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ABSTRACT This study focuses on the adaptive prescribed-time neural control for a class of high-order
switched systems with nonlinear parameterization in presence of unmodeled dynamics and quantized input.
Different from the existing results on finite-time control on basis of adding a power integrator technique, the
controller construction and stability analysis are simplified, and the tracking error remains within a set range
over any prescribed time. Under the frame of backstepping design, a state feedback controller is designed.
During the controller design procedure, Radial basis function (RBF) neural networks with minimal learning
parameters are employed to identify the unknown compounded nonlinear functions, and the control input is
quantized. Based on Lyapunov stability theory, the closed-loop system’s signals are all assured to be semi-
globally uniformly bounded (SGUB), and the tracking error is kept inside a prescribed zone at a finite time.
Finally, a numerical simulation is provided to demonstrate the viability and efficacy of the control strategy.

INDEX TERMS High-order nonlinear systems, nonlinear parameterization, switched systems, prescribed-
time control, unmodeled dynamics, input quantization.

I. INTRODUCTION
In the past few decades, significant process has been made in
the control design and analysis of nonlinear systems since the
backstepping technique [1] was proposed. By combiningwith
the powerful approximation ability of neural networks (NNs)
or fuzzy logic systems (FLSs), more attention has focused
on adaptive control for uncertain nonlinear systems and
many remarkable results have been reported. Consequently,
remarkable results have been reported in various domains,
including systems with strict-feedback forms [2], [3], [4],
pure feedback systems [5], [6], [7], as well as time-delay
and stochastic systems [8], [9]. When modeling physical
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systems, especially complexity ones, it is necessary to simply
the model for control design and analysis, leading to the
occurrence of unmodeled dynamics. It may degrade the
system performance or even cause instability in the closed-
loop system if ignoring its existence. And naturally, controller
design and analysis will bring in more challenge than those
systems without unmodeled dynamics and uncertainties.
Researchers have investigated state feedback control design
for uncertain nonlinear systems with unmodeled dynam-
ics [10], [38], [50], and observer-based control design were
discussed in [11], [12], [51], and [52].

Switched systems are made up a collection of con-
tinuous or discrete subsystems, as well as a switching
law that governs switching for these subsystems [13].
Switched systems have received widespread attention as
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a common type of hybrid system due to their emergence
in many practical systems, such as networked systems
with a switching mechanism [14] and robot manipulator
with variable inertia [15], and so on. Following arbitrary
switching, the global probability stabilization for a class of
switched stochastic nonlinear systems was examined in [16],
tracking control was discussed in [17] for switched uncertain
nonlinear systems with pure-feedback form, and in [18] for
lower triangular form. In [13] and [20], output feedback
control was investigated for a class of uncertain switching
nonlinear systems with unmodeled dynamics. The adaptive
stabilization problemwas investigated for a class of uncertain
switched nonlinear systems with linearly parameterized
in [21]. High-order nonlinear systems are more general than
those with strict-feedback forms and other forms that can
be analysized similar to strict-feeback nonlinear systems,
and traditional controller design and stability analysis based
on quadratic and quadric functions cannot be directly used.
For this reason, many efforts have been shifted to explore a
novel method for the control design of high-order nonlinear
systems, and many remarkable results have been obtained.
For example, an analysis of the global finite-time stabilization
for a class of switched nonlinear systems with powers of
positive odd rational numbers was done in [22], where the
nonlinear terms of the systems must meet satisfy the linear
growth requirement. Though the linear growth condition
was removed in [23], finite-time stabilization and dynamic
uncertainties were not taken into consideration.

Recently, some control strategies with prescribed perfor-
mance for nonlinear systems have been published, which
can guarantee the controlled systems’ transient performance,
and keep the system tracking error within a predetermined
range [24], [25]. However, the research results were mostly
focused on the infinite cases. Soon afterward, the in-
depth studies on finite-time prescribed performance which
makes the tracking error convergence in finite-time were
developed in [26]. Note that the aforementioned research is
conducted by constructing traditional Lyapunov functions for
control design targeting the class of strict feedback nonlinear
functions. High-order nonlinear systems can provide more
accurate descriptions of complex phenomena in the real
world, offering a more precise representation of dynamic
system behavior. Studying high-order nonlinear systems
enables the development of more accurate control strategies
to improve system response performance. An investigation
on adaptive prescribed performance control for a class of
high-order systems with actuator defects was found in [27].
For a class of high-order stochastic nonlinear systems with
prescribed performance function of exponential type, the
adaptive fuzzy finite-time control problem was addressed
in [28].

To reduce the communication rate of control information
being transferred over networks, the input is frequently
quantized before transmission. The quantization of input
signals can be thought of as a map from continuous signals to
discrete finite sets. The control signal to the plant in quantized

control systems is a piece-wise constant function of time
and the system interacts with information quantization [29].
Significant progress has been made in recent years in the field
of input quantization control. For instance, adaptive tracking
control for uncertain strict-feedback nonlinear systems was
addressed in [30]. For high-order nonlinear uncertain systems
with input quantization, output tracking control problem was
covered in [31]. For stochastic nonlinear nonstrict-feedback
systems with full state constraints, the adaptive fuzzy finite-
time quantized control problem was examined in [32].
Input quantization-based finite-time tracking control for
uncertain interconnected nonlinear systems was researched
in [33]. Different from input quantization control, event-
driven control triggers and transmits data based on preset
conditions. An adaptive backstepping control scheme for
nonlinear interconnected systems was presented in [53],
aiming to achieve desired system performance by utilizing
prespecified performance driven output triggering. The study
in [54] introduced event-triggered reference governors that
facilitate collisions-free coordination between leaders and
followers, even in systems with unreliable communication
topologies. [55] addressed the dynamic event-triggered-
based adaptive output-feedback tracking control problem in
nonlinear multiagent systems with time-varying delay.

According to our knowledge, there are few reports on
the outcomes of finite-time prescribed performance control
of non-linear parameterized high-order switched non-linear
systems in presence of unmodeled dynamics, unknown
disturbances together with input quantization. The main
contributions of this paper are as follows.

(1) The study is more general compared with the switched
systems in strict-feedback form [19], [34], [43] or systems
modeled with linear parameterization [21], [27], [46], and
the linear growth condition on the unknown parameter is
removed during the controller design. Additionally, unmod-
eled dynamics and unknown disturbances are taken into
consideration, which improves the practical values of the
study and also the difficulty is improved.

(2) A finite-time prescribed performance controller is
constructed to guarantee the output tracking error remains
within a predefined region at a finite time and all signals
in the closed-loop system are SGUB. Additionally, the
communication burden is reduced by introducing hysteresis
quantize to decrease the communication rate of the actual
input signal, implying that the transmission efficiency is
improved and furthermore the chatting phenomenon is
avoided.

(3) The computational burden is reduced by estimating the
maximal norm of weight vectors of the employed RBFNN
basis functions of all subsystems, meaning that only one
parameter needs estimating online at each recursive step.

