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ABSTRACT Cross–modal hashing has gained significant attention due to its efficient computational
capabilities and impressive retrieval performance. Most supervised methods rely on the auxiliary learning
of a similarity matrix, which incurs computational and storage expenses with a complexity of O(n2).
By capturing the adjacency relationships between anchor points and original data, the anchor graph learning
strategy effectively reduces the time complexity. However, existing anchor graph hashing methods adopt
heuristic sampling strategies like k–means or random sampling to determine anchor points. Unfortunately,
this approach separates from the anchor graph construction and fails to accurately capture the fine–grained
similarity relationships. To overcome this limitation, we introduce a novel method called supervised
consensus anchor graph hashing (SCAGH) for cross–modal retrieval with linear complexity. In SCAGH,
the anchor points are automatically selected and consensus anchor graph learning is integrated in an unified
framework. Through mutual collaboration, a more fine–grained and discriminative consensus anchor graph
can be obtainedwithout extra hyper–parameters. Additionally, we utilize anchor graphmatrix to approximate
the pairwise similarity matrix so that the high complexity can be avoided and enhance the quality of hash
codes. Extensive experiments on four benchmark datasets are conducted to verify the superiority of the
proposed SCAGH compared to several state–of–the–art methods.

INDEX TERMS Cross–modal hashing, consensus anchor graph learning, supervised similarity preservation.

I. INTRODUCTION
The emergence of social media platforms, video–sharing
websites, and e–commerce platforms has promoted the
rapid growth of multimodal data (e.g., image, text, audio
and video). In response, the retrieval technology has
shifted its focus from traditional single–modal approaches
to cross–modal retrieval [1], [2], [3], [4], [5]. This refers
to the task of retrieving relevant information from one
modality (such as text) based on a query from a different
modality (such as images or videos). Cross–modal hashing
(CMH) enables efficient and effective similarity retrieval of
multimodal data by encoding multimedia data into compact
binary codes and computing hamming distances between
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binary codes via simple XOR operations [6], [7], [8]. As an
essential component of cross–modal retrieval, CMH has
attracted significant attention due to its ability to enhance the
search capabilities and retrieval efficiency in many practical
applications, including recommendation systems [9], [10],
[11], person reidentification [12], [13], and multimedia data
mining [14], [15]. CMH can be classified into supervised and
unsupervised methods depending on whether semantic labels
are employed. Generally, supervised methods [16], [17],
[18] outperform unsupervised counterparts [19], [20], [21]
since the former construct similarity matrix from category
labels which preserves discriminative semantic information
and incorporates it into hash codes learning. In most
supervised methods, the similarity matrix is predefined using
category labels and remains constant throughout the training
process [22], [23], [24].
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However, the complexity of computing and storing the
pairwise similarity matrix is O(n2), which requires large
memory cost and cannot be applied for large–scale datasets.
Anchor graph hashing [25], [26] utilize a small set of anchor
points to approximate the adjacency relations among all train-
ing data. By utilizing the strategy of anchor graph learning,
the similarity relationship and neighborhood structure can
be maintained and the computational cost can be reduced.
In previous anchor graph hashing [27], [28], [29], [30], [31],
the anchor points are determined through random sampling
from the original training data or performing k–means
clustering to obtain cluster centers that act as anchor points.
The anchors generated by heuristic sampling strategy are
not representative and affect the quality of anchor graph
construction. Besides, anchor points selection is isolated from
anchor graph construction and the anchor graph needs to be
predefined to guide hash codes learning. The fixed anchor
graph fails to accurately capture the fine–grained similarity
relations and cannot integrate the complementary information
of multimodal data which may adversely affect retrieval
performance.

To address the aforementioned challenges, we propose a
novel cross–modal hashingmethod called supervised consen-
sus anchor graph hashing (SCAGH). This method integrates
the selection of anchor points, anchor graph construction,
and hash code learning within a unified framework. Unlike
previous approaches that rely on heuristic sampling strategy,
SCAGH automatically selects anchor points using a more
effective approach. The anchor points are determined and
consensus anchor graph are constructed using an integrated
and flexible optimization formulation. The collaborative
process ensures that the anchor points and anchor graph work
together to enhance the quality of graph similarity preser-
vation and hash code learning. Additionally, the proposed
method has linear time complexity and does not involve any
hyper–parameter during the construction of the anchor graph.
To the best of our knowledge, our proposed method is the first
to integrate anchor point selection, consensus anchor graph
construction, and hash code learning into a unified framework
for cross–modal hashing retrieval. The main contributions of
SCAGH can be summarized as follows:

• Instead of relying on a predefined anchor sampling
strategy, the proposed SCAGH integrates the learning
of anchor points, consensus anchor graph construction,
and hash code learning into a unified and flexible
framework. This approach allows the anchor points and
consensus anchor graph to interact with each other
without involving any additional hyper–parameters,
ultimately improving the quality of the hash codes and
enhancing retrieval performance.

• To address the computation and storage costs associated
with a pairwise similarity matrix, we utilize an anchor
graph matrix as an approximation. This effectively
reduces the complexity from O(n2) to linear time,
making SCAGH suitable for large–scale cross–modal
hashing tasks.

• An alternating optimization algorithm is developed to
deal with the objective function. Experimental results
from four benchmark datasets show the superiority and
efficiency of the proposed algorithm.

II. RELATED WORK
In this section, we will briefly introduce related cross–modal
hashing methods from three areas: graph–based hashing
methods, anchor graph–based hashing methods and deep
hashing methods.

