated for each particle in the swarm, and the particle
positions and velocities are updated using the PSO equations.
This process is repeated until convergence or the maximum
number of iterations is reached. The optimized values of
o and B are calculated as « = 1.05 and 8 = 0.03. When
adversaries decide to target a specific bus in the distribution
network, their task involves not just launching an attack but
also figuring out the right parameters tailored exclusively for
the bus that they are compromising. This means they have to
identify the precise settings that provide an impressive way
to compromise the targeted buses. In other words, they are
on a mission to discover the ideal combination to mess with
that particular part of the system. On this basis, the attackers
are not randomly causing trouble. They customize the attack
for the chosen bus ( i.e., Bus 16 in the IEEE 33-bus and
Bus 52 in the 141-bus) and make the whole process more
challenging.

In this study, voltage measurements are transmitted
between PDS and the central controller over the IEC
60870-5-104 protocol. It is assumed that the attacker can
intercept the IEC 60870-5-104 communication protocol and
modify the voltage sensors between PDS and the central con-
troller without being detected. The protocol IEC 60870-5-104
is a standard communication protocol used in electric power
systems for communication between remote terminal units
(RTUs) and control centers. The protocol is designed for
real-time data transfer and control of electric power systems
over wide-area networks. The attacker can then launch a
man-in-the-middle (MITM) attack by modifying the data
being transmitted between the PDS and the central controller.
To execute an MITM attack on IEC 60870-5-104 protocol, the
attacker can use several techniques, such as ARP spoofing,
DNS spoofing, or IP spoofing, to redirect the communication
channel through their device [40]. Once the communication
is redirected, the attacker can modify the data being trans-
mitted by changing the voltage measurement values based
on (5).
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FIGURE 6. Voltage profile of (a) IEEE 33-bus and (b) 141-bus system
under an FDI attack with « = 1.05 and g = 0.03.

The impacts of the mentioned FDI attacks on the voltage
profiles of under-study power grids have been illustrated in
Fig. 6 (a) and (b), respectively. It can be observed that in both
systems, the voltage profiles of several buses drop below the
permissible range leading to the operation of under-voltage
protection systems. Furthermore, the detrimental impacts of
an FDI attack on the voltage regulation of the IEEE 33-bus
and 141-bus systems for 15-minute power consumption data
during two years are illustrated in Fig. 7. Under normal
conditions, the controller maintains voltage in acceptable
ranges through proper reactive power injection and absorp-
tion. However, the FDI attack vector with parameters of
o = 1.05 and B = 0.03 can be launched from r = 07:00 a.m.
to + = 10:00 a.m. leading to a significant voltage drop
below the acceptable threshold due to incorrect decision of
the controller. After ending the FDI attack at r = 10:00 a.m.,
the controller makes efforts to restore the voltage level to
0.95 p.u. to have a normal operation. It can be concluded
that this type of attack can cause severe consequences on
the system’s operation and it is important to detect these
FDI attacks on the voltage profiles in a timely manner.
The following section will represent a deep learning-based
algorithm for detecting this type of FDI attack in PDSs.

IV. ATTACK DETECTION FRAMEWORK

ML-based methods can be trained on a large amount of
raw data to learn complex patterns for the detection of
sophisticated cyber threats that can not be identified by
traditional model-based approaches. Deep learning, as a
supervised ML method, has been also widely deployed for
attack detection in different parts of power grids. These
models can be trained on a huge amount of data from power
grid sensors to learn the normal behavior of the grid and
detect deviations created by FDI attacks. Additionally, deep
learning models can also be used to analyze historical data to
identify patterns and anomalies that may indicate potential
attacks in the grid. The performance of customized deep
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learning methods heavily depends on the adequate dataset
and the structures of the learning method. In this work,
a framework for attack detection in PV-integrated PDS is
elaborated based on a deep CNN method to effectively detect
mentioned FDI attacks on the under-study system.