(4) Control design is simpler to achieve the objectives
with the sufficient condition V̇ ≤ −α0V + µ than the
traditional finite-time control design method to guarantee
V̇ ≤ −α0V γ

+ µ with γ ∈ (0, 1) [43], [47], [48], which
further reduce the computational burden.
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The remainder of this paper is organized as follows. The
problem formulation and preliminaries are given in Section II.
RBF neural networks and controller design are shown in
Section III. In Section IV, Stability of the closed-loop system
is analysed. Simulation results are given to demonstrate the
effectiveness of the proposed control scheme in Section V.
Section VI draws the conclusions of this paper.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. SYSTEM DESCRIPTION
Consider the following high-order switched uncertain non-
linear system in presence of unmodeled dynamics and input
quantization

ż = qσ (t)(z, y)
ẋi = xpii+1 + fi,σ (t)(x̄i, θ) + 1i,σ (t)(y, z, t),
i = 1, 2, · · · , n− 1
ẋn = qpn (u(t)) + fn,σ (t)(x, θ) + 1n,σ (t)(y, z, t)
y = x1

(1)

where x̄i = [x1, x2, · · · , xi]T ∈ Ri and x =

[x1, x2, · · · , xn]T ∈ Rn are state vectors; u ∈ R and y ∈ R
are input and output of the system, respectively. For i =

1, 2, · · · , n, pi ∈ Rodd
≥1 1{λ ∈ R : λ ≥ 1 is a ratio of

odd intergers}, the function σ (t) : [0, +∞) → M =

{1, 2, · · · ,m} is the switching signal which is assumed to
be a piecewise continuous function of time and where m is
the number of subsystems; θ is an unknown parameter. For
∀k ∈ M and i = 1, 2, · · · , n, fi,k (x̄i, θ) : Ri+1

→ Rr

are unknown continuous functions with fi,k (0, · · · , 0) = 0,
1i,k (y, z, t) are unknown uncertain disturbances, and z ∈ Rn0
stands for unmodeled dynamics.

The goal of the control strategy is to build an adaptive
tracking controller based on a finite-time performance
function such that all closed-loop system signals are SGUB
and the tracking error converges to a predetermined zone at a
finite-time.

To achieve the controlled objective, the following assump-
tions are made.
Assumption 1 [26], [34], [35]: For i = 1, 2, · · · , n and

∀k ∈ M , there exist uncertain non-negative smooth functions
ϕi1,k (·) and ϕi2,k (·) such that∣∣1i,k (y, z, t)

∣∣ ≤ ϕi1,k (|z|) + ϕi2,k (y) (2)

Assumption 2 [35], [36], [37]: System ż = qk (z, y), ∀k ∈ M
is exponentially input-to-state practically stable (Exp-ISpS),
if there exists a Lyapunov function V0(z) satisfying

γ1(|z|) ≤ V0(z) ≤ γ2(|z|) (3)
∂V0(z)

∂z
qk (z, y) ≤ −aV0(z) + γ3,k (|y|) + b (4)

where a and b being positive constants, and γ1(·), γ2(·) and
γ3,k (·) being κ∞-functions.
Assumption 3 [26], [44]: The reference signal yd (t) and its

r-order derivative y(r)d are known and continuously bounded
for r = 1, · · · , n.

Lemma 1: [35], [38] If conditions (3) and (4) are satisfied,
indicating that V0 is an exp-ISpS Lyapunov function for a
system ż = qk (z, y), then, for any constants c̄ ∈ (0, a) and
r0 > 0, any initial condition z0 = z(t0) with ∀t0 > 0,
any continuous function γ̄ satisfying γ̄ (|y|) ≥ γ (|y|), there
exists a finite time T0 > max

{
0, ln

(
V (ξ0)
r0

)/
(a− c̄)

}
≥ 0,

a nonnegative function D(t0, t), defined for all t ≥ t0 and a
signal described by

v̇ = −c̄v+ γ̄ (|x1|) + d, v(t0) = v0 (5)

such that D(t0, t) = 0 for t ≥ t0 + T0, and V0(z) ≤ v(t) +

D(t0, t) withD(t0, t) = max
{
0, e−a(t−t0)V0(z0) − e−c̄(t−t0)r0

}
.

Without loss of generality, assume that γ̄ (s) = s2γ0(s2), then
one has

v̇ = −c̄v+ x21γ0(x
2
1 ) + d, v(t0) = v0 (6)

where γ0(·) is a non-negative smooth function.
Lemma 2: [39], [40] For the constants λ > 1 and

µ > 0, define the set �δ = {δ ∈ R ||δ| < ιµ } with
ι = arc tanh( λ

√
1
/
λ). Then, for all δ /∈ �δ , the inequality

1 − λ tanhλ(δ
/
µ) ≤ 0 holds.

Lemma 3 ( [49]): Let p ∈ Rodd
≥1 and x, y be any real

numbers. For a positive constant c, one has |xp − yp| ≤

c |x − y| ×
∣∣(x − y)p−1

+ yp−1
∣∣.

Lemma 4 ( [41]): For any positive real numbers m and n,
any real-valued function a(x, y) > 0, there exists a positive
function c(x, y) such that∣∣a(x, y)xmyn∣∣ ≤ c(x, y) |x|m+n

+
n

m+ n

(
m

(m+ n)c(x, y)

)m
n

|a(x, y)|
m+n
n |y|m+n (7)

Lemma 5 [42], [43]: For any variable η ∈ R and constant
π > 0, the following inequality holds:

0 ≤ |η| − η tanh
( η

π

)
≤ δπ, δ = 0.2785 (8)

B. PRESCRIBED PERFORMANCE TRANSFORMATION (PPT)
Definiton 1 [26], [44]: A smooth function ρ(t) is denoted as
a performance function when the following properties hold:

a) ρ(t) > 0
b) ρ̇(t) ≤ 0
c) lim

t→Tf
ρ(t) = ρTf > 0 and ρ(t) = ρTf for ∀t ≥ Tf ,

where ρTf and Tf are any small constant and the setting time,
respectively.