A. GRAPH–BASED HASHING METHODS
Graph–based hashing techniques utilize a graph structure
to depict and retain the neighborhood relationship among
the training samples. Spectral hashing [32] constructs a
completely connected Laplacian graph to preserve global
similarities, and hash codes are obtained through the
eigenvector computation of the Laplacian graph. Semantic
neighbor graph hashing [33] constructs the semantic graph
jointly pursuing semantic supervision and local neigh-
borhood structure to preserve the fine–grained similarity
matrix. Discrete multi–graph hashing [29] uses multi–graph
learning to fuse the information from multiple views and
designs a quantization regularization term to minimize the
distortion errors. Hypergraph–based discrete hashing [34]
simultaneously performs hypergraph learning and hash
codes learning to enhance the semantic correlations among
instances. [35] establishes multiple instance relation graphs
to exploit fine–grained similarity relations between instances.
Multi–view graph cross–modal hashing [36] constructs
multi–view affinity and asymmetric graphs over anchor data
which serve as a unified semantic hub in a semi–supervised
manner. Sparse graph based self–supervised hashing [37]
exploits a sparse graph structure and self–supervised recon-
struction constraint to further preserve the semantic informa-
tion. For the graph–based hashing methods, G = (V,E) be
agraph with a set of vertices V and edges E. However, the
value of edges invloves calculating the similarity between
vertices which require O(n2) time and store complexity
during the construction of the neighborhood graph. Based
on this, anchor graph–based hashing methods have been
developed to reduce time and memory overhead. The
proposed method SCAGH employs anchor graph matrix to
approximate the pairwise similarity matrix so that the high
complexity can be reduced as linear.

B. ANCHOR GRAPH–BASED HASHING METHODS
Anchor graph–based methods use a small set of sam-
ples called anchors to approximate the data neighborhood
structure instead of preserving the similarity of training
samples. Anchor graph hashing [25] utilizes anchor graphs
to autonomously uncover the innate neighborhood structure
present in the data through an unsupervised approach. Based
on this, [38] applies a graph clustering algorithm to compute
the eigenvectors from the anchor–simple similarities matrix.
Multi–view anchor graph hashing [27] employs a multi–view
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anchor graph to maintain the average similarity in low–rank
format, which non-linearly combines binary codes. Discrete
graph hashing [28] opts for anchor graphs to approximate the
neighborhood structure embedded in the input data within
a discrete optimization framework. Asymmetric discrete
graph hashing [39] utilizes selected anchors to generate
the asymmetric affinity matrix and preserve the asymmetric
discrete constraint. Semi–supervised metric learning [30]
learns an optimal distance metric to preserve the semantic
similarity in the anchor graph. Cross–modal transfer hash-
ing [40] utilizes the pseudo class centers as the anchors
and construct the modality–specific local anchor graph to
keep the intrinsic structural neighborhood relationship. [36]
constructs multi–view affinity and asymmetric graphs over
anchor data which serve as a unified semantic hub in
a semi–supervised manner. Anchor graph structure fusion
hashing [41] incorporates intrinsic anchor fusion affinity
preservation and clustering structure optimization into a
unified framework. Asymmetric transfer hashing [42] charac-
terizes the domain distribution gap by minimizing two asym-
metric hash functions and learns an adaptive bipartite graph
to characterize the similarity between cross–domain samples.
For the aforementioned anchor graph–based hashing meth-
ods, anchor points selection and anchor graph construction
are separated from each other. Formally, anchor points can be
determined by randomly sampling or k-means clustering to
acquire cluster center as anchor points. However, the anchor
points generated by random selection or k-means method
are not representative and involve hyper–parameter, thereby
affecting the quality of anchor graph construction and the
performance of cross modal retrieval. One–pass multi–view
subspace clustering [43] combines anchor learning and graph
construction into a uniform framework to boost clustering
performance, which inspires us to apply consensus anchor
graph learning to cross–modal retrieval. SCAGH integrates
anchor points selection, consensus anchor graph construction
and hash codes learning into a unified framework. Anchor
points are automatically chosen and the consensus anchor
graph can be constructed without extra hyper–parameters via
a flexible optimization formulation. The selection of anchor
points is mutually collaborated with anchor graph to enhance
hash code learning quality and improve cross-modal retrieval
performance.

C. DEEP HASHING METHODS
Deep hashing methods leverage powerful feature repre-
sentation capabilities of neural networks and end–to–end
architecture to learn hash codes, achieving satisfactory per-
formance. Deep cross–modal hashing [44] integrates feature
extraction, adaptation of heterogeneous data distributions
and hash codes learning in an adversarial way. Pairwise
relationship guided deep hashing [45] adds inter–modal and
intra–modal pairwise embedding loss to enhance the cor-
relation between semantic similar instances. Unsupervised
deep cross modal hashing [46] incorporates the unsuper-
vised matrix factorization hashing into an end–to–end deep

learning framework and the weight parameters are learned
dynamically. Deep graph–neighbor coherence preserving
network [47] consolidates relationships between original
data and their neighbors using graph–neighbor coherence.
Discrete fusion adversarial hashing [48] integrates feature
extraction, adaptation of heterogeneous data distributions
and hash codes learning in an adversarial way. Deep
discrete cross–modal hashing [49] enhances the semantic
correlation among multi–modalities with the joint supervi-
sion of instance–pairwise, instance–labeled and class wise
similarities. Semantic–rebased cross–modal hashing [50] sets
and rebases a sparse graph according to the feature geometric
basis and hash codes to preserve similarity information
for binary codes learning. Although deep hashing methods
surpass shallow methods in terms of performance, they are
often constrained by time–consuming training processes and
complex parameter selection requirements.

Compared to graph–based hashing methods and anchor
graph–based hashing methods, SCAGH integrates the learn-
ing of anchor points, consensus anchor graph construc-
tion, and hash code learning into a unified framework to
enhance retrieval performance. Despite not being a deep
learning–based hashing method, SCAGH exhibits low time
complexity, a simple model, and performs better than deep
hashing methods on specific dataset.

III. METHODOLOGY
The proposed method will be explained from three aspects
including algorithm structuring, procedure optimization and
complexity analysis. The formulation has three folds: latent
consistency representation, similarity structure learning and
hash function learning. The framework of SCAGH is
illustrated in Figure 1. The optimization process introduces
the derivation process of each variable and the complexity
analysis shows the time complexity of the model.