A. MOTIVATION FOR USING DEEP CNN

Deep learning methods have attracted the interest of
researchers in image recognition purposes. In our work, deep
CNN can be also customized to detect FDI attacks in a
PV-integrated PDS by transforming each row of data into a
matrix similar to a set of images. This deep CNN approach
can analyze high-dimensional data and make them proper
for detecting FDI attacks on voltage sensor measurements.
For FDI attack detection using deep CNN, first, raw data on
voltage measurements and load demands are collected. Then,
deep CNN extracts important features from this data and
uses them to make accurate predictions about the presence
of FDI attacks mentioned in the threat model. This deep
learning method can be trained using a large dataset of voltage
measurements, load conditions, and the amount of power
generated by PVs obtained directly from the PDS during
different time intervals alongside time-related properties
of each sample. During the training of the model using
the comprehensive dataset, any deviation from the normal
operation of the under-study power grid is identified to
know about the FDI attack occurrence. This helps to provide
early warning of potential attacks and prevent them from
causing serious damage to the power grid. Fig. 8 shows how
to customize this deep learning method for the FDI attack
detection in a PV-integrated PDS.

B. DATA GENERATION FOR TRAINING THE SUPERVISED
CNN MODEL

In this section, the process of generating and preparing data
for training a CNN model is explained. The collected data

VOLUME 12, 2024



M. Ahmadzadeh et al.: Deep Convolutional Neural Network-Based Approach to Detect False Data Injection

IEEE Access

- OO
Data Collection (Voltage
measurements, load, ...

Data Processing (normalization,
scaling, ...)

Designing Deep CNN Model
(layers, optimization method, ...)

| Training Deep CNN Model |

Model Evaluation

Acceptable Performance

Unacceptable Performance

| Model Deployment |

FIGURE 8. Design and implementation of a CNN method flowchart.

of the PDS should accurately represent the normal operating
conditions and possible FDI attacks. While inaccurate data
can lead to a biased deep learning model with poor
performance, an adequate and diverse dataset can lead to a
robust and comprehensive deep learning model for FDI attack
detection during different conditions. Historical data from the
AESO website can provide information on load conditions
and photovoltaic (PV) generation, with detailed time stamps
that show when each data point has been recorded. The
dataset allows for the extraction of time-related features such
as seasons, holidays, weekdays, and weekends, which can
then be incorporated as variables during the training phase
of a machine-learning model. Assimilating these time-related
aspects into the model’s learning process will provide the
ability to discern and incorporate patterns associated with
different seasons, holidays, and the distinction between week-
days and weekends. These time-related features enhance the
model’s capacity to make more accurate predictions and
analyze load conditions and PV generation across diverse
time-related contexts. To enrich the dataset for both training
and testing, the obtained samples are gathered at 15-minute
time intervals for two years, using the dataset described
above. Since bus voltages tend to change slowly over time,
a 15-minute interval can provide an adequate representation
of the system’s state within that period. In addition, training
a model for attack detection requires a significant amount
of data. Collecting data at a higher frequency may result
in a much larger dataset, which can be challenging to
manage and process. Moreover, 15-minute intervals are
commonly used in power systems for monitoring purposes,
such as SCADA systems. During each time step, the voltage
regulation scheme was employed to maintain voltage profiles
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in the permissible range. The Algorithm 1 shows the voltage
regulation system during data collection for designing a deep
CNN. However, in some cases, the limitations of PV and
inverter components may prevent full voltage compensation
and regulation. It is important to mention that, for the
IEEE 33-bus system, relevant information, e.g., bus voltages
(V1-V33), load variation AP (0% — 100%), P, (0% — 100%)
were extracted from the power flow analysis, and then
time-related features that include seasons (S; = {1, 2, 3, 4}),
and weekdays/weekends (D; = {0, 1}) were added to the
dataset. In the following, collected data is processed and
converted into a proper format for the offline training of
the deep CNN model. Data processing typically consists of
cleaning the data, dealing with missing values, normalizing
the data, scaling, and transforming the data into a compatible
format. This scaling process standardizes the values across
the dataset and helps to establish an efficient deep CNN
model. On this basis, data can be transformed by removing the
mean and scaling to unit variance. The calculation of standard
scores is as follows [41]:

Xnew = w (6)

o

where u and o are referred to as the mean and standard
deviation of the training samples, respectively. This standard-
ization process helps to ensure that the data changes around
zero with the unit variance which enables a more consistent
comparison of the feature values across the dataset. In this
research, the Max normalization mode is suggested based on
the infinity norm of the data. Infinity norm is a mathematical
concept used to calculate the maximum absolute value of a
set of numbers [42]. By using the infinity norm to normalize
our data such as voltage and load conditions data, the
maximum absolute value of these variables is set to 1,
which can improve the convergence and performance of
the proposed CNN. To prepare the data for use as input
data in a CNN method, each row of data—which comprises
36 features (including 32 bus voltages, load demand levels,
PV’s generated power, season, and weekdays/weekends)—is
reshaped into a matrix format of 12 x 3 matrix. It is important
to mention that the bus voltage of the generator (Bus 1) is
removed due to its constant value (1 p.u.), so that is why
there are 32 voltage measurements in the input data. Then, the
dataset is divided into training and testing sets with a common
train-test ratio of 70:30.

C. DESIGNING DEEP CNN STRUCTURE

In this section, the main aim is to design a deep CNN structure
considering several factors—e.g., the number of layers, the
types of layers (e.g. convolutional, pooling, fully connected),
activation functions, and the optimization algorithm—to be
used for training of our model. This model is developed using
the Sequential API of the TensorFlow library in Python. In the
following, the overall steps of the customized deep CNN are
described in more detail based on Fig. 9
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FIGURE 9. Deep CNN structure used in the developed detection framework.

« Firstly, a two-dimensional (2D) convolutional layer is
applied to the processed data that helps the deep CNN
model learn spatial features. To do this, 32 kernel
functions of size 5 x 1 and the ReLU activation function
are introduced to consider the non-linearity of input data.
The ‘same’ padding is also applied to have the same size
of output and input data.

o Then, a 2D Maxpooling layer is implemented with the
aim of down-sampling and extracting the most important
features along with the reduction in the dimension of the
data. A 2x 1 window is used to reduce the row dimension
by a factor of 2.

« Another 2D convolutional layer with 64 kernel functions
of size 3 x 1 is applied to learn more advanced features
in the data.

o Another 2D Maxpooling layer to down-sample the
feature maps and further reduce the dimension of under-
process data.

« A dropout layer is added to set 20% of the input units to
0 randomly during the training process. This layer can
prevent over-fitting by reducing the complexity of the
model and forcing the remaining neurons to learn more
robust features.

« A flattened layer is also added to the structure to convert
the multi-dimensional output from the previous layer
into a 1D vector for the next dense layer.

« After the flattened layer, a fully connected layer is also
considered to introduce more non-linearity to the output
and learn more complex patterns in the datasets, This
fully connected layer consists of (i) a dense layer with
128 units with ReLU activation function and (ii) another
dense layer with 64 units and the ReLU activation
function.

o The final layer in the model is a dense layer with 1 unit
and the sigmoid activation function. This layer produces
a binary probability that indicates the predicted class.
Since the output is a probability between 0 and 1, which
indicates the probability that the input belongs to the
positive class, the sigmoid activation function is used.

In the following, the deep CNN model, which has
been configured by previous layers, deploys the Adam
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optimization algorithm [43] to update network weights
through iterative gradient descent based on training data.
The Adam optimization method is commonly used with
the binary cross-entropy loss function in deep learning
algorithms. This algorithm keeps track of the first and
second moments of the gradients of the parameters and then
adjusts the learning rate based on the estimated variance
and mean of the gradients. This allows the algorithm to
adaptively change the learning rate during training, prevent
the optimization from getting stuck in local minima, and
accelerate convergence. To use Adam optimization with
binary cross-entropy loss, we calculate the gradient of the loss
function concerning the parameters in the neural network.

