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ABSTRACT This study investigated the capability of machine learning to analyze and predict individuals’
motives within an experimental game context. Although humans predict the motives of others to respond
appropriately, these motives often overlap and are difficult to tease apart in social exchange contexts.
An act of reciprocated favor, for example, could equally be motivated by parochial altruism as by self-
interest, and human attributions of motives are notoriously biased. Can machine learning effectively predict
motives and offer insights into how individuals prioritize overlapping motives? We analyzed motives in an
experimental social exchange game using a Multilayer Perceptron (MLP), Decision Tree (DT), Random
Forest (RF), Gaussian Naïve Bayes (GNB), K-Nearest Neighbor (KNN), Support Vector Classifier (SVC),
Logistic Regression (LR), and a novel combination of Clustering and HiddenMarkovModel (C-HMM). The
accuracy, precision, recall, and f1-score were compared in two phases: Phase 1, where individuals focus on
a single motive, and Phase 2, where individuals consider multiple motives when making decisions in social
exchange. With accuracies of 86.96%, 67.31%, and 70.74% for each class of motives tested in Phase 1, C-
HMM outperformed the other models. LR demonstrated the best performance, with an accuracy of 45.57%
in Phase 2. Further analysis shows that the strength of relationships with ingroup members is a reliable
predictor of reciprocation motives. Our model can be extended to nudging prosocial behavior in human-
agent collaborations.

INDEX TERMS Machine learning, motive prediction, social exchange, intent prediction.

I. INTRODUCTION
In the field of human-agent interaction, there is a compelling
need for artificial agents to effectively navigate the complex-
ity of human social behavior and elicit prosocial behavior
among humans [1]. Among these complex aspects that govern
human social interactions, intent and motives play central
roles in driving decisions, shaping relationships, and influ-
encing outcomes, especially in social exchange contexts in
which individuals’ motives for action influence the reaction
of the observers [2].

Social exchange is a fluid and dynamic process wherein
individuals are required to anticipate the motives of oth-
ers prior to reaching a favorable decision – a decision
that is optimized to assist the individual in achieving their
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objectives [3]. Individuals with interactive social exchanges
can have 1. multiple obscure motives, such as fairness, self-
ishness, and ingroup favoritism; 2. where the importance of
these motives evolves dynamically through interaction; and
3. within contexts characterized by overlapping behavioral
demands that lack clear differentiation from one another [3].
Consider the myriad of obscure motives that underlie the act
of giving your boss a gift. It may stem from self-interest,
norms in the workplace, generosity, or a combination of these
factors [4]. The motives are obscure and overlapping; the lat-
ter can help confuse observers, producing uncertainty about
the motive behind an individual’s actions. Humans exploit
this uncertainty in their strategic acts. For example, giving
your boss a gift while expecting promotion. This raises the
question of whether machine learning can analyze and predict
motives to reduce or eliminate uncertainty about the motives
underlying individuals’ actions in social exchanges.
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Machine learning models excel in solving objective tasks,
such as image recognition [5], language translation, and
pattern recognition [6]. Recent advancements in artificial
intelligence have enabled more applications to tackle sub-
jective tasks, such as intent prediction from text or speech
data [7]. However, predicting motive from interaction traces
presents a new challenge: While intent predominantly antic-
ipates ‘what’ actions people or artificial agents will take [8],
motives explore the ‘why’ behind these actions, revealing the
underlying reason. Therefore, intent prediction is an individ-
ual’s aptitude to perceive and understand the goals of another
person, as opposed to predicting the reasons for pursuing
those goals.

Whereas Schneider et al. [9] have further differentiated
intents into ‘‘what’’ ‘‘why,’’ and ‘‘how’’ categories based
on the information estimated by agents, individuals, or sys-
tems, only a limited body of literature has focused on the
‘‘why’’ based intent. The ‘‘what’’ based intents deal with
temporal patterns or goals to be achieved. For example, pre-
dicting the items customers on an e-commerce website will
purchase. Conversely, the ‘‘how’’ based intent deals with
the mechanisms in place to achieve the goal. An example
of a ‘‘how’’ based intent is predicting the likely method
of purchase, including options like online delivery, in-store
purchase, and online purchase for in-store collection. The
‘‘why’’ based intent deals with underlying reasons, corre-
sponding to motives. For example, why did a customer
choose to purchase a specific product? Predicting the reasons
for actions requires an understanding of certain aspects of
an individual’s mental state, which is an inner represen-
tation of features within a specific external context [10].
In turn, this allows us to predict how an individual will
behave.

We applied machine learning to analyze motives using
data collected in a simple experimental game context [11].
In this game, participants from two 7-player groups were
tasked with allocating a single token to any player in each
of 40 rounds. They had to make allocation decisions, mindful
that players’ tokens represented wealth, with token balances
reflecting their relative wealth compared to others in each
round of the game. Although the intergroup experimental
game is less complex than a real-world context, it offers a
valuable opportunity to observe and comprehend the dynam-
ics of social interactions and to apply knowledge of theories
about motives underlying the actions of individuals in social
exchange environments.