Following Definition 1, we can rewrite the performance
function as below

ρ(t) =


(

ρ0 −
t
Tf

)
e

(
1−

Tf
Tf −t

)
+ ρTf , t ∈ [0,Tf )

ρTf , t ∈ [Tf , +∞)

(9)

where ρ0 ≥ 1 and ρTf > 0 are specified parameters.
To guarantee that the output tracking error e1(t) = y(t) −

yd (t) always stays inside a specified prescribed performance
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bound, or to meet the prescribed performance requirements.
An error transformation function S(z1) is designed as

S(z1) =
ez1 − e−z1

ez1 + e−z1
(10)

where z1 is the transformed error.
With the tracking error requirements −l1ρ(t) < e1(t) <

l2ρ(t), where −l1 and l2 being design constants, the tracking
error can be rewritten as e1(t) = ρ(t)S(z1). And then, the time
derivation of e1(t) becomes

ė1(t) = ρ̇(t)S(z1) + ρ(t)
∂S(z1)
∂z1

ż1(t) (11)

In fact,

ż1(t) =
ė1(t) − ρ̇(t)S(z1)

ρ(t) ∂S(z1)
∂z1

= −
ρ̇(t)S(z1)

ρ(t) ∂S(z1)
∂z1

+
1

ρ(t) ∂S(z1)
∂z1

(xp12 + f1,σ (t)(x1, θ)

+ 11,σ (t)(y, z, t) − ẏd )

= ϒ + 0(xp12 + f1,σ (t)(x1, θ) + 11,σ (t)(y, z, t) − ẏd )

(12)

Thus, it can be obtained that

ż = qσ (t)(z, y)
ż1(t) = ϒ + 0(xp12 + f1,σ (t)(x1, θ) + 11,σ (t)(y, z, t) − ẏd )
ẋi = xpii+1 + fi,σ (t)(x̄i, θ) + 1i,σ (t)(y, z, t), i = 2, · · · , n− 1
ẋn = qpn (u(t)) + fn,σ (t)(x, θ) + 1n,σ (t)(y, z, t)
y = x1

(13)

C. QUANTIZED INPUT
According to references [31] and [45], the quantized input
q(u) of the controlled system can be expressed as below

q(u) =



uisgn(u),
ui

1 + κ
< |u| ≤ ui, u̇ < 0,

or ui < |u| ≤
ui

1 − κ
, u̇ > 0

ui(1 + κ)sgn(u), ui < |u| ≤
ui

1 − κ
, u̇ < 0,

or
ui

1 − κ
< |u| ≤

ui(1 + κ)
1 − κ

, u̇ > 0

0, 0 ≤ |u| <
umin

1 + κ
, u̇ < 0, or

umin

1 + κ
≤ |u| ≤ umin,

u̇ > 0
q(u(t−)), othercase

(14)

where ui = v1−iumin (i = 1, 2, · · · , n) and κ =
1−v
1+v with

umin > 0 and 0 < v < 1. q(u) locates into the set U =

{0, ±ui, ±ui(1 + κ), i = 1, 2, · · · , n}, umin > 0 is a dead-
zone range of q(u), and v denotes the measure of quantization
density. And q(u) can be divided into two parts as follows

qpn (u(t)) = S(u)upn (t) + K (t) (15)

where S(u) and K (t) satisfy

(1 − κ)pn ≤ S(u) ≤ (1 + κ)pn , |K (t)| ≤ upnmin (16)

III. RBF NEURAL NETWORKS AND CONTROLLER DESIGN
In this section, we use RBF Neural Networks to approxi-
mate the unknown compounded nonlinear functions arising
from the unknown functions and unmodeled dynamics of
system (1) during the controller design process. They are
of the general form h(x) = wTζ (x), where ζ (x) =

[ζ1(x), ζ2(x), · · · , ζp(x)]T ∈ Rp being a vector-valued
function and ζi(x) as Gaussian functions of the form ζi(x) =

exp
(
−(x − µi)T(x − µi)

/
b2i
)
with µi = [µi1, µi2, · · · ,

µim]T being the center of the basis function and bi the width
of the basis function, i = 1, 2, · · · , p. w ∈ Rp represents
the weight vector. Generally speaking, for any given smooth
function h : � → R, where � is a compact subset of Rm (m
is an appropriate integer) and ε > 0, it can be approximated
by means of RBF neural networks, that is, there exists a basis
function vector ζ : Rm → Rp and a weight vector w∗

∈ Rp

such that sup
∣∣h(x) − w∗T ζ (x)

∣∣ ≤ ε∗, ∀x ∈ �. The quantity
h(x) − w∗T ζ (x) = ε(x) is called the network reconstruction
error and |ε(x)| ≤ ε∗.

The optimal weight vector w∗ defined above is a quantity
only for analytical purposes. Typically, w∗ is chosen as the
value of w that minimizes ε(x) over �, that is

w∗
= argmin

w∈Rp

{
sup
x∈�

∣∣∣h(x) − wTζ (x)
∣∣∣} .

In what follows, an adaptive neural network semi-
globally practical finite-time tracking controller is designed
for nonlinear system (13). First, the following change of
coordinates will be defined{

z1 = z1
zi = xi − αi−1

(17)

where αi−1, i = 2, · · · , n is the intermediate control function,
the controller u will be designed in the last step.

The detailed control design procedure is given in the
following.
Step 1: Differentiating z1 with respect to time t in the first

subsystem yields

ż1 = ϒ + 0(xp12 + f1,σ (t)(x1, θ) + 11,σ (t)(y, z, t) − ẏd ).

(18)

Choose the candidate Lyapunov function as V1 = W1 +

1
2δ1

2̃2
1 +

v
λ0
, where W1 =

z
p−p1+2
1
p−p1+2 , δ1 > 0 and λ0 > 0 are

design parameters, 2̂1 is the estimations of 2∗

1, 2̃1 = 2∗

1 −

2̂1 is the estimation error.
By Assumption 1, one has

zp−p1+1
1 011,k ≤ zp−p1+1

1 0
(
ϕ11,k (|z|) + ϕ12,k (y)

)
. (19)

From Assumption 2 and Lemma 1, we know that there
exists an increasing function γ −1

1 (·) such that

|z| ≤ γ −1
1 (v(t) + D(t0, t)) (20)
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Let 8̄11,k = ϕ11,k ◦ γ −1
1 (2v) > 0, then one has

zp−p1+1
1 011,k

≤ zp−p1+1
1 0[ϕ11,k ◦ γ −1

1 (v(t) + D(t0, t))]

+ zp−p1+1
1 0ϕ12,k (y)

≤ zp−p1+1
1 08̄11,k + zp−p1+1

1 0ϕ11,k ◦ γ −1
1 (2D)

+ zp−p1+1
1 0ϕ12,k (y) (21)

Utilizing Lemmas 4 and 5, one has

zp−p1+1
1 011,k

≤ zp+1
1 0

p+1
p−p1+1

(
8̄11,k tanh

(
zp−p1+1
1 08̄11,k

d̄11

)) p+1
p−p1+1

+
2p1
p+ 1

+ zp+1
1 0

p+1
p−p1+1 (ϕ12,k (∥x∥))

p+1
p−p1+1

+ zp+1
1 0

p+1
p−p1+1

+
p1

p+ 1
(ϕ11,k ◦ γ −1

1 (2D))
p+1
p1 + 0.2785d̄11 (22)

with d̄11 being a design parameter.