A. NATIONS AND DEFINITIONS
In the following parts, we use uppercase letter such as A to
denote matrix, the lowercase letter ai denotes the i column
of matrix A. The vector with all elements 1 is represented
as 1. In indicates identity matrix and the size is n × n. Tr(·)
is the trace of matrix, diag(·) is the diagonal matrix operator.
Sign(·) is the sign function which outpute +1 if the value is
positive numbers, otherwise−1. ∥·∥2 denotes the ℓ2–norm of
vector and ∥ · ∥F represents the Frobenius norm of the matrix

∥A∥F =

√∑n
i=1

∑m
j=1 a

2
ij.

Suppose there are n multimodal samples O = {oi}ni=1,
oi =

(
x1i , x

2
i

)
where x1i ∈ Rd1 , x2i ∈ Rd2 represents the vector

of i–th sample from image and text modalities, respectively.
d1 and d2 are the dimensionality of samples for eachmodality.
The image and text modality original data matrix is X1 =

[x11, x
1
2, · · · , x1n] ∈ Rd1×n, X2 = [x21, x

2
2, · · · , x2n] ∈

Rd2×n, respectively. Y = [y1, y2, · · · , yn] ∈ Rn×d is the
category label matrix, d means the total number of category
and yi means the corresponding label of sample oi. Hash
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codes matrix is represented by B = [b1,b2, · · · ,bn] ∈

{−1, +1}r×n, where r is the hash codes length.

B. CONSENSUS ANCHOR GRAPH LEARNING
In the exciting anchor graph based hashing methods, the
anchor points are fixed by k–means clustering or random
sampling. After selecting the anchor points separately in
each modality, the anchor graphs Z(m) are then defined the
similarities between all data samples x(m)i and anchors points
u(m)j as follows [29]. where [i] denotes the indices of nearest

anchors of x(m)i , D2(x(m)i , u(m)j ) =

∥∥∥x(m)i − u(m)i

∥∥∥2,
Z(m)
ij =


exp(D2(x(m)i , u(m)j )/δ)∑
j∈[i] exp(D2(x(m)i , u(m)j )/δ)

, ∀j ∈ [i]

0, otherwise

(1)

δ is the predefined bandwith parameter. The above anchor
graph learning strategy has several problems. (1) The
selection of anchor points and construction of anchor graphs
are separated from each other. (2) The anchor graph of
each modal requires to perform fusion algorithm to get a
consensus graph. To overcome these problems, based on the
assumption that heterogeneous data are derived from a shared
consistent latent space, it is reasonable that multimodal data
has common anchor points and consensus anchor graph [43],
[51], [52]. In view of this, we define the respective projection
matrix Wi of different modalities to integrate anchor points
selection and consensus anchor graph construction in a
unified formulation:

min
αi

M∑
i=1

(αi)2 ∥Xi − WiAZ∥
2
F

s.t.
M∑
i=1

αi = 1,Wi
TWi = I,ATA = I,

Z > 0,ZT 1 = 1, (2)

where M is the total number of modalities and we chose
image and text modality for training in this paper.Xi ∈ Rdm×n

is the original data of ith modality with dm and n being the
corresponding dimension and the size of samples. Wi ∈

Rdm×d and αi are the projection matrix and the weight of
ith modality respectively. A ∈ Rd×l represents the unified
anchor points matrix, in which d and l are the common
dimension and the numbers of anchors. Z ∈ Rl×n is the
consensus anchor graph representing the similarity relation
between n samples and l anchor points. Using Eq.(2), the
anchor point A can be directly learned without the need
to adopt heuristic sampling strategies such as k–means or
random sampling for anchor point determination. Compared
with Eq.(1), Eq.(2) automatically constructs a common
consensus anchor graph Z for different modalities instead
of calculating similarity between anchor points and samples
or performing fusion algorithms in Eq.(1). In summary,
Eq.(2) automatically selects anchor points and integrates

consensus anchor graph learning, allowing the anchor points
and consensus anchor graph to interact with each other
without requiring any additional hyper–parameters.

C. SIMILARITY PERSERVE AND OBJECTIVE FUNCTION
Hash codes should preserve the neighbor similarity in the
original space as much as possible. More specifically, when
the instances oi and oj have high similarity, the Hamming
distance between the hash codes bi and bj should be smaller,
and vice versa. The approximation of the similarity between
the hash codes and the original data samples can be expressed
using the following formula:

min
B

∥∥∥BBT − S
∥∥∥2
F

s.t. B ∈ {−1, +1}r×n ,BBT = I (3)

S represents the pairwise similarity matrix constructed by
S = Z3ZT, 3 = diag(ZT 1) = I. According to [53]
and [54], βTr(S) ≥ Tr(STS) when β ≥ 3max and 3max is
the largest eigen–value of matrix S. Eq.3 can be approximated
rewritten as:

min
B,Bs

βtr(S) − 2tr(BZTZBT )

= βtr(ZTZ) − 2tr(BZTBs
T )

s.t. B ∈ {−1, +1}r×n ,BBT = I (4)

where Bs = sign(BZT ) ∈ {−1, +1}r×l are the binary anchor
points. To further improve the quality of anchor graph and
fully utilize the supervised information of the category label,
the label matrix is embedded into the hash codes by projection
matrix P and used to associate anchor points and consensus
anchor graphs:

min
P,B

λ
∥∥∥ZT − YA

∥∥∥2
F

+ γ

∥∥∥B − PYT
∥∥∥2
F

(5)

As images and texts are typical unstructured data and
there are complex nonlinear relations in the original data
which is difficult for the linear model to accurately
approximate. Therefore, we adopt RBF kernel mapping to
futher preseve the nonlinear underlying structure among
original instances. Specifically, the q samples are randomly
selected from training set as

{
aj

}q
j=1 and the original data

Xi can be transformed as kernelized feature by φ (Xi) =[
exp( ∥xi−a1∥

2σ 2 , . . . , exp(∥xi−aq∥
2σ 2 )

]
, where σ denotes the kernel

width and σ = 1/nq
∑n

i=1
∑q

j=1

∥∥xi − aj
∥∥. By combining

Eq.(2), Eq.(4) and Eq.(5), the overall objective function is:

min
αi,Wi,A,Z,

B,BsP

M∑
i=1

(αi)2 ∥φ (Xi) − WiAZ∥
2
F

+ βtr(ZTZ) − 2tr(BZTBs
T )