The aim of this study is twofold: to compare the perfor-
mance of machine learning models for predicting motives
in a social exchange experimental game, and to present
a machine learning analysis of how individuals prioritize
motives in the game, as part of ongoing research on nudging
prosocial behavior among humans in human-agent interac-
tion. To achieve this aim, this study pursues the following
objectives:

1) Apply well-established psychological theories to iden-
tify motives within a social exchange context.

2) Generate theory-driven features from the experimental
game data for training the models.

3) Multilayer Perceptron (MLP), Decision Tree (DT),
Random Forest (RF), Gaussian Naïve Bayes (GNB),
K-Nearest Neighbor (KNN), Support Vector Classifier
(SVC), and Logistic Regression (LR) were imple-
mented to predict the motives for token allocation in
the experimental game.

4) Implement a novel hidden Markov model that har-
nesses clustering mechanisms to improve motive
prediction.

5) Evaluate the models based on the assumption that:
a. Individuals in the game focus solely on a single

motive when making an allocation decision.
b. Individuals in the game consider multiple motives

in making an allocation decision.
The structure of this paper is outlined as follows. We com-

mence with a concise review of relevant literature, followed
by an in-depth description of the current study. We then
present the methods section that describes the dataset, fea-
tures, selected algorithms, and novel Cluster Hidden Markov
Model (C-HMM). Finally, we analyze the results and discuss
our findings in the concluding section.

II. LITERATURE REVIEW
Intent prediction spans numerous fields of research. We high-
light the applications of machine learning for predicting the
‘‘what’’ based intent using text and speech data, and review
examples of recent literature that focus on using interaction
traces instead of text. Lastly, we highlight the current trend
on the ‘‘Why’’ based intent.

A. INTENT PREDICTION: FROM ‘‘WHAT’’ TO ‘‘WHY’’
BASED INTENT
Machine learning approaches, such as collaborative filtering,
matrix factorization, and Multilayer Perceptron have been
widely adopted to predict the goals or objectives of humans
in research areas such as recommendation systems. For
example, collaborative filtering methods leverage user-item
interactions to uncover similarities between users [12], while
matrix factorization techniques capture user-item relation-
ships to predict item users like [13]. Deep learning models,
especially those that combine neural collaborative filtering
and other algorithms, such as multilayer perceptrons, have
demonstrated superior performance in predicting user pref-
erences and goals [14]. Natural Language Processing (NLP)
and deep learning techniques have been applied to virtual
assistants and chatbots to extract user intentions from textual
or spoken input. Intent classification models, including recur-
rent neural networks (RNNs) and transformers, have proven
to be effective in understanding user commands, and gener-
ating contextually relevant responses. Readers interested in
intent prediction from text data can review [15] studies.
Predicting the ‘‘what’’ based intent is a valuable capability.

However, it represents only a fraction of behavior, leaving
the underlying reasons for actions – the ‘‘why’’ based intent
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unanswered [9], [16]. Understanding the reason for an action
or pursuing a goal is crucial. Recent successes in goal predic-
tion have primarily occurred in fields in which predictions
are made from text or speech data. See [12] for a review.
Although the proliferation of digital platforms has given rise
to plenty of textual and speech data, it has also increased
the availability of videos, images, and traces of interaction.
Consequently, understanding the reasons for actions from the
videos, images and interaction traces is equally important.

To this end, a few researchers [17], [18], [19] focused
on the ‘‘why’’ based behavior intent, utilizing virtual
data, or combining virtual and textual data. For example,
Kofler et al. [19] aimed to predict ‘‘why’’ individuals cre-
ate and post videos online. In [19], the authors trained
machine learning algorithms that utilized both textual and
nontext features for prediction. Possible intents, such as
‘‘Asking for an opinion’’ and ‘‘Expressing an opinion,’’
were deduced by mining the web for videos and catego-
rizing them based on their descriptions. These categories
were presented to Amazon Mechanical Turk workers, who
were asked to explain why they thought the video had been
uploaded to validate their approach. While the work is not
within the context of social exchange, achieving the best
result (67% accuracy) reported in the study for predicting the
‘‘why’’ based intent is challenging. Similarly, Jia et al. [18]
collected images featuring potential motives expressed in
images obtained from online sources. These motives were
obtained from human motives taxonomy developed through
studies in the field of psychology. Both the motives and
their corresponding image samples were then presented to
Amazon Mechanical Turk workers, who filtered out non-
representative taxonomy from the samples before utilizing
them as motives for training machine learning algorithms.
The work highlights the critical role of domain knowledge
in psychology theories about motives underlying behav-
iors when training machine learning algorithms to predict
motives.