Denote 8̂11,k =

(
8̄11,k tanh

(
z
p−p1+1
1 08̄11,k

d̄11

)) p+1
p−p1+1

,

d12,k (t0, t) =
p1
p+1 (ϕ11,k ◦ γ −1

1 (2D))
p+1
p1 , 8̂12,k =

(ϕ12,k (∥x∥))
p+1

p−p1+1 , d11 = 0.2785d̄11. Then, one has

zp−p1+1
1 011,k ≤ zp+1

1 0
p+1

p−p1+1
(
8̂11,k + 8̂12,k + 1

)
+ d12,k (t0, t) +

2p1
p+ 1

+ d11 (23)

It should be pointed that d12,k (t0, t) = 0 for any t ≥ t0 + T0,
and γ −1

1 is the inverse function of γ1.
Subsequently, it yields (24) from the result of differentiat-

ing V1 as below

V̇1 = zp−p1+1
1 0(xp12 − α

p1
1 ) + zp−p1+1

1 0α
p1
1

+ zp−p1+1
1 f̄1,k (Z1) + d12,k (t0, t)

+
2p1
p+ 1

+ d11 −
1
δ1

2̃1
˙̂
21 −

c̄v
λ0

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

))
×
x21 γ̄

(∣∣x21 ∣∣)
λ0

+
d
λ0

(24)

where

f̄1,k (Z1) = ϒ + 0f1,k (x1, θ) − 0ẏd

+
p− p1 + 2

zp−p1+1
1

tanhp−p1+2
( z1
v

) x21 γ̄ (∣∣x21 ∣∣)
λ0

+ zp11 0
p+1

p−p1+1
(
8̂11,k + 8̂12,k + 1

)

is an unknown nonlinear function since f1,k (x1, θ) is
unknown, and it can be approximated by RBFNN, that
is, f̄1,k (Z1) = θ∗

1,kϕ1,k (Z1) + ε1,k (Z1), where Z1 =

[x1, yd , ẏd , ρ, ρ̇]. Thus, one has

V̇1 = zp−p1+1
1 0(xp12 − α

p1
1 ) + zp−p1+1

1 0α
p1
1

+ zp−p1+1
1 (θ∗

1,kϕ1(Z1)

+ ε1,k (Z1)) + d12,k (t0, t) +
2p1
p+ 1

+ d11 −
1
δ1

2̃1
˙̂
21 −

c̄v
λ0

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
λ0

+
d
λ0
(25)

Using Lemma 4, one has

zp−p1+1
1 θ∗

1,kϕ1(Z1) ≤ zp+1
1 2∗

1 ∥ϕ1(Z1)∥
p+1

p−p1+1 +
p1

p+ 1
(26)

and

zp−p1+1
1 ε1,k (Z1) ≤ zp+1

1 +
p1

p+ 1
ε∗

1 (27)

where2∗

1 = max
k∈M

{∥∥∥θ∗

1,k

∥∥∥ p+1
p−p1+1

}
and ε∗

1 = max
k∈M

{
ε
∗
p+1
p1

1,k

}
.

From the above analysis yields

V̇1 ≤ zp−p1+1
1 0(xp12 − α

p1
1 ) + zp−p1+1

1 0α
p1
1

+ zp+1
1 2∗

1 ∥ϕ1(Z1)∥
p+1

p−p1+1

+
3p1
p+ 1

+ zp+1
1 +

p1
p+ 1

ε∗

1 + d12,k (t0, t)

+ d11 −
1
δ1

2̃1
˙̂
21

−
c̄v
λ0

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

))
x21 γ̄

(∣∣x21 ∣∣)
λ0

+
d
λ0

= zp−p1+1
1 0(xp12 − α

p1
1 ) + zp−p1+1

1(
0α

p1
1 + zp11 + zp11 2̂1 ∥ϕ1(Z1)∥

p+1
p−p1+1

)

−
1
δ1

2̃1

(
˙̂
21 − δ1z

p+1
1 ∥ϕ1(Z1)∥

p+1
p−p1+1

)
−
c̄v
λ0

+ (1 − (p− p1 + 2)

× tanhp−p1+2
( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
λ0

+ d1,k (t0, t) (28)

where d1,k (t0, t) =
p1
p+1ε

∗

1 + d12,k (t0, t) +
3p1
p+1 + d11 +

d
λ0
.

Choose

α1 = −z1

(
0−1c1 + 1 + 2̂1 ∥ϕ1(Z1)∥

p+1
p−p1+1

) 1
p1

= −z1β1

(29)
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˙̂
21 = δ1z

p+1
1 ∥ϕ1(Z1)∥

p+1
p−p1+1 − σ12̂1 (30)

where β1 =

(
0−1c1 + 1 + 2̂1 ∥ϕ1(Z1)∥

p+1
p−p1+1

) 1
p1
.

Then, one has

V̇1 ≤ zp−p1+1
1 0(xp12 − α

p1
1 ) − c1z

p+1
1 +

σ1

δ1
2̃12̂1 −

c̄v
λ0

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
λ0

+ d1(t0, t) (31)

Combining with Lemmas 3 and 5, one has

zp−p1+1
1 0(xp12 − α

p1
1 )

≤ c |0|

∣∣∣zp−p1+1
1

∣∣∣ |z2| ∣∣∣zp1−1
2 + α

p1−1
1

∣∣∣
= c |0| |z1|p−p1+1

|z2|p1 + c
∣∣∣βp1−1

1

∣∣∣ |0| |z1|p |z2|

≤ zp+1
1 + h10z

p+1
2 (32)

where h10 =
p1
p+1

(
2(p−p1+1)

(p+1)

) p−p1+1
p1 (c |0|)

p+1
p1 +

1
p+1

(
2p
p+1

)p
×

(
c
∣∣∣βp1−1

1

∣∣∣ |0|

)p+1
is a continuous function.

Then, one has

V̇1 ≤ −(c1 − 1)zp+1
1 + h10z

p+1
2 +

σ1

δ1
2̃12̂1 −

c̄
λ0
v

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
λ0

+ d1(t0, t) (33)

Step 2:Choose the Lyapunov functionV2 = V1+W2+
1
2δ2

2̃2
2,

where δ2 > 0 is a design parameter, 2̃2 = 2∗

2 − 2̂2, W2 =

z
p−p2+2
2
p−p2+2 is the continuous-differential function about x̄2, 2̂1

and λ̂.
According to the definition of z2, one has z2 = x2 − α1,

and then

ż2 = ẋ2 − α̇1

= xp23 + f2,k (x̄2, d) + 12,k (z, x) −
∂α1

∂x1
ẋ1 −

∂α1

∂yd
ẏd

−
∂α1

∂ ẏd
ÿd −

∂α1

∂ρ
ρ̇ −

∂α1

∂ρ̇
ρ̈ −

∂α1

∂2̂1

˙̂
21 (34)

and

zp−p2+1
2 12,k ≤ zp+1

2

(
8̂21,k + 8̂22,k + 1

)
+ d22,k (t0, t) +

2p2
p+ 1

+ d21 (35)

where 8̂21,k =

(
8̄21,k tanh

(
z
p−p2+1
2 8̄21,k

d̄21

)) p+1
p−p2+1

, d21 =

0.2785d̄21, 8̂22,k =
(
ϕ22,k (∥x∥)

) p+1
p−p2+1 , d22,k (t0, t) =

p2
p+1 (ϕ21,k ◦ γ −1

1 (2D))
p+1
p2 , d̄21 is a design parameter.