+ λ
∥∥∥ZT − YA

∥∥∥2
F

+ γ

∥∥∥B − PYT
∥∥∥2
F

s.t.
M∑
i=1

αi = 1,Wi
TWi = I,ATA = I,
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FIGURE 1. Framwork of the proposed SCAGH. SCAGH is composed of training and query two stages. The training stage includes two modules:
consensus anchor graph learning and similarity preserve. During the training stage, the original data features X1, X2 are converted to kernel mapping
features through kernel mapping. The kernel mapping features of different modalities are decomposed into anchor points A and consensus anchor
graph Z through projection matrices W1 and W2. In this, the selection of anchor points and construction of anchor graph are seamlessly integrated
into a unified process with consensus anchor graph learning. Subsequently, the consensus anchor graph Z is utilized to create the pairwise similarity
matrix S, and the learned hash codes B effectively maintain the similarity between neighboring points in the original data through similarity
preservation. Additionally, modality–specific linear hash functions are learned based on the training data X1, X2 and hash codes B by the linear
regression. In the query stage, the query instances are transformed into binary codes using the hash functions and cross–modal retrieval can be
achieved by calculating the similarity between binary codes of query instances and hash codes B of training instance.

Z > 0,ZT 1 = 1

B ∈ {−1, +1}r×n ,Bs ∈ {−1, +1}r×l ,

BBT = I,PPT = I (6)

D. OPTIMIZATION
The optimization problem in Eq.(6) is nonconvex and cannot
be solved directly. It is convex and solvable when updating
one of the variables and fixing others. To this end, an iterative
optimization algorithm is used.

1) WI -STEP
Fixed αi,Z,A,B,Bs and P, the objective function ofWi can
be rewritten as:

min
Wi

M∑
i=1

αi
2
∥φ (Xi) − WiAZ∥

2
F (7)

Since Wi is independent in each modal, Eq.(7) can be
transformed into the following representation:

max
Wi

tr(WT
i Qi)

s.t. WT
i Wi = I (8)

where Qi = αiφ (Xi)ZTAT , the singular value decomposi-
tion (SVD) result is Qi = UQLQVT

Q, LQ is diagonal matrix,
UQ and VC are orthogonal matrixs. The optimal solution of
Wi can be calculated byWi = UQVT

Q.

2) A-STEP
Fixed αi,Wi,Z,B,P and Bs, the objective of A can be
simplified as:

min
Wi

M∑
i=1

αi
2
∥φ (Xi) − WiAZ∥

2
F

+ λ
∥∥∥ZT − YA

∥∥∥2
F

s.t. ATA = I (9)

Eq.(9) can be transformed as the trace form:

max
A

tr(ATC)

s.t. ATA = I (10)

where C =
∑M

i=1 αi
2WT

i φ (Xi) + λYTZT , the optimal
solution method of Eq.(10) is similar to Eq.(8). Taking
the singular value decomposition (SVD) of C, we can
get A = UCVT

C .
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3) Z- STEP
Fixed αi,Wi,A,B,Bs and P, the objective function of Z can
be written as:

min
Z

M∑
i=1

αi
2
∥∥∥φ (Xi) − WiAZT

∥∥∥2
F

+ λ
∥∥∥ZT − YA

∥∥∥2
F

+ βtr(ZTZ) − 2tr(BZTBs
T )

s.t. Z ≥ 0, ZT 1 = 1 (11)

Eq.(11) can be rewritten as:

min
Z

ZT (
M∑
i=1

αi
2
+ γ + λ)Z

− 2(
M∑
i=1

αi
2φ (Xi)WiA

+ λYA + BTBs)Z

(12)

The Eq.(12) ofZ can be easily transformed as the following
Quadratic Programming (QP) problem:

min
Z

1
2
ZT

;,jGZ + f TZ;,j

s.t. Z ≥ 0, ZT
;,j1 = 1 (13)

where

G = 2(
M∑
i=1

αi
2
+ γ + λ)I

f T = −2(
M∑
i=1

αi
2φ (X)Ti[:,j]WiA

+ λY[:,j]A + BT[:,j]Bs) (14)

The optimization of Eq.(13) can be solved by performing the
QP problem of each Z. Specifically, because the each column
of Z is l dimensional vector, the time complexity of solving Z
is O(nl3).

4) P -STEP
By updating P while fixing other varibales, we have:

min
P

γ

∥∥∥B − PYT
∥∥∥2
F

s.t. PPT = I (15)

Eq.(15) can be transformed as the following form:

max
P

tr(PTBY) (16)

Eq.(16) could be sovled by singular value decomposition
(SVD) method BY = UPLPVT

P and the optimal solution can
be got by P = UpVT

P .

5) B -STEP
Fixed αi,Wi,Z,A,Bs and P the expression about B is
obtained as:

min
B

γ

∥∥∥B − PYT
∥∥∥2
F

− 2tr(BZTBs)

s.t. B ∈ {−1, 1}r×n (17)

Since tr(BBT ) is constants, Eq.(17) is transformed as:

max
B

2tr(B(ZTBs
T

+ γYPT ))

s.t. B ∈ {−1, 1}r×n (18)

Finally, the solution of B is given by:

B = sign(BsZ + γYPT ) (19)

6) BS- STEP
By fixing other variables, the corresponding representation
about Bs is:

min
Bs

− 2tr(BZTBs
T )

s.t. B ∈ {−1, 1}r×l (20)

With the same scheme to deal with Eq.(18), this problem can
be solved as follow:

Bs = sign(BZT ) (21)

7) αI - STEP
Fixed Wi,Z,A,B,Bs and P the expression about B is
obtained as:

min
Z

M∑
i=1

αi
2
∥ Ri∥

2

s.t. αT 1 = 1 (22)

where Ri =
∑M

i=1

∥∥φ (Xi) − WiAZT
∥∥
F . According to

Cauchy-Schwarz inequality, when α1R1 = α2R2 = . . . =

αMRM we can obtain the best optimal solution of αi as
follows:

αi =

1
Ri∑M
j=1

1
Rj

(23)

E. HASH FUNCTION LEARNING
SCAGH is a two–step hash method which includes hash
codes learning and hash function learning separately. The
hash codes can be generated by above method and we adopt
the linear regression to learn the modality–specific hash
functions. The hash mapping matrix Fk can be obtained by:

min
Fk

M∑
k=1

∥B − XkFk∥ + θ ∥Fk∥2F (24)
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Algorithm 1 Optimization for SCAGH
Training Stage:
Input: Data frature matrix X1,X2; label matrixY;paramters

γ, λ, β, θ and hash codes length r .
Output: Hash codes matrix B and hash functions F1,F2.
Procedure:

1.Normalize training image and text feature φ (X1),φ (X2)

by kernel mapping.
2.Randomly initialize W1, W2, Z, A, P, B,Bs and hash
functions F1, F2.

1: repeat
2: updata α1, α2 by Eq. (23),
3: updataW1,W2 by Eq. (8),
4: updata A by Eq. (10),
5: updata Z by Eq. (13),
6: updata B by Eq. (19),
7: updata Bs by Eq. (21),
8: learning hash functionF1, F2 by Eq. (26).
9: until Convergency or reach the maximum iterations

Query Stage:
Input:Query dataXi,Xt ; query label matrixYq; paramters θ

and hash codes length r .
Output:Query image and query hash code matrix B1, B2.
Procedure:

1.Normalize query image and text feature Xi, Xt by means.
2.Generate image hash codes by B1 = sign(F1Xi).
Generate image hash codes by B2 = sign(F2Xt ).

where θ is the regularization coefficient and ∥Fk∥2F is the
regularization term. Eq.(24) is optimized by:

min
Fk

M∑
k=1

−2tr(BTXkFk ) + tr(FTk X
T
k XkFk )

+ θ tr(FTk Fk ) (25)

By taking the derivative of Fk :

Fk = (XT
k Xk + θI)−1XT

k B (26)

For the query data matrix of the k–th modality Xq
k , the hash

codes Bq can be generated by:

Bq = sign(Xq
kFk ) (27)

The optimization algorithm of SCAGH is summarized in
Algorithm 1.

F. COMPLEXITY ANALYSIS
The time complexity O(·) of variables B, Bs, P, Wi and A
will be analyzed in this section. To be specific, the time
complexity for hash codes matrix B and Bs are O(rn(l + d))
and O(rnl), for mapping matrix P and Wi are O(rd(n + d))
and O(dm(ln + ld + d2)), for adaptive anchor matrix A is
O(d(ln+ndm+l2)) for weight ofmodalityαi isO(dml(d+n)),

for anchor–simple similarity matrix Z is O(nl3). The total
computational complexity is O(dm(2ln+ 2ld + d2)+ rd(n+

d) + d(ln + ndm + l2) + rn(2l + d) + nl3) where dm is
the dimension of data, r is the hash codes length, l and n
are the number of anchor and data. Since dm, r, l ≪ n, the
computational complexity of the proposed method is linear
complexity to the number of samples n.

IV. EXPERIMENTS
A series of comparative experiments with baseline methods
and deep hashing methods are conducted. The convergence
property, parameter sensitivity, and time complexity of the
proposed method will be discussed.

A. DATASETS INTRODUCTION
The performance of the proposed method is evaluated
on three widely used datasets: WIKIData,1 Labelme,2

MIRFLICKR3 and NUSWIDE10.4

WIKIData: this dataset originally contains 2,866 image-
text pairs collected from Wikipedia, and it is splited into
2,173 training pairs and 693 testing pairs. Each sample
belongs to one of 10 category labels and is described
with visual modality and text modality. Visual modality is
composed of 128-dimensional SIFT feature vectors and text
modality is represented by 10-dimensional topic vectors.
Labelme: the dataset is made up of 2,688 samples along

with 8 unique outdoor scenes categories such as ‘‘coast’’,
‘‘streets’’ and ‘‘highway’’ and each sample belongs to one
scene. Each image is represented by a 512–dimensional
GIST vector and each text is represented by 245–dimensional
phrase frequency. In the experiments, 2,016 image–text pairs
are randomly selected for training and the rest 672 image–text
pairs are used for testing.
MIRFLICKR: contains 25,000 samples crawled from the

Flickr website with 24 semantic concepts. Each image is rep-
resented by 512–dimensional GIST [55] feature vector and its
corresponding text is described as a 1,386–dimensional bag–
of–words vector.We remove sampleswithout labels or textual
tags less than 20 and 20,015 samples are kept for training,
2,000 samples are randomly selected as the test set.
NUSWIDE10: is a large–scale multi–label dataset, which

contains 269,648 instances from 81 semantic categories.
The image is described with 500–dimensional SIFT feature
vectors, and the text is represented with 1,000–dimensional
bag–of–words vectors. Since some labels are sparse, we keep
the most common 10 concepts as the category label and
the corresponding 186,577 samples are used for experiment.
Among them, 184,577 samples are used for training and
2,000 samples are used for testing.

1http://www.svcl.ucsd.edu/projects/crossmodal/
2http://people.csail.mit.edu/torralba/code/spatialenvelope/
3https://press.liacs.nl/mirflickr/
4https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/

nuswide/NUS-WIDE.html
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TABLE 1. The parameter values corresponding to datasets.

B. EVALUATION METRICS
The experiments are conducted on SCAGH and other
baseline methods with two retrieval tasks: (1) Img2Txt i.e.,
retrieving relevant text instances with image, and (2) Txt2Img
i.e., retrieving relevant image instances with text. Some
commonly adopted evaluation protocols include the Mean
Average Precision (MAP), Precision–Recall (PR) curves, and
top–N Precision (Precision@N) curves.