Ignat et al. [17] used the combination of textual and visual
information to predict the reasons for performing actions
observed in online videos. Ignat, et al. [17] selected possible
reasons for the observed actions from an online data repos-
itory that describes human actions and the possible reasons
underlying them. In some cases, the reasons were verbally
stated in the video. The videos and the selected reasons for
the observed actions were then used to train machine learning
algorithms to recognize reasons underlying actions in online
videos. In addition to virtual and textual data, Zhang et al. [20]
utilized audio information to offer an even richer context.
For example, they used the speaker’s expression and tone to
identify emotions, such as joking and anger, to improve the
machine learning intent prediction task. These studies [17],
[18], [19], [20] demonstrate that a machine learning approach
to predicting motives is a viable endeavor. Furthermore, they
capitalized on the reach context provided by the combination
of textual and visual data.

While the combination of text and traces of interaction can
provide a rich context for intent prediction, predicting users’
purchase goals using only traces of interaction is a popular
study focus in fields where clickstream data, a sequence
of click events such as browsing a page, adding items to
a cart, and buying items is a well-established source of
behavioral information [21], [22], [23], [24]. For example,
.Hatt and Feuerriegel [24] evaluated several machine learn-
ing algorithms, including the hidden Markov model, logistic
regression, and a Markov modulated marked point process
(M3PP), which considered the sequence of pages visited as
well as the time spent on the pages to predict the risk of cus-
tomer exiting without a purchase on an e-commerce website.
The study found that M3PP outperformed the other tested
models. While clickstream data is predominantly symbolic
as opposed to conversational, it provides valuable insight for
machine learning that predicts products a user may purchase
or the goal of the users browsing ecommerce websites.

The prediction of ‘‘why’’ based intent using interaction
traces like the clickstream and interaction network, however,
remains relatively unexplored. This is because predicting
the underlying reasons for actions without textual or speech
data presents inherent challenges. Psychologists have long
explored the analysis of ‘‘why’’ based behavioral intent,
commonly referred to as motives [25]. Understanding psy-
chological theories about motives in social interaction could
help debunk the reasons underlying actions from interaction
traces.

B. PREDICTING MOTIVES IN SOCIAL EXCHANGES
Research examining motives underlying actions has often
relied on questionnaire responses to identify individuals’
motives. This approach has been favored because of the latent
and subjective nature of motives [26]. While questionnaires
and surveys have been traditional tools for investigating
motives, they have inherent self-report biases and are expen-
sive and time-consuming, particularly in repeated interactions
where motives evolve over time. Think about the motives
underlying three quick and successive interactions from an
individual. The motive underlying the first interaction may
not necessarily be the same as that in the third.

Research has shown that motives can be derived from
observations [27] and behavioral records in an experimental
game [28], [29]. For example, Stoeckart et al. [29] conducted
experiments to evaluate how individuals’ implicit motives,
specifically, the need for power, influenced their choices. The
participants were presented with a repeated choice between
two buttons. Each button press resulted in a distinct outcome:
either the display of a submissive or dominant face. The need
for power was interpreted as the desire to obtain an outcome
in which the pressed button displayed a submissive face.
This interpretation stems from the idea that individuals with
a strong desire for power seek to control and impress oth-
ers [30], [31] and would learn and repeat the action-outcome
pair that resulted in the display of a submissive face.
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Similarly, Bolle et al. [28] defined motives as response
functions based on donation behavior, such as altruism and
selfishness, which have been discussed extensively in the lit-
erature for decades. The study [28] aimed to identify different
motives underlying individuals’ donations using a modified
version of the solidarity game [32]. Bolle et al. [28] investi-
gated the social exchange dynamics involving two players,
referred to as benefactors, and one player, the beneficiary.
The benefactors received =C10 each, whereas the beneficiary
received no money. Benefactors can choose to give some
to the beneficiary. To categorize individuals based on their
underlying motives, the benefactors were asked how they
would donate to the beneficiary, if the other benefactor has
donated =Cx amount. The same question was asked repeatedly
for different values of x, and the benefactors were categorized
into definedmotives for social exchanges, including altruism,
warm glow, and selfishness. For example, selfish benefactors
did not give anything, while altruistic benefactors gave less
as the other benefactor gave more. The study used the log
likelihood of giving and found that motives for giving were
diverse, with altruism and envy being the most common, and
only 40% of players consistently followed a utility function
(motive).

While Bolle et al. [28] analyzed motives in a game context
that relied on explicitly defined reward values, the open social
exchange used in our study has no defined reward for actions.
Also, there was no indication of whether the utility function
can predict the players’ ‘unseen’ motives. We suggest that
analyzing and predicting motives using machine learning,
a more complex algorithm, is likely to yield better results.
By examiningmultiplemotives in social exchanges, our study
builds on and extends the work of Stoeckart et al. [29], who
primarily focused on a single implicit motive. Furthermore,
we broadened its scope by predicting compound motives
within the context of social exchange games.

III. THE PRESENT STUDY
We applied machine learning to predict motives from inter-
action traces in an interactive social exchange experimental
game. The start token of each player and their group identities
were visible to each player at the beginning of each token
allocation round [11]. In addition, the players’ allocation
decisions were revealed to each player at the end of each
round. Each allocation decision can be influenced by one or
more of the identified motives. We assumed that the motives
underlying allocations in round r + 1 could be predicted by
the outcomes (the allocation network) from round r .
We identify motives within the experimental game by

leveraging theoretical knowledge about reciprocation [33],
[34], support for the underdog or currying of favor with
the rich [35], [36], and ingroup favoritism [37] in social
exchanges.