Since this customized deep CNN is deployed for classi-
fication problems, a binary cross-entropy loss function L is
defined to update the weights of the neural network for two
classes (i = 1 and 2) as follows [44]:

2
L=-> Tilog(p)
i=1
= —[T1 log(p1) + T2 log(p2)]
= —[T log(p) + (1 — T)log(1 — p)] @)

where T and p are the true labels and the probability of
correct prediction, respectively. For a binary classification
and having a set of assumptions, ie., Ty =T T> =1—-T,
p1 =p,and pp = 1 — p, the L function is simplified as [44]:

if T=1

_ ] —log(p)
L [ if 7=0 ®)

| —log1 = p)

This loss function is deployed to optimize the model during
training by adjusting its parameters.

D. EVALUATING CUSTOMIZED DEEP CNN

After designing a deep CNN model, its classification
performance can be evaluated using several criteria, i.e., TP =
True Positive, TN = True Negative, FP = False Positive,
and FN = False Negative. These criteria can be obtained as
follows:
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TABLE 1. Trail and error for selecting hyperparameter of CNN model for
IEEE 33-bus PDS.

Batch size | Learning rate Max1$1;rtr)10rcu}1lmber Accuracy (%)
10 0.005 50 89.68
10 0.004 50 89.82
20 0.004 75 90.32
20 0.003 75 90.69
25 0.002 75 90.95
25 0.002 100 91.04
25 0.001 100 91.06

TABLE 2. Trail and error for selecting hyperparameter of CNN model for
IEEE 141-bus PDS.

Batch size | learning rate Max1(r)r;uerrr)10r‘1:1}11mber Accuracy (%)
20 0.005 50 90.02
20 0.004 50 90.30
20 0.003 50 91.58
20 0.003 75 92.12
25 0.003 75 92.64
25 0.002 100 94.89
30 0.001 100 95.30

1) Accuracy: It is a metric to measure the percentage of
correctly classified samples in the testing dataset [45]:
TP +TN

Accuracy = )
TP +TN + FP + FN

2) Confusion matrix: This matrix shows the number of
true positives, true negatives, false positives, and false
negatives.

3) Precision and Recall: These metrics are useful for
evaluating the performance of a model when the classes
are imbalanced. Precision measures the proportion of
true positive predictions out of all positive predictions,
while recall measures the proportion of true positives out
of all actual positive samples [45]:

. P
Precision = —— (10a)
TP + FP
P
Recall = —— (10b)
TP + FN

4) F1 score: The F1 score is a harmonic mean of precision
and recall and is useful when both measures are equally
important [45]:

2 x (Precision x Recall)

Fiscore = — (11
Precision + Recall

V. SIMULATIONS RESULTS AND DISCUSSION

In this section, the simulations are conducted on a Windows
PC with a 64-bit Intel i7 core, a 2.9 GHz processor, and 16 GB
RAM. Moreover, the Google Colab with Python 3.8 is
also employed to run deep learning tasks and MATLAB
R2020-b to collect power flow data. Firstly, the feature
importance analysis is presented to determine the most
important features in the dataset during the training of the
proposed CNN. Then, the performance of the customized
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CNN is presented in a wide range of FDI attacks and
compared with other ML algorithms, e.g., Random Forest
(RF), K-Nearest Neighbor (KNN), Logistic Regression (LR),
Support Vector Machine (SVM), and Multilayer Perceptron
(MLP) for PV-integrated IEEE 33- and 141-bus PDSs. This
customized machine learning method is also investigated
during time domain simulations and the robustness against
noise is also investigated. The values of hyperparameters for
the customized CNN model for the training process, which
can be obtained based on trial and error in the search space
of the different hyperparameters, have been listed in Table 1
and 2. As before mentioned, the optimization algorithm is
selected as Adam. The best batch size, learning rate, and
maximum number of epochs are selected as 25, 0.001, and
100, for IEEE 33-bus PDS and 30, 0.001, and 100 for IEEE
33-bus PDS, respectively [46].