The definition of MAP is given by:

MAP =
1
N

N∑
q=1

AP(q) (28)

where N means the number of query samples and AP is the
Average Precision:

AP(q) =
1
nq

R∑
r=1

Pq(r)δq(r) (29)

where nq is the number of instances related to the query
samples of the retrieval set. R is the size of the retrieval
dataset. Pq(r) means the precision of top–r retrieval samples.
δq(r) is an indicator function and return 1 if the r–th item
is related, otherwise return 0. The Precision–Recall (PR)
curve is made with precision as the ordinate and recall as the
abscissa. It reflects the varied precision values with different
recall. The top–N Precision (Precision@N) curve measures
the precision of the top N search results.

C. BASELINES AND IMPLEMENTATION DETAILS
We compare SCAGH with state–of–the–art methods and the
descriptions are listed as follows.

• AGH [25] utilizes anchor graphs to discover the
neighborhood structure of the original data to learn
appropriate hash codes.

• GRH [56] employs graph regularisation to smooths the
distribution of hash codes so that similar data points
receive similar binary codes.

• SGH [26] uses feature transformation to approximate
the whole similarity pairwise graph, which reduces the
computation and storage cost.

• GSPF [57] maintains semantic similarity between data
points in various settings, including single–label, multi-
label, as well as paired and unpaired scenarios.

• FSH [54] embeds the graph–based fusion similarity
from multiple modalities to a Hamming space.

• SRLCH [58] directly exploits relation information
in class labels to make similar data from different
modalities closer in the hamming subspace.

• OCMFH [59] uses collective matrix factorization in
an online optimization scheme to learn hash codes for
streaming data.

• RDMH [60] incorporates semantic labels into the hash
codes and utilizes an auto encoder strategy to learn the
hash function.

• WASH [61] obtains enhanced semantic information
from the ground truth labels, and then perform matrix
decomposition of the semantic information to obtain the
shared representation.

• ATH [42] jointly optimizes the asymmetric hash func-
tions and the bipartite graph on cross–domain data to
alleviate the domain distribution gap.

GSPF [57], RDMH [60], WASH [61], SRLCH [58],
GRH [56] and SCAGH are supervisedmethods, unsupervised
methods include FSH [54], OCMFH [59] and three graph
hashing methods AGH [25], SGH [26]and ATH [42]. All
experiments are performedwithMATLABR2018a on a work
station of 20–core 3.5 GHz CPU and 64GB RAM. In order
to reduce the computational complexity, we randomly select
5,000 samples from NUSWIDE10 dataset as the training set
for GSPF [57] and GRH [56]. 20,000 samples are selected
from NUSWIDE10 for RDMH [60] and ATH [42]. SCAGH
has different parameters including γ , λ, β, and θ . For
different datasets, SCAGH has different parameter settings.
The details are list as Table 1 and the specific parameters
analysis process is shown in IV-D0.e.

D. EXPERIMENTAL RESULTS AND DISCUSSION
In the experiment, the best values are highlighted in blod and
the runner–up values are underlined. To eliminate the impact
of random errors, the MAP results on different datasets are
generated by running 5 times and taking the average values.
The retrieval tasks includes Image→Text and Text→ Image:
(1)Image→ Text: retrieve relevant text using images; (2)Text
→ Image: retrieve relevant images using texts.

a: RESULTS ON WIKIDATA
MAP results of SCAGH and baselines methods onWIKIData
are reported in Table 2 and the lengths of hash codes are
varied from 8 to 128 bits. The Precision–Recall curves and
top–Precision curves are shown in Figure 2 and Figure 3,
respectively. The observations can be summarized as follows.

• SCAGHobtained the significantly best results compared
with all baseline methods in the cases of different hash
codes lengths, which verifies the superiority on small
dataset.

• The proposed approach has an obvious improvement of
8% over the second best method GSPF on both retrieval
tasks, which indicates the effectiveness of label mapping
and associating anchors and anchor graph with semantic
label.
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TABLE 2. MAP values of different bits on WIKIData.

FIGURE 2. Precision–Recall curves on WIKIData by varying code length.

FIGURE 3. topN–Precision curves on WIKIData by varying code length.

• The prformance of the Image → Text task is sig-
nificantly lower than the Text → Image task. One
reason is that the text modality maintains more semantic
information than the image when being mapped to the
same hash codes. Another one is that the image modality
includes more noise and outliers than text modality.

• The Precision–Recall and topN–precision curves of all
methods using 32 and 64 bits are shown in Figure 2
and Figure 3, respectively. The proposed method has
been further demonstrated to be effective through the
results, which indicate that SCAGH outperforms other
baselines.

b: RESULTS ON LABELME
The MAP values of SCAGH and nine baseline methods on
MIRFLICKR are reported in Table 3. The Precision–Recall
curves and topN–Precision of all methods are shown in
Figure 4 and Figure 5, respectively.

• SCAGH represents the best performance than all base-
line methods on text → image task but its performance
on image → text is slightly lower than RDMH and
WASH. The underlying reasons for this could be
attributed to the following factors: (1) LableMe has the
smallest number of training samples and class labels
among the four datasets used. This limited dataset size
may potentially impact the experimental performance.
(2) For LableMe, the image modal has a higher
feature dimension than text modal. The distribution
characteristics of the dimension of image and text
modalities may result in relatively lower performance in
image retrieval with respect to text. (3) The differences
between the hash codes of different imagesmay be larger
than the differences in text hash codes. This may result in
larger distances between images in the Hamming space,
thereby affecting the accuracy of image retrieval for text.

• The conclusion drawn from the Table 3 is that as
the length of the hash code increases, the retrieval
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TABLE 3. MAP values of different bits on LabelMe.

FIGURE 4. Precision–Recall curves on Labelme by varying code length.

FIGURE 5. topN–Precision curves on Labelme by varying code length.

performance also gradually improves. One possible
reason is that the longer hash codes contain more
comprehensive and effective semantic information.

• Both WIKIData and Labelme are single label and small
sample datasets, but the MAP value on Labelme dataset
is much higher than that on WIKIData. This is because
the feature dimensions of the samples in Labelme are
higher and the semantic gap between image and text
modality is smaller than WIKIData.