• Reciprocation: Motives within interactive social
exchanges are predominantly driven by self-interest [38]
and served through reciprocation. Individuals make
reciprocal exchanges as a means of building a

self-benefiting partnership [33], especially within
groups [34].

• Fairness vs. Power: Exchange with the underdog is
rooted in notions of fairness and equity [36]. Conversely,
individuals engage in exchange with the rich to solicit
favor [35] and, feel powerful and domineering [30], [31].
The fairness and power motives can be expressed in the
experimental game through token allocation to poor and
wealthy individuals, respectively.

• Ingroup favoritism: Reputation motives are served
through ingroup favoritism, also known as parochial
altruism. Individuals identify with the ingroup and
develop a sense of belonging, self-esteem, and pride
based on their group membership. They favor their
ingroup over the outgroup to enhance their self-concept,
reputation, and economic gains [37].

We applied the above theoretical knowledge to identify
motives in our game data using the observed characteristics
of token allocation. Motives were read from the observable
features of the recipients in each round. Is the allocation recip-
rocating favor from the recipient in the previous round? Was
the selected recipient poor or rich? Was the selected recipient
in the ingroup or outgroup? As described above, motives
are not read perfectly or transparently from the behavior;
therefore, we rely on theory to make the best guess about the
motive informing each exchange. We do this in two ways.
First, we consider each motive in isolation using allocation
as a definite signal of the isolated motive. For example,
considering ingroup favoritism independent of other motives,
we classify ingroup allocation as parochial altruistic and out-
group allocations as not. Allocations to the rich are classified
as driven by power-seeking motives, while allocations to the
poor are classified as fairness-seeking motives. Allocations
that reciprocated receipts in the previous round were classi-
fied as reciprocation motives.

This is an oversimplification because each allocation may
be informed by multiple motives. Allocations to ingroup
membersmight also be reciprocating and directed toward rich
or poor members. Our second strategy for motive identifi-
cation is to classify compound movies consisting of three
indicators represented by a three-digit binary, for exam-
ple, 100. Digit 1 indicates whether the allocation in round r
reciprocates a receipt in round r-1 (yes = 1; no = 0).
Digit 2 indicates whether the recipient’s token balance at
the end of round r-1 was above the mean token balance
of all players (rich = 1) or below the mean (poor = 0).
Digit 3 indicates whether the recipient was in the same
group as the allocator (ingroup allocation = 0, outgroup
allocation = 1).
The analyses were conducted in two phases. First,

we adopted the vary-one-thing-at-a-time (VOTAT) behav-
ioral strategy [39] and assumed that individuals focus on
one motive each time they make an allocation decision.
Thus, we analyzed these motives in isolation in Phase 1,
where each motive is represented as a binary: 0 or 1. Sec-
ond, we assume that each allocation can be informed by
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a combination of these motives. Thus, we analyzed the
combinations as compound motives in Phase 2, where each
compoundmotive is one of the eight three-digit binary combi-
nations. Tables 1 and 2 show themotives in isolation and com-
pound motives, respectively, as signaled by round r recipient
features.

TABLE 1. Motive represented in isolation as binary.

TABLE 2. Compound motives. The three-digit binary represent
reciprocation, poor vs rich, and ingroup favoritism respectively.

By leveraging the predictive capabilities of machine learn-
ing to analyze the motives in Phases 1 and 2, we gain
insights into how individuals prioritize motives in the game.
In essence, the performance of all tested machine learning
algorithms would significantly improve when aligned with
the phase that more accurately represents how individuals
prioritize motives during the experimental game.

The contributions of this study are as follows: 1. It presents
a case for predicting motives using interaction traces within
social exchanges, 2. applied and evaluated various machine
learning models for predicting motives in a social exchange
context, and 3. provides insights into how individuals prior-
itize motives in social exchanges. Lastly, this study adds to
the existing body of research focusing on predictive models
that can be applied in behavioral economics, assisting in the
design of nudges and interventions (in human-agent collab-
oration) to encourage prosocial behavior and improve public
policy initiatives.

IV. METHOD
This section presents the 1. experimental data and the
application of theoretical knowledge to engineer features
for machine learning models (Fig. 1); 2. selected machine

learning models, 3. proposed combination of clustering and
the hidden Markov model, which will be compared to
machine learning models, and 4. the evaluation metrics.

FIGURE 1. Basic steps in extracting theory-driven motives and features
from game data for machine learning training and prediction of social
exchange motives.

A. THE DATASET, FEATURES, AND PREPROCESSING
The dataset contains 7,644 observations (Table 3). The
dataset contains records of the group identifiers, starting and
ending token balances, and directed ties showing player-to-
player allocations in each round. The first rounds of each
game were not used to reduce noise in the data because the
players were likely to allocate their tokens randomly. Next,
we describe the features and preprocessing steps.