A. FEATURE IMPORTANCE ANALYSIS

The feature importance analysis can be carried out to
understand the behavior of the dataset and identify the most
effective features on the performance of the customized CNN
model. In other words, the deep CNN structure can deploy
the most important features during the training process with
the aim of performance improvement. The input dataset for
IEEE 33-bus consists of 37 columns for different operational
conditions that can be listed as follows: The 1% to 33"¢
columns are voltage measurements of all buses. The next
column is allocated to the load variation during the 15-minute
time step. The 35" column shows the amount of PV generated
in the under-study system during the mentioned time step.
The 36 column represents a feature to show the operation of
the under-study power grids during weekdays or weekends.
Moreover, the 37 column is added to consider the impacts
of different seasons. The output dataset can be also classified
into the normal operation of the PDS and under FDI attack
situations. On this basis, the total features of the IEEE-33 bus
can be obtained as 36. Similarly, this definition for different
columns of the dataset for 141-bus is also considered to have
144 features. In Fig. 10, the feature importance analysis for
the IEEE 33-bus dataset reveals that the load variation feature
has a high-level score compared to other features. In contrast,
the time-related feature that shows weekdays/weekends in the
input dataset has the lowest importance during the detection
of FDI attacks. Furthermore, Fig. 11 demonstrates that bus
number 52, which is under attack and connected to PV and
voltage regulation system, is the most important feature in
the 141-bus system dataset and the time-related feature does
not play an important role in the FDI attack detection.

The correlation between features is an essential aspect
of analyzing a dataset. Figs. 12 and 13 provide a feature
correlation color map for IEEE 33-bus and 141-bus systems.
The color bar in both figures ranges from 1 to —1,
where 1 implies two features are completely correlated,
and —1 means they are reversely correlated. In Fig. 12,
we observe that most voltage measurements are highly
correlated with each other. However, feature number 32, the
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FIGURE 11. Importance of each feature in the dataset for 141-bus.
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FIGURE 12. Features correlation color-map for IEEE 33-bus.

load condition, is negatively correlated because an increase
in load leads to a decrease in voltage. Additionally, the
PV generation data and time-related features have a weak
correlation with voltage measurements. Light red cells in the
color map denote the under-attack bus and buses near them
that have lower voltage due to the attack. Similarly, in Fig. 13,
we see a similar correlation pattern. Still, feature 51, the
voltage of bus 52, is lighter red, indicating that its voltage
changes significantly more than other buses due to the attack.

B. PERFORMANCE OF CUSTOMIZED CNN METHOD AND
ITS SCALABILITY

The training loss and accuracy plots for the IEEE 33-bus and
141-bus systems have been illustrated in Figs. 14 and 15,
respectively. It can be observed from Fig. 14. (a) that the
cross-entropy loss function decreases significantly in the
initial epochs of training that interprets the CNN model
can deliver the acceptable performance during the FDI
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FIGURE 14. Training loss and accuracy plot for IEEE 33-bus.

attacks detection in the IEEE 33-bus. Furthermore, the binary
accuracy during the training of this deep CNN model has
been depicted in Fig. 14. (b). In Fig. 15. (a) and (b), some
fluctuations in both the loss function and the accuracy can be
observed for the 141-bus system during the training process
due to the stochastic nature of the training algorithm. After
progressing in the training phase, these fluctuations become
flatter and the deep CNN model becomes more stable.

Table 3 compares the detection results of our proposed
CNN method for IEEE 33-bus PDS with five different
ML models. The performance of the models is evaluated
based on the mentioned metrics in Section IV-D, namely,
accuracy, precision, recall, and F1 score. Based on the results
presented in Table 3, the proposed CNN, outperforms all
other ML models in terms of accuracy, precision, recall, and
F1 score. The CNN achieved an accuracy of 96.24%, while
the next best model, i.e., LR, achieved an accuracy of 94.50%.
In terms of precision, recall, and F1 score, the CNN achieves
values of 95.71%, 96.81%, and 96.26%, respectively, which
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TABLE 4. Detection results for 141-bus PDS.