• As demonstrated in Figure 4 and Figure 5, the retrieval
performance of methods SCAGH andWASH, RDMH is
comparable, which aligns with the MAP results.

c: RESULTS ON MIRFLICKR
The MAP values of SCAGH and nine baseline methods on
MIRFLICKR are reported in Table 4. The Precision–Recall
curves and topN–Precision of all methods are shown in
Figure 6 and Figure 7, respectively.

• According to Table 4, SCAGH shows slightly lower
performance than WASH and RDMH for the Image
→ Text task at 8 bits and 16 bits. However, SCAGH
surpasses all methods for the Text → Image task,
indicating its effectiveness on MIRFLICKR dataset.

• SCAGH achieves the best performance compared to
other graph hashing methods AGH, SGH, GRH and
ATH. This is benefited by SCAGH adaptively select
the anchor points and construct consensus anchor graph
in a unified formula, which improves the quality of
anchor graph and hash codes and enhances research
performance.

• It should be noted that GSPF, RDMH, WASH, and
SCAGH utilize category label to enhance performance,
yet SCAGH surpasses all of them. The reason lies in
the fact that the proposed method incorporates semantic
label into the hash codes and associates anchor points
and anchor graph through labels, hence extensively
leveraging the supervised information of semantic label.
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TABLE 4. MAP values of different bits on MIRFLICKR.

FIGURE 6. Precision–Recall curves on MIRFLICKR by varying code length.

FIGURE 7. topN–Precision curves on MIRFLICKR by varying code length.

• As illustrated in Figure 6 and Figure 7, the
Precision–Recall and topN–Precision curves of SCAGH
are situated at the top among all baselines. Therefore,
it suggests that the retrieval performance of SCAGH is
higher than other methods.

d: RESULTS ON NUSWIDE10
The MAP values of SCAGH and nine baseline methods on
NUSWIDE10 are reported in Table 5. The Precision–Recall
curves and topN–Precision curves are shown in Figure 8 and
Figure 9 respectively.

• The results indicate that SCAGH achieves the highest
MAP values in both of the retrieval tasks. Notably,
SCAGH improves the second–best results by approxi-
mately 5% and 6% on the image → text and text →

image tasks, respectively. Moreover, as the hash code
length increases, the performance gap between SCAGH
and the second–best method widens significantly.

• In general, supervised methods like RDMH, GSPF, and
WASH exhibit superior retrieval performance compared
to unsupervised methods such as FSH or OCMFH.
However, the graph hashing methods including AGH,
SGH, and ATH, do not achieve comparable results to the
unsupervised methods. This is because these methods
were originally developed for single–mode retrieval and
were later adapted by us for cross–mode retrieval.

• Figure 8 and Figure 9 display the Precision–Recall
and topN–Precision curves for all methods. Based on
the figures, it is apparent that SCAGH exhibits greater
precision at fixed recall values and retrieved sample
sizes.

e: PARAMETER SENSITIVITY ANALYSIS
This subsection analyzes the effect of parameters including
γ , λ, β, and θ . SCAGH possesses different parameters
including γ , λ, β, and θ . The parameters γ and λ are
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TABLE 5. MAP values of different bits on NUSWIDE10.

FIGURE 8. Precision–Recall curves on NUSWIDE10 by varying code length.

FIGURE 9. topN–Precision curves on NUSWIDE10 by varying code length.

utilized for mapping semantic labels, while θ is utilized
to regulate hash function’s regularization component in
preventing overfitting. β must be greater than or equal to the
highest eigen–value of the anchor similarity matrix. Assume
the spectral radius of anchor similarity matrix Z is expressed
as ρ(Z), ρ(Z) ≤ ∥ Z∥∗ and ∥ Z∥∗ represents any matrix norm
ofZ. Because ∥ Z∥1 = 1, ∥ Z∥1 represents the column norms
of Z, the value of β should be greater than or equal to 1.
We explore the impact of individual parameters by varying
γ , λ and θ in the range of

[
10−3, 10−2, . . . , 1e4

]
, and β

in the range of [1e0, 1e1, . . . , 1e4], while keeping the other
parameters fixed. The code length is set at 128 bits and the
experimental results are presented in Figure 10.
With significant changes observed, the impact of γ and θ

on all datasets is noteworthy. When γ exceeds 1, there is a
considerable increase in MAP, but it decreases sharply as θ

drops below 10. OnWIKIData, we set γ = 1e4 and θ = 1e−
2, while for NUSWIDE10, we adjust γ = 1e4 and θ = 1e−3,

and for MIRFLICK and Labelme datasets, we use different
parameters γ = 100, θ = 1e − 3. With other parameters,
SCAGH achieves stable MAP across all four datasets over a
wide range. We set λ within the range of [1e− 2, 1e4] and
β to either 10, 1e2 or 1e3. For detailed parameter settings,
please refer to Table 1.

f: CONVERGENCE ANALYSIS
The efficiency of the SCAGH depends on the convergence
rate which is affected by an iterative optimization algorithm.
A convergence curve of SCAGH is presented in Figure 11,
where the Y–axis shows the loss value of the objective
function and the X–axis represents the iteration numbers.
The results demonstrate that SCAGH achieves convergence
within 30 iterations on all datasets with a fast convergence
rate, indicating the effectiveness of the proposed method. It is
observed that the convergence rate of MIRFLICK is slower
compared to other datasets. This can be due to the smaller
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FIGURE 10. Paramters sensitivity analysize on four datasets.

FIGURE 11. Convergence analysis on four datasets with 128 bits.