TABLE 3. Description of experimental game data. While the experiment
contain other datasets, we selected those involving two groups.

B. FEATURES
We predict motives from features of the game context in
which allocations are made, predicting motives on round
r+1 (next round motives) from features in round r. These
observable features differ from the motive attributes dis-
cussed above, which are based on the recipient’s identity.
Here, we identify features based on the identity of the giver
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or allocator. Our model predicts motives signaled by the
characteristics of the recipient from the following allocator
features:

• Status of allocator. The allocator’s wealth relative to the
wealth of all players in round r, as in (1).

Status =
a

max (A)
(1)

where a is the token balance of an individual in a round,
and A is a vector of the token balances of all players in
that round. An individual is of high status if the status is
greater than the average status in the round; otherwise,
the individual is of low status.

• Group identity of the allocator. Either Group 1 or
Group 2, constant across the game.

• Allocator previous behavior. Who the allocator gives
tokens to in round r. (self = 0, ingroup = 1 or
outgroup = 2).

• Reciprocator. Does the allocator have a tendency to
reciprocate, measured by whether (i.e., 1) or not
(i.e., 0) they reciprocate in round r.

• Ingroup ties. The allocator’s receipts from the ingroup
in round r. For each player, we measured the strength
or bond with the ingroup and outgroup by determining
the allocator’s receipts from the ingroup and outgroup in
each round. Thus, ingroup ties Rrin are determined by (2).

Rrin =
Tin
Nin

(2)

where Tin is the number of tokens received from ingroup
members and Nin is the number of ingroup members
in round r, given that the game rules specify one token
allocation per round. Note that Rrin = 1 (very strong
bond)when Tin=Nin andRrin= 0 (no bond)when Tin= 0.

• Outgroup ties. Allocator receipts from outgroup in round
r. An individual may have a strong bond with both
ingroup and outgroupmembers. Consequently, outgroup
ties are determined by (3). where Tin is replaced by Tout
and Nin is replaced by Nout.

Rrout =
Tout
Nout

(3)

• Privilege. Comparison (ratio) of allocator status with the
previous receiver in round r. This was measured relative
to the wealth of the player to whom the individual had
allocated a token in the previous round. Privilege in
round r was calculated using Equation (4).

P =
Statusar
Statusrr

(4)

where Statusrr is the status of the player to whom an
individual allocated a token in the previous round, and
Statusar is the status of the allocator in round r . We set P
to Statusar where Status

r
r = 0.

An observation comprises the above seven features along
with the correspondingmotive (Phase 1) or compoundmotive
(Phase 2). We refer to the first four features as observable

because they were visible to the players, and the last three fea-
tures are theory-driven because they were formulated based
on theoretical knowledge of intergroup exchange behavior.

C. SELECTED MACHINE LEARNING ALGORITHMS
While various types of machine learning algorithms, such
as classical optimization [40] and nature-inspired [41] exist,
we selected the implemented algorithms because of their
widespread applications across various intent prediction
domains and to explore diverse data analysis approaches.
In addition, predicting motives from interaction traces in a
social exchange context is relatively unexplored. Thus, it is
important to first test well-known basic algorithms. Conse-
quently, we selected the Multilayer Perceptron (MLP) neural
network, Decision Tree (DT) classifier, Random Forest (RF)
classifier, Gaussian Naïve Bayes (GNB), K-Nearest Neigh-
bor (KNN), Support Vector Classifier (SVC), and Logistic
Regression (LR). Furthermore, the performance of these
algorithms was benchmarked against a random guessing
approach.

1) ARTIFICIAL NEURAL NETWORK
The MLP [42], [43] neural network has three core layers: an
input layer, one or more hidden layers, and an output layer.
Each hidden layer consists of data processing nodes, called
neurons. The number of layers and neurons in each layer can
vary depending on the problem. Whereas neurons in adja-
cent layers have fully weighted connections, neurons within
the same layer are not connected. The back-propagation
algorithm is commonly employed to train MLPs. During the
training process, computations were performed to generate
outputs for each input and existing weight. Consequently, the
weights were adjusted based on the difference between the
output of the network and the intended target output.

2) DECISION TREE
DT uses a rule-based tree structure to split data into pre-
defined classes. The formulation of decision rules for data
splitting depends on the specific attributes and characteristics
of the dataset. The decision tree learns these rules, identifies
distinct subsets of data, and subsequently employs these rules
for individual instances within the dataset to predict the target
class. Several algorithms have been proposed for construct-
ing decision trees. These include Iterative Dichotomizer 3
(ID3) [44], C4.5 [45], and Classification and Regression Tree
(CART).

3) RANDOM FOREST
RF uses bagging to enhance model precision by combining
the capabilities of multiple decision trees. It uses the average
or median output of the decision trees for continuous targets,
and the mode of the decision trees for discrete class labels.
GivenM decision trees in a RF, the output FMrf

(
X i

)
of the RF

is calculated in (5), where X i is the ith instance of a dataset
X = x1, x2, x3, . . . , xn having n features, and Ttree

(
x i

)
is the
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output of a decision tree that takes the ith instance of the
dataset.