From the above analysis, we have

V̇2 = V̇1 + zp−p2+1
2 ż2 −

1
δ2

2̃2
˙̂
22

≤ −(c1 − 1)zp+1
1 +

σ1

δ1
2̃12̂1 −

c̄
λ0
v

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

))
×
x21 γ̄

(∣∣x21 ∣∣)
λ0

+ d1(t0, t) + zp−p2+1
2 (xp23 − α

p2
2 )

+ zp−p2+1
2 α

p2
2 + zp−p2+1

2

× f̄2,k (x̄2, d) + d22,k (t0, t) +
2p2
p+ 1

+ d21 −
1
δ2

2̃2
˙̂
22

(36)

where

f̄2,k (Z2) = f2,k (x̄2, d) −
∂α1

∂x1
ẋ1 −

∂α1

∂yd
ẏd −

∂α1

∂ ẏd
ÿd

−
∂α1

∂ρ
ρ̇ −

∂α1

∂ρ̇
ρ̈ −

∂α1

∂2̂1

˙̂
21

+ zp22
(
8̂21,k + 8̂22,k + 1

)
+ h10z

p2
2

and Z2 = [x1, x2, yd , ẏd , ÿd , ρ, ρ̇, ρ̈, 2̂1]. Similar to the
previous analysis, it can be obtained that f̄2,k (Z2) can be
approximated by RBFNN, that is, f̄2,k (Z2) = θ∗

2,kϕ2,k (Z2) +

ε2,k (Z2).
Using Lemma 4, one has

zp−p2+1
2 θ∗

2,kϕ2(Z2) ≤ zp+1
2 2∗

2 ∥ϕ2(Z2)∥
p+1

p−p2+1 +
p2

p+ 1
(37)

zp−p2+1
2 ε2,k (Z2) ≤ zp+1

2 +
p2

p+ 1
ε∗

2 (38)

where 2∗

2 = max
k∈M

{∥∥∥θ∗

2,k

∥∥∥ p+1
p−p2+1

}
and ε∗

2 = max
k∈M

{ε
∗
p+1
p2

2,k }.

Thus, one has

V̇2≤−(c1 − 1)zp+1
1 + zp−p2+1

2 (xp23 − α
p2
2 ) +

σ1

δ1
2̃12̂1−

c̄
λ0
v

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
λ0

−
1
δ2

2̃2

(
˙̂
22 − δ2z

p+1
2 ∥ϕ2(Z2)∥

p+1
p−p2+1

)
+ zp−p2+1

2

(
α
p2
2 + h10z

p2
2 + zp22 + zp22 2̂2 ∥ϕ2(Z2)∥

p+1
p−p2+1

)
+ d1,k (t0, t) +

p2
p+ 1

ε∗

2 + d22,k (t0, t) +
3p2
p+ 1

+ d21

(39)

Choose

α2 = −z2

(
c2 + 2̂2 ∥ϕ2(Z2)∥

p+1
p−p2+1 + 1

) 1
p2

= −z2β2

(40)
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˙̂
22 = δ2z

p+1
2 ∥ϕ2(Z2)∥

p+1
p−p2+1 − σ22̂2 (41)

where β2 =

(
c2 + 2̂2 ∥ϕ2(Z2)∥

p+1
p−p2+1 + 1

) 1
p2
.

Then, one has

V̇2 ≤ −(c1 − 1)zp+1
1 − c2z

p+1
2 + zp−p2+1

2 (xp23 − α
p2
2 )

+
σ1

δ1
2̃12̂1 +

σ2

δ2
2̃22̂2

−
c̄
λ0
v+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

))
x21 γ̄

(∣∣x21 ∣∣)
λ0

+ d2(t0, t) (42)

where d2,k (t0, t) = d1,k (t0, t) +
p2
p+1ε

∗
p+1
p2

2 + d22,k (t0, t) +

3p2
p+1 + d21.
Also by means of lemmas 3 and 4, one has

zp−p2+1
2 (xp23 − α

p2
2 ) ≤ zp+1

2 + h20z
p+1
2 (43)

with h20 =
p2
p+1

(
2(p−p2+1)

p+1

) p−p2+1
p2 c

p+1
p2 +

1
p+1

(
2p
p+1

)p(
c
∣∣∣βp2−1

2

∣∣∣)p+1
being a continuous function.

Then, one has

V̇2 ≤ −(c1 − 1)zp+1
1 − (c2 − 1)zp+1

2 + h20z
p+1
3

+
σ1

δ1
2̃12̂1 +

σ2

δ2
2̃22̂2 −

c̄
λ0
v

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
λ0

+ d2,k (t0, t) (44)

Step i (3 ≤ i ≤ n − 1) : Choose Lyapunov function Vi =

Vi−1 + Wi +
1
2δi

2̃2
i , Where δi > 0 is a design parameter,

2̃i = 2∗
i − 2̂i is the estimation error and 2̂i is the estimation

of 2∗
i . Wi =

z
p−pi+2
i
p−pi+2 is the continuous-differential function

about x̄i,
¯̂
2i−1 and λ̂.

From the above analysis, one has

V̇i ≤ −(c1 − 1)zp+1
1 − (c2 − 1)zp+1

2 − · · · − (ci−1 − 1)zp+1
i−1

+ hi−1,0z
p+1
i

+
σ1

δ1
2̃12̂1 +

σ2

δ2
2̃22̂2 + · · · +

σi−1

δi−1
2̃i−12̂i−1 −

c̄
λ0
v

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
λ0

+ di−1,k (t0, t)

+ zp−pi+1
i (xpii+1 + fi,k (x̄i, d) − α̇i−1 + 1i,k ) −

1
δi

2̃i
˙̂
2i

(45)

and

zp−pi+1
i 1i,k ≤ zp+1

i

(
8̂i1,k + 8̂i2,k + 1

)
+ di2,k (t0, t)

+
2pi
p+ 1

+ di1 (46)

where 8̂i1,k =

(
8̄i1,k tanh

(
z
p−pi+1
i 8̄i1,k

d̄i1

)) p+1
p−pi+1

, 8̂i2,k =(
ϕi2,k (∥x∥)

) p+1
p−pi+1 , di1 = 0.2785d̄i1, di2,k (t0, t) =

pi
p+1 (ϕi1,k ◦ γ −1

1 (2D))
p+1
pi , d̄i1 is a design parameter.