TABLE 6. Comparision of training time (in seconds) on Wikidata and MIRFLICK.

value 1e − 2 of the parameter λ used in dataset MIRFLICK
compared to other datasets.

g: TRAIN AND QUERY TIME ANALYSIS
Train time and query time experiments of SCAGH and all
baselines are conducted, with hash code lengths ranging
from 16 to 128 bits. Due to Labelme has a similar size
to WIKIData, GRH, GSPF and GSPF cannot be applied to
the entire NUSWIDE10 dataset. Therefore, WIKIData and
MIRFLICK datasets are chosen for evaluation. The results of
all methods under the same settings is illustrated in Table 6
and Table 7. Specifically, GSPF andGRH take longer time for
training and querying because they generates hash codes bit
by bit. SRLCH and WASH take less time compared to other
methods since neither of them requires the construction of
affinity graph. Although SCAGH takes longer time than SGH
since the anchor graph matrix is solved by using quadratic
programming, the MAP value and retrieval performance of
SGH are much worse than SCAGH. We find that the training
time consumed on 16 bits is longer than that on other bits.
This is because hash codes are stored in the form of array, i.e.
[16, 32, 64, 128]. When 16 bits starts training, it is necessary

to initialize and generate some parameter variables and load
them into the MATLABworkspace. Although this may result
in additional time overhead, the overall time difference is
not substantial. The training time for WIKIData is mainly
concentrated within the range of 1.2 to 1.4 seconds, while for
MIRFLICK, it mainly centers around 13 seconds. Therefore,
considering both the retrieval performance and training time,
SCAGH is superior and scalable for large–scale datasets.

h: ANCHOR NUMBER ANALYSIS
During the process of adaptively selecting anchors and
constructing anchor matrix, the quantity of anchors is
uncertain. This section primarily investigates the effects
of choosing different numbers of anchor points on model
performance. We set the number of anchor points l within the
range of [1k, 2k, . . . , 10k], where k denotes the number of
categories and the dimension of anchor points. In Figure 12,
we present the outcomes of both image query text and text
query image tasks within four datasets WIKIData, Labelme,
MIRFLICK and NUSWIDE with the optimal numbers of
anchor points being 8k,5k,6k and 4k respectively.
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TABLE 7. Comparision of querying time (in seconds) on Wikidata and MIRFLICK.

FIGURE 12. The MAP of different number of anchors.

FIGURE 13. Examples of text query image on WIKIData.

i: ABLATION STUDY
To verify the contributions of different components to the
overall performance, ablation experiments are conducted on
the proposed method in the subsection. The variants of

SCAGH include SCAGH_L, SCAGH_A and SCAGH_K.
SCAGH_L removes supervised label information by setting
the parameter λ and γ to zero. SCAGH_A randomly
selects the same number of anchor points from training
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TABLE 8. MAP results of SCAGH and its variants.

FIGURE 14. Examples of image query text on WIKIData.

set. SCAGH_K discards the kernel mapping for multimodal
datas. The MAP results of SCAGH and its variants on four
benchmark datasets with different hash code lengths are
presented in Table 8. From the experimental results, the
following observations can be made.

• According to Table 8, the MAP value of SCAGH_L has
significantly decreased, which indicates that supervised
semantic labels have a promoting effect on improving
the retrieval performance of the proposed model.

• Compared to SCAGH_A which randomly select anchor
points, the result that SCAGH outperforms SCAGH_A
demonstrates the effectiveness of adaptively learns
unified anchor points for different multimodal data.

• SCAGH_K shows the performance of the porposed
model decreases without kernel mapping, implying the
necessity of kernel mapping for capturing the nonlinear
structure among original data features.

j: VISUALIZATION STUDY
To visually explore the effectiveness of the proposed method,
experiments of image query text and text query image on
WIKIData are performed. Figure 13 and Figure 14 present the
visualization results of query samples with different category
labels. The figures show the query images or texts in the first
column, followed by the respective class labels in the second
column and the top 10 retrieved results are sorted from left to
right on the third column. The relevant retrieved samples are
marked in green box and hash codes length is 128 bits. It can
be observed that the retrieval results are semantic relevant to
the query instances in real scenarios of cross–modal retrieval.

k: DEEP HASHING COMPARATIVE EXPERIMENT
We conducted experiments on theMIRFLICKR_deep dataset
to compare with several state–of–the–art deep cross–hashing
methods, including DFAH [48], DDCH [49], DCMH [44],
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TABLE 9. MAP values of SCAGH and deep hahsing methods on MIRflick.

SRCH [50], DGCPN [47], PRDH [45] and UDCMH [46].
As described in [44], the 4096–dimensional image features
are extracted using the pre–trained CNN–F network [62],
while the 1386–dimensional text features are represented by
the bag–of–words vectors. The hash codes lengths are set to
16 bits, 32 bits, and 64 bits for simplicity. The MAP values
obtained from the experiments are presented in Table 9 and
consistent with the results reported in the original papers for
all deep hashing methods.

From Table 9, we can see that while DCMH performs
better than SCAGH on the Text query Image task with an
increase of approximately 2%, its mAP value is not as good
on the Image query Text task and is approximately 4 %
lower than SCAGH. It is worth noting that deep hashing
methods benefit from the end–to–end framework and extract
deep–level semantic features through designed or fine–tuned
neural networks. Although SCAGH is not a deep hashing
model, it can outperform most of the state–of–the–art deep
cross–modal hashing methods, which further confirms the
effectiveness in the proposed method.

V. CONCLUSION
Prior anchor–based methods relied on heuristic sampling
strategies such as k–means or random sampling for selecting
anchor points. The anchor graph is constructed based on
Euclidean distance between anchor points and samples.
However, these two independent processes result in poor
quality of hash codes and limited retrieval performance.
In this paper, we develop a novel cross modal hashing method
term as SCAGH. Different from previous anchor–based
methods, SCAGH jointly integrates the anchor points selec-
tion, consensus anchor graph construction and hash codes
learning into a unified framework to improve the retrieval
performance. More specially, SCAGH automatically learns
the anchor points and constructs the consensus anchor graph
without additional hyper–parameters as previous methods
do. Moreover, the O(n2) complexity can be avoided by
approximating the pairwise similarity matrix with anchor

graph matrix. Experimental results on four benchmark
datasets validate that the superiority of the proposed SCAGH,
demonstrating its effectiveness for cross–modal retrieval
tasks. In future research, we will focus on integrating
graph convolutional neural networks to construct a more
comprehensive cross–modal deep hash model, which further
enhance the performance of cross–modal hashing retrieval.
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