FMrf
(
X i

)
= y =


1
M

(
∑M

m=1
Ttree(x i)), y discrete

max(count(Ttree
(
x i

)
), y continoues

(5)

4) GAUSSIAN NAÏVE BAYES
The GNB classifier is based on Bayes’ theorem, which is
calculated using the conditional probability. Given the ith
instance of n-dimensional feature, the GNB classifier calcu-
lates the probability that the instance belongs to a specific
class based on the Gaussian distribution of class characteris-
tics. After calculating the probability of an instance belonging
to all classes, the class with the highest probability value was
considered the predicted class. GNB computes the output rel-
atively fast in large datasets. Consequently, it has been applied
to numerous classification problems, including the prediction
of sleep behavior [46]. Naïve Bayes assumes that the class
to be predicted is conditionally independent, as represented
in (6), where Ci is the ith class represented by n-dimentional
vector X = x1, x2, x3 . . . , xn.

P (X) =
P (X)P (Ci)

P (X)
(6)

5) K-NEAREST NEIGHBOR
The KNN algorithm [47] compute the class of an instance of
a dataset based on the similarity or distance measure. KNN
assigns an instance to a class label that is closely related or
close to the given instance. Thus, KNN is a nonparametric
classifier that uses decision rules to assign a class label to an
instance in a dataset.

6) LOGISTIC REGRESSION
LR is a classification algorithm that is often used to bench-
mark other algorithms. It uses the logit function to estimate
the parameters of the model. Given X = x1, x2, x3 . . . , xn fea-
tures, LR is formulated by (7), where b1x1+b2x2+ . . . +bnxn
is the liner regression of output ŷ on X.

Flr =
1

1 + e−z
=

1
1 + e−(b1x1+b2x2+...+bnxn)

(7)

7) SUPPORT VECTOR CLASSIFIER
The SVC aims to generate an optimal separation surface
that classifies the dataset, thereby maximizing the gener-
alization capabilities of the model. Whereas empirical risk
minimization aims to minimize the mean squared error on
the given dataset, SVC uses the Structural Risk Minimiza-
tion (SRM) principle to find a hyperplane that separates
the dataset with a greater margin. SVC was originally
developed for binary classification; however, it has been
developed for multiclass problems [48] using a one-vs-all
approach.

D. SYSTEM SPECIFICATIONS AND PARAMETERS
Machine learning algorithms were implemented using the
Scikit-Learn packages [49] in Python.

TABLE 4. Parameters selected via the random search.

The algorithms were executed on a Windows 11 Pro 64-bit
machine, with Intel® Core™ i7 with 4G RAM and 8 CPUs
running at 2.8GHz speed. For each selected algorithm, we use
a random search over 20 iterations to select the best parame-
ter. Each iteration used a 3-Fold cross-validation to minimize
the effect of imbalanced classes and the relatively small size
of the dataset. Table 4 lists the main parameters used in each
algorithm.

E. EVALUATION METRICS
The models were evaluated using the accuracy scores.
We counted the number of correctly predicted motives. How-
ever, the accuracy is not a true reflection of a model’s
performance for imbalanced classes. To ensure a more
accurate measure, we calculated weighted precision, recall
and f1-scores from the multiclass confusion matrix detailed
in [50]. Precision measures the actual number of samples
belonging to a class among the total number of samples iden-
tified as belonging to that class. The value ranged from 0 or
0% (no identification) to 1 or 100% (perfect identification).
Recall measures the model’s ability to discriminate samples
that do not belong to a particular class. Again, the value
ranged from 0 or 0% (no discrimination) to 1 or 100% (perfect
discrimination). F1-score measures the balance between the
precision and recall. The value ranged from 0 to 1. A higher
value indicated a better score.

Each model was executed via 10-fold cross-validation to
reduce the impact of imbalanced classes [51]. Within this
iterative approach, the dataset was divided into ten distinct
groups, with each iteration involving the training of a new
model on nine of these groups and its evaluation on the
remaining one. Each group was used once for evaluation and
nine times for training of a new model. Consequently, this
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yielded a total of 10 iterations, resulting in a computation
of 10 fits, on which the evaluation metrics were applied for
both the training and test data. Research [52] has shown that
10-fold works well for most datasets. In addition, we gener-
ated ten random guesses and computed the average accuracy,
precision, recall, and f1-score.

Furthermore, we employed a widely used oversampling
technique, the syntheticminority over-sampling technique for
nominal and continuous (SMOTENC) datasets, as described
in [53], to evaluate the impact of artificially increasing the
number of samples in a minority class. Given a data sam-
ple, this technique generates new samples using information
about the nearest neighbors. SMOTENC was applied to the
nine groups used for training and not to the test data, thereby
preventing data leakage – a situation in which information
about the test data is unintentionally shared with the model
during training.