V̇i ≤ −(c1 − 1)zp+1
1 − (c2 − 1)zp+1

2 − · · · − (ci−1 − 1)zp+1
i−1

+ hi−1,0z
p+1
i

+
σ1

δ1
2̃12̂1 +

σ2

δ2
2̃22̂2 + · · · +

σi−1

δi−1
2̃i−12̂i−1 −

c̄
λ0
v

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
λ0

+ di−1,k (t0, t)

+ zp−pi+1
i (xpii+1 − α

pi
i ) + zp−pi+1

i α
pi
i + zp−pi+1

i f̄i,k (Zi)

+ di2,k (t0, t)

+
2pi
p+ 1

+ di1 −
1
δi

2̃i
˙̂
2i (47)

where f̄i,k (Zi) = fi,k (x̄i, d)−α̇i−1+zpii
(
8̂i1,k + 8̂i2,k + 1

)
+

hi−1,0z
pi
i , and Zi = [x1, x2, · · · xi, yd , ẏd , · · · , y(i)d , ρ, ρ̇,

· · · , ρ(i), 2̂1, 2̂2, · · · , 2̂i−1].
Similar to the previous analysis, it can be obtained

that f̄i,k (Zi) can be approximated by RBFNN, that is,
f̄i,k (·) = θ∗

i,kϕi,k (Zi) + εi,k (Zi).
Using Lemma 4, one has

zp−pi+1
i θ∗

i,kϕi(Zi) ≤ zp+1
i 2∗

i ∥ϕi(Zi)∥
p+1

p−pi+1 +
pi

p+ 1
(48)

zp−pi+1
i εi,k (Zi) ≤ zp+1

i +
pi

p+ 1
ε∗
i (49)

where 2∗
i = max

k∈M

{∥∥∥θ∗
i,k

∥∥∥ p+1
p−pi+1

}
and ε∗

i = max
k∈M

{
ε
∗
p+1
pi

i,k

}
.

And then, one has

V̇i ≤ −(c1 − 1)zp+1
1 − (c2 − 1)zp+1

2 − · · · − (ci−1 − 1)zp+1
i−1

+
σ1

δ1
2̃12̂1 +

σ2

δ2
2̃22̂2

+ · · · +
σi−1

δi−1
2̃i−12̂i−1 −

c̄
λ0
v

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
λ0

+ zp−pi+1
i (xpii+1 − α

pi
i )

−
1
δi

2̃i

(
˙̂
2i − δiz

p+1
i ∥ϕi(Zi)∥

p+1
p−pi+1

)
+ zp−pi+1

i

(
α
pi
i +

zpii 2̂i ∥ϕi(Zi)∥
p+1

p−pi+1 + hi−1,0z
pi
i + zpii

)
+ di,k (t0, t)

(50)

where di,k (t0, t) = di−1,k (t0, t) +
pi
p+1ε

∗
i,k + di2,k (t0, t) +

3pi
p+1 + di1.
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Choose

αi = −zi

(
ci + 1 + 2̂i ∥ϕi(Zi)∥

p+1
p−pi+1

) 1
pi

= −ziβi (51)

˙̂
2i = δiz

p+1
i ∥ϕi(Zi)∥

p+1
p−pi+1 − σi2̂i (52)

with βi =

(
ci + 1 + 2̂i ∥ϕi(Zi)∥

p+1
p−pi+1

) 1
pi
.

It can be obtained that

V̇i ≤ −(c1 − 1)zp+1
1 − (c2 − 1)zp+1

2 − · · · − (ci−1 − 1)zp+1
i−1

− ciz
p+1
i + zp−pi+1

i (xpii+1

− α
pi
i ) +

σ1

δ1
2̃12̂1 +

σ2

δ2
2̃22̂2 + · · ·

+
σi−1

δi−1
2̃i−12̂i−1 +

σi

δi
2̃i2̂i −

c̄
λ0
v

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
λ0

+ di,k (t0, t) (53)

Due to

zp−pi+1
i (xpii+1 − α

pi
i ) ≤ zp+1

i + hi0z
p+1
i+1 (54)

with hi0 =
pi
p+1

(
2(p−pi+1)

p+1

) p−pi+1
pi c

p+1
pi +

1
p+1

(
2p
p+1

)p(
c
∣∣∣βpi−1
i

∣∣∣)p+1
being a continuous function. Then, one has

V̇i ≤ −(c1 − 1)zp+1
1 − (c2 − 1)zp+1

2 − · · · − (ci−1 − 1)zp+1
i−1

− (ci − 1)zp+1
i

+ hi0z
p+1
i+1 +

σ1

δ1
2̃12̂1 +

σ2

δ2
2̃22̂2 + · · ·

+
σi−1

δi−1
2̃i−12̂i−1 +

σi

δi
2̃i2̂i

−
c̄
λ0
v+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

))
x21 γ̄

(∣∣x21 ∣∣)
λ0

+ di(t0, t) (55)

Stepn : Combining with the above analysis, one has

V̇n−1 ≤ −(c1 − 1)zp+1
1 − (c2 − 1)zp+1

2 − · · ·

− (ci−1 − 1)zp+1
i−1 − (cn−1 − 1)zp+1

n−1

+ hn−1,0zp+1
n +

σ1

δ1
2̃12̂1 +

σ2

δ2
2̃22̂2 + · · ·

+
σi−1

δi−1
2̃i−12̂i−1 +

σn−1

δn−1
2̃n−12̂n−1

−
c̄
λ0
v+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

))
x21 γ̄

(∣∣x21 ∣∣)
λ0

+ dn−1,k (t0, t) (56)

According to the definition of zn, one has

żn = ẋn − α̇n−1

= qpn (u(t)) + fn,k (x, d) + 1n,k (z, x) − α̇n−1 (57)

Define the candidate Lyapunov function asVn = Vn−1+Wn+
(1−δ)pn
2δn

2̃2
n withWn =

zp−pn+2
n
p−pn+2 being a continuous differential

function, and δn > 0 is a design parameter, 2̃n = 2∗
n − 2̂n

is the estimation error and 2̂n is the estimation of 2∗
n.

From the above analysis, one has

V̇n ≤ −

n−1∑
i=1

(ci − 1)zp+1
i + hn−1,0zp+1

n +

n−1∑
i=1

σi

δi
2̃i2̂i

−
c̄
λ0
v+ (1 − (p− p1

+2) tanhp−p1+2
( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
λ0

+ dn−1(t0, t)

+ zp−pn+1
n (qpn (u(t))

+ fn,k (x, d) − α̇n−1 + 1n,k ) −
(1 − δ)pn

δn
2̃n

˙̂
2n (58)

And

zp−pn+1
n 1n,k ≤ zp+1

n

(
8̂n1,k + 8̂n2,k + 1

)
+ dn2,k (t0, t)

+
2pn
p+ 1

+ dn1 (59)

where 8̂n1,k =

(
8̄n1,k tanh

(
zp−pn+1
n 8̄n1,k

d̄n1

)) p+1
p−pn+1

,

dn2,k (t0, t) =
pn
p+1 (ϕn1,k ◦ γ −1

1 (2D))
p+1
pn , 8̂n2,k =(

ϕn2,k (y)
) p+1
p−pn+1 , dn1 = 0.2785d̄n1, d̄n1 is a design

parameter.