Model Metric Accuracy  Precision  Recall  FI Score
RF 95.30 95.28 95.31 95.30
KNN 93.90 93.94 93.86 93.90
LR 95.71 99.70 91.69 95.53
SVM 97.01 1.0 94.03 96.92
MLP 96.92 1.0 93.85 96.82
Proposed CNN 97.31 95.41 99.40 97.36

and branches than the IEEE 33-bus system, which means
there is more data available for training and testing ML
models. With more data, ML algorithms can learn more

(b)

FIGURE 15. Training loss and accuracy plot for 141-bus.

TABLE 3. Detection results for IEEE 33-bus PDS.

Model Metric Accuracy  Precision  Recall ~ F1 Score
RF 91.06 91.08 91.02 91.05
KNN 92.33 92.35 92.30 92.33
LR 94.50 95.26 93.67 94.46
SVM 94.61 94.99 94.19 94.59
MLP 94.75 92.75 97.09 94.87
Proposed CNN 96.24 95.71 96.81 96.26

are higher than those achieved by any other model. These
results suggest that the CNN is highly effective in detecting
attacks in the IEEE 33-bus PDS. However, some of the other
models also perform well. For example, LR achieves a high
accuracy of 94.50%, and SVM achieves a similarly high
accuracy of 94.61%. MLP also achieves a high accuracy of
94.75% and has the highest recall of all models at 97.09%.
KNN and RF, although performing slightly worse than the
other models, still achieve relatively high accuracy of 92.33%
and 91.06%, respectively.

The results in Table 4 show the efficiency and scalability of
our proposed CNN method in detecting attacks in the 141-bus
PDS. The CNN achieved the highest F1 score of 97.36%,
which is significantly higher than all the other models. LR,
SVM, and MLP achieved F1 scores of 95.53%, 96.92%, and
96.82%, respectively, which were lower than CNN’s F1 score.
KNN and RF achieved even lower F1 scores of 93.90% and
95.30%, respectively, which were more than 1% lower than
CNN’s F1 score. The CNN also achieved high precision and
recall values, indicating that it was able to detect attacks with
high accuracy while minimizing false alarms. The results of
the 141-bus PDS test also demonstrate the scalability of our
CNN method, as it can achieve high detection accuracy on a
larger and more complex power system than the IEEE 33-bus
PDS. This is particularly important because real-world PDSs
are often large and complex. In summary, the proposed
method showed better performance on the 141-bus system
than the IEEE 33-bus since the 141-bus PDS has more buses
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complex patterns and relationships between the features,
making it easier to detect anomalies and attacks.

C. DESIGNING A REAL-TIME MONITORING SYSTEM
USING DEEP CNN

The outcome of the proposed method in the real-time domain
is illustrated in Fig. 16. The method detects the red area as
an attack, while the green area represents a normal operation.
As can be observed, the developed model can successfully
identify the attack; however, since the performance of the
controller is not considered in the training, the CNN also
identifies the controller’s reaction to the attack as a problem.
From this perspective, the role of the controller will be
considered in the next step. The VR system in certain buses
equipped with PV systems receives feedback from another
bus (not PCC) and then adjusts the voltage of that bus instead
of regulating its bus. For instance, in the IEEE 33-bus PDS,
the PV system installed in Bus 7 and 17 would attempt to
regulate the voltage of Bus 18, which has the lowest voltage
among all the buses, or Bus 30 would try to regulate the
voltage of Bus 33. In this strategy, the PV should also ensure
that its voltage does not exceed the specified range. This
type of regulation strategy can be used to address voltage
instability issues in PDS and maintain the voltage within
an acceptable range. In this scenario, the attacker intercepts
the communication, receives the voltage measurement of
Bus 18, and maliciously changes the voltage measurement
according to the (5). According to the results summarized in
Table. 5, the CNN-based attack detection method performs
better than the alternative scenario when the PVs try to
regulate PCC voltage. This is attributed to the fact that
Bus 18 has a higher likelihood of exceeding the acceptable
voltage range because its voltage is comparatively lower than
the other buses in the system. In summary, based on Fig. 5,
a set of data related to the voltage of different buses, load
profiles, PV power generations, and time-related features,
e.g., seasons, weekdays, and weekends, can go through the
trained CNN detection system. The output of this CNN model
provides information about the situation of the system, i.e.,
attack or normal conditions. It is assumed that these input
data can be measured and updated every second. As a result,
it will take about one second to correctly detect attacks