Considering the preliminary result obtained during param-
eter tuning and the difficulty in predicting motives [19],
we adopted the suggestion by Zaki et al. [54] that clus-
tering behaviors can ensure high performance of a hidden
Markov model in predicting tasks. Hence, we developed a
combination of the clustering and a hidden Markov model
(C-HMM) and compared its performance with that of the
selected machine learning algorithms. C-HMM is described
below.

F. COMBINATION OF CLUSTERING AND A HIDDEN
MARKOV MODEL (C-HMM)
We performed a cluster analysis to identify patterns of fea-
ture co-occurrence in individuals at each allocation point.
Thus, each cluster group observation is based on their feature
co-occurrence. The partitioning around the medoids (PAM)
clustering algorithm in R [55] was applied with Gower dis-
tance [56] as the distance measure. Although other distance
measures, such as Euclidean and Manhattan [57], can be
used, the Gower distance is very useful and performs well
in a domain with mixed data types, categorical and non-
categorical data [56], [58]. We used silhouette width, also
referred to as the silhouette coefficient [59], to determine the
optimal number of clusters. The silhouette width measures
the within-cluster cohesion and separation distance between
clusters. The silhouette width of a data sample ranges from -1
to 1, where a large s (near 1) implies good clustering, a small s
(near 0) implies that the data sample lies between clusters, and
a negative s implies that the data sample is placed in thewrong
cluster. The optimal number of clusters was determined by
averaging across five runs for each value of k clusters, k
ranging from 2 to 20.

Fig. 2 illustrates that the optimal number of clusters for the
C-HMM is six, as evidenced by the average silhouette width
of 0.632. In Fig. 3, we project the observations in each cluster
onto a two-dimensional plane using a t-distributed stochastic
neighbor embedding (t-SNE) [60]. While the current study
refrained from explicitly interpreting each cluster, statistical

FIGURE 2. Silhouette width for determining the optimal number of
clusters. Higher numbers imply a more optimal number of clusters.

FIGURE 3. Projection of the observations in each cluster onto a
two-dimensional plain, showing cluster separations. We used perplexity
of 25, and 1000 steps as the t-SNE parameters.

insights, such as the motive distribution across clusters, can
be harnessed by theHMMduring the training of initial, transi-
tion, and emission probabilities to enhance motive prediction.

C-HMM was developed to consider the round-by-round
structure of the game. It was implemented to predict motives
from players’ past behaviors. Traditionally, a hidden Markov
model has hidden states in which observables are condi-
tioned. See [61] for a review. In our study, we define a
state in the C-HMM as the cluster s to which observation o
belongs. In this context, an observation represents the motive
(or compound motive) underlying the allocation made by the
individual in that specific round. Thus, we implemented a
C-HMM with the following parameters, where s ∈ S is a
vector of all possible states (clusters), and o ∈ O is the vector
of all possible observations (isolate motives or compound
motives).

• s: State (cluster) of the allocator at round r.
o: Motive (or compound motive) of the allocator at
round r.
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• α : vector of length 6 showing the probabilities of
starting from each state in S.

• β : a 6-by-6 transition matrix showing the probabilities
of moving from one state to another.

• γ : 6-by-n emission matrix showing the probability of
each observation o, given each state s. Here, n is 2 for
the isolate motive and 8 for the compound motive.

Given θ = (α, β, γ ), and the sequence of s and o of a player
in the previous rounds, we predict the next motive by com-
puting the most likely state from the previous state and then
computing the probability of observing each motive given
that state. Thus, this study implemented a hidden Markov
model that uses round-forward chaining cross-validation for
training and testing. Round-forward chaining starts by using
data from rounds 1 to r to train the hidden Markov model,
which is tested by predicting the exchange decisions in round
r + 1. Next, it includes the prediction from round r + 1 in the
training set, and predicts round r+2. This process continued
until the last round was predicted. The C-HMMwas retrained
after each round of the game, and the transition and emission
probabilities changed per round. Although this process is
computationally more expensive than the traditional hidden
Markov model, which is trained once, it was implemented to
accommodate the dynamics of the exchanges over time. All
trainingswere performed using the Baum-Welch expectation-
maximization algorithm described in the seminal work of
.Rabiner [62]. Owing to the stochastic nature of the model,
ten runs were performed for each round, and the result was
averaged over rounds to compute the final accuracy.

V. RESULT AND DISCUSSION
This study investigated the performance of Multilayer Per-
ceptron, Decision Tree, Random Forest, Gaussian Naïve
Bayes, K-Nearest Neighbors, Support Vector Classifier, and
Logistic Regression, in terms of accuracy, precision, recall,
and f1-score, in predicting players’ motives in a social
exchange experiment. We present the results in three steps:
First, we provide a preliminary analysis of the results, justi-
fying the use of methods suitable for imbalanced classes, and
the inclusion of theory-driven features for predictive tasks.
Next, we present detailed results for predicting motives in
Phases 1 and 2, using the features and parameters informed
by the preliminary analysis. Finally, we present and compare
the performance of C-HMM with that of the other models
in Phases 1 and 2. We report the average performance of
the models on the test data over 10-fold cross-validation,
unless stated otherwise. Whereas the weighted average in
Scikit-Learn is suitable for imbalanced classes, it results in an
accuracy metric equivalent to recall. Consequently, we omit-
ted recall scores from the report.