V̇n ≤ −

n−1∑
i=1

(ci − 1)zp+1
i + hn−1,0zp+1

n +

n−1∑
i=1

σi

δi
2̃i2̂i

−
c̄
λ0
v+ (1 − (p− p1

+2) tanhp−p1+2
( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
λ0

+ dn−1,k (t0, t)

+ zp−pn+1
n qpn (u(t))

+ zp−pn+1
n f̄n,k (Zn) −

(1 − δ)pn

δn
2̃n

˙̂
2n

+ dn2,k (t0, t) +
2pn
p+ 1

+ dn1 (60)

where f̄n,k (Zn) = fn,k (x, d)−α̇n−1+z
pn
n

(
8̂n1,k + 8̂n2,k + 1

)
+

1
2 z
p−pn+1
n + hn−1,0z

p+1
n + zpnn and Zn = [x1, x2,

· · · xn, yd , ẏd , · · · , y(n)d , ρ, ρ̇, · · · , ρ(n), 2̂1,

2̂2, · · · , 2̂n−1].

Similar to the previous analysis, it can be obtained
that f̄n,k (Zn) can be approximated by RBFNN, that is,
f̄n,k (Zn) = θ∗

n,kϕn,k (Zn) + εn,k (Zn).
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Using Lemma 4, one has

zp−pn+1
n θ∗

n,kϕn(Zn) ≤ (1 − δ)pnzp+1
n 2∗

n ∥ϕn(Zn)∥
p+1

p−pn+1

+
pn

p+ 1
(61)

zp−pn+1
n εn,k (Zn) ≤ zp+1

n +
pn

p+ 1
ε∗
n,k (62)

Where 2∗
n = max

k∈M


∥∥∥θ∗

n,k

∥∥∥ p+1
p−pn+1

(1−δ)pn

 and ε∗
n,k =

max
k∈M

{
ε
∗
p+1
pn

n,k

}
. Then, one has

V̇n ≤ −

n−1∑
i=1

(ci − 1)zp+1
i +

n−1∑
i=1

σi

δi
2̃i2̂i −

c̄
λ0
v

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

))
×
x21 γ̄

(∣∣x21 ∣∣)
λ0

−
(1 − δ)pn

δn
2̃n(

˙̂
2n − δnzp+1

n ∥ϕn(Zn)∥
p+1

p−pn+1

)
+ zp−pn+1

n

×

(
qpn (u(t)) + hn−1,0zp+1

n + zpnn + (1 − δ)pnzpnn 2̂n

∥ϕn(Zn)∥
p+1

p−pn+1

)
+ dn,k (t0, t) (63)

where dn,k (t0, t) = dn−1,k (t0, t) +
pn
p+1ε

∗
n,k + dn2,k (t0, t) +

3pn
p+1 +dn1. Due to qpn (u(t)) = g(u)upn (t)+K (t) with |K (t)| ≤

upnmin, then one has zp−pn+1
n K (t) ≤

1
2 z

2(p−pn+1)
n +

1
2u

2pn
min, thus

V̇n ≤ −

n−1∑
i=1

(ci − 1)zp+1
i +

n−1∑
i=1

σi

δi
2̃i2̂i −

c̄
λ0
v

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

))
×
x21 γ̄

(∣∣x21 ∣∣)
λ0

−
(1 − δ)pn

δn
2̃n(

˙̂
2n − δnzp+1

n ∥ϕn(Zn)∥
p+1

p−pn+1

)
+ zp−pn+1

n

×

(
g(u)upn (t) + (1 − δ)pnzpnn 2̂n ∥ϕn(Zn)∥

p+1
p−pn+1

)
+ dn,σ (t)(t0, t) +

1
2
u2pnmin (64)

Choose

u = −zn

(
cn + 2̂n ∥ϕn(Zn)∥

p+1
p−pn+1

) 1
pn

(65)

˙̂
2n = δnzp+1

n ∥ϕn(Zn)∥
p+1

p−pn+1 − σ̄n2̂n (66)

then, one has

V̇n ≤ −

n−1∑
i=1

(ci − 1)zp+1
i − cnzp+1

n +

n−1∑
i=1

σi

δi
2̃i2̂i

+
σn(1 − δ)pn

δn
2̃n2̂n −

c̄
λ0
v

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
λ0

+
1
2
u2pnmin + dn,σ (t)(t0, t) (67)

That is,

V̇n ≤ −

n∑
i=1

(ci − 1)zp+1
i +

n−1∑
i=1

σi

δi
2̃i2̂i

+
σn(1 − δ)pn

δn
2̃n2̂n −

c̄
λ0
v

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
λ0

+
1
2
u2pnmin + dn,k (t0, t) (68)

Note that σ̄i
δi

2̃i2̂i ≤ −
σ̄i
2δi

2̃2
i +

σ̄i
2δi

2∗2
i , i = 1, 2, · · · , n, which

can be obtained by using Young’s inequality. Then, one has

V̇n ≤ −

n∑
i=1

(ci − 1)zp+1
i −

n−1∑
i=1

σ̄i

2δi
2̃2
i −

σ̄n(1 − δ)pn

2δn
2̃2
n

−
c̄
λ0
v+

n−1∑
i=1

σ̄i

2δi
2∗2
i +

σ̄n(1 − δ)pn

2δn
2∗2
n

+

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

)) x21 γ̄ (∣∣x21 ∣∣)
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+
1
2
u2pnmin + dn,k (t0, t) (69)

FIGURE 1. Control principle and flow structure diagram.

IV. STABILITY ANALYSIS
The main result of this work is summarized in the following
theorem.
Theorem 1: Consider the closed-loop system consisting of

system (1) under Assumptions 1 and 2, the virtual control
laws (29) and (40), the controller (65), and the adaptive
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FIGURE 2. Tracking result.

FIGURE 3. System state x2.

laws (30), (41) and (66), all signal of the closed-loop system
are SGUB and the tracking error converges to a prescribed
zone at a finite-time.
Proof: Let us consider the following Lyapunov function

candidate

V =

n∑
i=1

Wi +

n−1∑
i=1

1
2δi

2̃2
i +

(1 − δ)n

2δn
2̃2
n +

v
λ0

(70)

From Young’s inequality, it can be seen that api−1zp−pi+2
i ≤

ap+1
+zp+1

i , implying−zp+1
i ≤ −api−1zp−pi+2

i +ap+1. When

pi > 1, After choosing a =

(
1

p−pi+2

) 1
pi−1

, one has −zp+1
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−
z
p−pi+2
i
p−pi+2 +

(
1

p−pi+2

) p+1
pi−1

< −
z
p−pi+2
i
p−pi+2 + 1; when pi = 1,

choose a = 1, one has−zp+1
i ≤ −zp−pi+2

i +1 ≤ −
z
p−pi+2
i
p−pi+2+1.

Let C = min{ci − 1}, yields

V̇ ≤ −C
n∑
i=1
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v
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+
1
2
u2pnmin + dn(t0, t)

≤ −C
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−
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FIGURE 4. Tracking error.