2813



IEEE Access

M. Ahmadzadeh et al.: Deep Convolutional Neural Network-Based Approach to Detect False Data Injection

Attack starts

Attack ends

=

£0.95

[

g0

8

< 09

>
0.85 ' ' — — ; ; ' '
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time

FIGURE 16. Results of the proposed method for attack detection during a
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TABLE 5. Detection results in IEEE 33-bus PDS when the PV regulates the
voltage of other buses.

Metric

Accuracy  Precision = Recall  FI Score
Model
RF 92.06 92.46 92.31 92.38
KNN 94.83 94.87 94.77 94.81
LR 96.33 97.15 95.90 96.52
SVM 96.94 97.35 96.82 97.08
MLP 97.84 97.46 98.15 97.80
Proposed CNN 99.91 99.92 99.90 99.91
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FIGURE 17. Noise robustness of the proposed method for IEEE 33-bus.

consecutively, making this trained CNN model an online
detection framework for distribution system operators.

D. VERIFYING THE ROBUSTNESS OF THE PROPOSED
METHOD AGAINST NOISE

In a PDS, the transmitted data can be susceptible to noise,
and this can lead to difficulties in the accurate detection of
attacks. To address this issue, it is important to use a detection
method that is robust to noise. The developed detection
method ensures that the system can reliably detect attacks
in real-world scenarios in the presence of noise. Figure. 17
demonstrates the accuracy of our detection method when the
signal-to-noise ratio (SNR) varies between 10 to 70. The
collected results show that the accuracy does not change
significantly in the presence of noise. However, when the
SNR is reduced, the accuracy may decrease slightly.

VI. CONCLUSION

This paper proposed a data-driven framework based on a
CNN model for identifying FDI attacks against voltage
regulation of PV-integrated PDSs. The proposed CNN
framework was trained on a realistic dataset that covered
all normal conditions and unpredictable changes in a PDS.
According to the obtained results, it can be concluded that
the proposed CNN delivered a more acceptable performance
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compared to the mentioned ML models in terms of accuracy,
precision, recall, and F1 score. This model achieved an
accuracy of 96.24%, while the next best model, i.e., LR,
achieved an accuracy of 94.50%. In terms of precision,
recall, and F1 score, the CNN achieves values of 95.71%,
96.81%, and 96.26%, respectively, which are higher than
those achieved by any other model. The scalability of the
proposed method was also demonstrated by testing it on a
larger PDS with 141 buses. In this situation, the proposed
CNN model also achieved the highest F1 score of 97.36%,
which was significantly higher than all the other models.
Although LR, SVM, and MLP achieved F1 scores of 95.53%,
96.92%, and 96.82%, respectively, their performance was
lower than CNN’s F1 score. Moreover, the KNN and RF
achieved even lower F1 scores of 93.90% and 95.30%,
respectively, which were more than 1% lower than CNN’s
F1 score. The proposed framework has provided an effective
monitoring tool for protecting PDSs against cyber threats
and ensuring the secure and reliable operation of power
systems. The convolutional layers in the CNN can identify
spatial correlations within the input data and extract important
features using the fully connected layers to make an accurate
classification decision. The ability of the developed CNN
model to automatically learn relevant features from raw input
data, combined with its scalability, noise robustness, and
high accuracy, make it a promising method for real-world
applications in power system security. In the future, we are
going to develop this deep CNN learning model for other
types of attacks on the control framework during voltage
regulations.
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