+ (1 − (p− p1 + 2) tanhp−p1+2
( z1
v

))
×
x21 γ̄

(∣∣x21 ∣∣)
λ0

+
1
2
u2pnmin + nC + dn(t0, t) (71)

Denote α0 = min{C, σi, σ̄1, c̄} and µ =

n−1∑
i=1

σ̄i
2δi

2∗2
i +

σ̄n(1−δ)pn
2δn

×2∗2
n +

σ̄1
2δ̄1

λ∗2
+

γ̄ (|x1|)
λ0

+
1
2u

2pn
min + nC + dn(t0, t),

one has

V̇ ≤ −α0V + µ +

(
1 − (p− p1 + 2) tanhp−p1+2

( z1
v

))
x21 γ̄

(∣∣x21 ∣∣)
λ0

(72)

Two cases are considered as follows.
Case 1: x1 ∈ �x1 = {x1 ||x1| < 0.8841v } for any positive

constant v. It yields e1 is bounded because x1 and yd are
bounded. As γ̄

(∣∣x21 ∣∣) is non-negative continuous function,(
1 − (p− p1 + 2) tanhp−p1+2 ( z1

v

)) x21 γ̄
(∣∣x21 ∣∣)
λ0

is bounded and
µ0 is assumed to be its upper bound. Then, one has

V̇ ≤ −α0V + µ + µ0. (73)

Furthermore, the following result is true:

0 ≤ V ≤

(
V (0) −

µ + µ0

α0

)
e−α0t +

µ + µ0

α0
(74)

Case 2: x1 /∈ �x1 . Based on the fact that
x21 γ̄

(∣∣x21 ∣∣)
λ0

≥ 0 and
Lemma 2, it follows

(
1 − (p− p1 + 2) tanhp−p1+2 ( z1

v

))
x21 γ̄

(∣∣x21 ∣∣)
λ0

≤ 0. Then, one has V̇ ≤ −α0V + µ. Furthermore,
the following result holds

0 ≤ V ≤

(
V (0) −

µ

α0

)
e−α0t +

µ

α0
(75)

which implies

0 ≤ V ≤ V (0) +
µ + µ0

α0
, t > 0. (76)

With µ0 being mentioned above.
Summarize the above two situations with the definition of

V in (70), we obtain the conclusion that all signals of the
closed-loop system are SGUB.

Additionally, one can obtain that 0 ≤ V (t) ≤ V (0)+ µ
α0

=

1
2 l

2, with l being a positive constant. By the transformation of
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FIGURE 5. Control input u and quantized input q(u).

FIGURE 6. Estimated parameters 2̂1 and 2̂2.

S(z1) =
e1(t)
ρ(t) =

ez1−e−z1
ez1+e−z1

, it can be obtained that −l ≤ z1 =

1
2 ln

(
1+δ(t)
1−δ(t)

)
≤ l, where δ(t) =

e1(t)
ρ(t) , which implies that

−ρ(t) <

(
e−2l

− 1
e−2l + 1

)
ρ(t) ≤ e1 =

(
e2l − 1
e2l + 1

)
ρ(t) < ρ(t)

(77)

So the following inequality can be proved that |e1(t)| < ρ(t),
t > 0.
From the definition of ρ(t), it can be seen that the tracking

error e1(t) converges to the prescribed invariant region
�e1 =

{
e1
∣∣|e1| < ρTf , t ≥ Tf

}
in finite time T = Tf , which

means that the tracking error e(t) = y(t) − yd (t) always
remains in the prescribed performance bound.

That is the proof of Theorem 1.

V. SIMULATION RESULTS
In this section, we will provide a numerical example
to demonstrate the effectiveness of the proposed control
scheme. Consider the following nonlinear system:

ż = qσ (t)(z, y),
ẋ1 = xp12 + f1,σ (t)(x1, θ) + 11,σ (t),

ẋ2 = qp2 (u) + f2,σ (t)(x1, θ) + 12,σ (t),

y = x1

(78)

where p1 = 1, p2 = 3, f1,1 = x1 sin x1, f2,1 = θx1x22 , f1,2 =

x21 , f2,1 = x1x2, q1(z, x) = −z + 0.6x21 , q2(z, x) = −2z +

0.5x21 ,111 = 112 = zx1 sin x2 and121 = 122 = z2x1 sin x2.
To satisfy Assumptions 1-2, we choose V0(z) = z2, thus
V̇0(z) ≤ −1.5z2 + 2.5x41 + 0.625. Select a = 1.5, b = 0.625,
γ3(|x1|) = 2.5x41 . Then the assumption 3 is fulfilled. Based

FIGURE 7. Unmodeled dynamics z.

FIGURE 8. Switching signal σ (t).

on Lemma 1, let c̄ = 1.2 ∈ (0, a), then dynamical signal
function r is ṙ = −1.2r + 2.5x41 + 0.625.
The unknown parameter is chosen as θ = 0.1. The initial

conditions of variables are chosen as: x1(0) = x2(0) = 0.25,
z(0) = 0.2 and r(0) = 0.2. The initial values of the weight
parameters are set as 2̂1(0) = 2̂2(0) = 0.001.
The FTPF is

ρ(t) =


(

ρ0 −
t
Tf

)
e

(
1−

Tf
Tf −t

)
+ ρTf , t ∈ [0,Tf )

ρTf , t ∈ [Tf , +∞)

where ρ0 = 1 and ρTf = 0.05, Tf = 1, ρ(0) = 1.05.
The virtual control law and controller are designed as

shown in (29) and (65), and the adaptive laws are designed
as shown in (30) and (66) with n = 2. The parameters are
chosen as n1 = n2 = 20, b1 = b2 = 0.2, µ1ij = 0.1(i −
n1), i = 1, 2, · · · 5, j = 1, 2, · · · , n1, µ2ij = 0.1(i − n2), i =

1, 2, · · · , 9, j = 1, 2, · · · , n2, c1 = c2 = 30, δ1 = δ2 = 0.8,
σ1 = σ2 = 0.3. Fig. 2 shows the tracking result of the
system (1), Fig. 3 shows the system state x2, Fig. 4 depicts
the tracking error, the control input u and quantized input q(u)
are shown in Fig. 5, Fig. 6 shows the estimated parameters 2̂1
and 2̂2, and the unmodeled dynamics z and switching signal
σ (t) are shown in Figs. 7 and 8.

From simulation results, it can be observed that all signals
of the closed-loop are bounded, and the tracking error remain
within a predefined region in a finite time, which shows the
effectiveness of the control scheme.

VI. CONCLUSION
In this study, we investigate the finite-time adaptive neural
prescribed performance control for high-order nonlinearly
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parameterized switching systems in the presence of unmod-
eled dynamics and quantized input. Combining with RBF
neural networks with minimal learning parameters to iden-
tify the unknown compounded nonlinear functions, the
computational burden is further lessen by introducing a
hysteresis quantizer to reduce the communication burden.
In the framework of backstepping technique, a simple control
design scheme is investigated by introducing an innovative
prescribed performance function thatmakes the tracking error
remain within a predefined region in a finite time and also
simplify the stability analysis of the closed-loop system.
Based on Lyapunov stability theory, all signals of the closed-
loop system are SGUB. Finally, the effectiveness of the
developed control scheme is illustrated through a numerical
simulation.
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