A. PRELIMINARY ANALYSIS
The class distribution in Fig. 4 shows that reciprocation, with
a 15% occurrence, is the least common motive for token
allocation. The fairness-motivated token allocation was more

than the need for power by 16%, while ingroup reputation
occurred more than reputation within the outgroup. Overall,
the identified motives within the dataset were not equally
distributed, confirming the need for a performance metric
suitable for imbalanced classes.

FIGURE 4. (a)-(c) show the distribution of motives in Phase 1, indicating
imbalanced classes. (d) The distribution of compound motives in Phase 2
indicates imbalanced classes. The three-digit binary representation is
presented in Table 2.

We investigated the usefulness of theory-driven features by
comparing the accuracy and f1-score of the models trained
with and without theory-driven features. The inclusion of
theory-driven features enhanced the performance of the seven
selected algorithms in both phase 1 and 2. As shown in
Fig. 5, theory-driven features enhanced the accuracy of each
model except for SVC, which was also the least performing
model in Phase 2. This is not surprising, as SVC is known
to underperform when dealing with imbalanced classes [63].
Both observable and theory-driven features were used in all
the results presented.

B. RESULT OF PREDICTING ISOLATE AND COMPOUND
MOTIVES
1) PHASE 1: ISOLATE MOTIVE
Fig. 6 compares the average accuracy of the models in
predicting the reciprocation motive with and without the
SMOTENC oversampling technique applied to the training
data. Notably, the accuracy of each model was better without
the application of SMOTENC, as shown in Fig. 6.
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FIGURE 5. Models’ accuracies with and without theory-driven features.
Except for SVC, the accuracies of the models were better with the
inclusion of theory-driven features.

FIGURE 6. Models’ accuracies with and without the application of
SMOTENC oversampling technique, showing better accuracies in
predicting Reciprocation without the application of SMOTENC.

Although SMOTENC has been known to enhance model
performance in predictions involving imbalanced classes,
there have been cases where its application led to a worsening
of model performance. See [64] for an example. In our study,
SMOTENC did not enhance model performance. Therefore,
we present the detailed results obtained without the applica-
tion of SMOTENC.

Tables 5 – 7 show the detailed results, including the mod-
els’ precision, and f1-score for predicting the reciprocation
motive, fairness versus powermotive, and ingroup favoritism,
respectively. In Table 5, the difference between the accuracy
scores of the best (KNN, 86.43%) and least (SVC, 84.33%)
well-performing models is 2.10%, demonstrating competi-
tive performance. Therefore, it makes sense to compare the
f1-scores, where KNN, RF, and DT have the highest scores.
The f1-scores demonstrate the efficacy of these three algo-
rithms in predicting the reciprocationmotive within the game.

As shown in the preliminary analysis, the class distribution
for the power versus fairness motive was relatively balanced.

TABLE 5. The results of predicting reciprocation.

TABLE 6. The results of predicting ingroup favoritism.

This suggests that model accuracy can serve as a reliable indi-
cator of a model’s fit. Notably, RF exhibits better accuracy
and f1-score than the other models, as shown in Table 6. The
difference between the RF accuracy (65.32%) and accuracy
(61.63) of the least well-performingmodel (SVC)was 3.69%.
This difference is slightly larger than that observed between
the best and least performing models in predicting recipro-
cation. This suggests that predicting fairness versus power
motive is slightly more challenging for the models.

In general, the Support Vector Classifier (SVC) consis-
tently ranks as the least well-performing model across all
predictive tasks. This is not surprising because SVC tends to
underperform when dealing with imbalanced classes and fea-
tures that exhibit overlapping characteristics across different
classes [63]. Moreover, SVC overfits the data, as evidenced
by the substantial difference (11.59%) in Table 7 between
SVC training accuracy (74.64%) and test accuracy (63.05%),
in contrast to the minor difference (1.51%) between LR
training accuracy (68.63%) and test accuracy (67.12%) in
predicting ingroup favoritism.

TABLE 7. The results of predicting poor vs rich.

Using the best models, KNN, RF, and LR in Tables 5 – 7,
we conducted feature importance tests to gain insight into
the significance of each feature for the three predictive tasks.
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FIGURE 7. Feature importance graph, showing that Ingroup ties, Privilege
and Previous allocation behavior are more important in predicting
Reciprocation, Poor vs Rich and Ingroup favoritism respectively.

Notably, we found that ‘ingroup ties’ was the strongest pre-
dictor of reciprocation motive (Fig. 7). This finding aligns
with the existing literature, suggesting that individuals expect
to reciprocate more often by ingroup members than outgroup
members [65], [66].

Additionally, we observed that ‘previous allocation’ serves
as the most reliable predictor of ingroup favoritism, whereas
‘privilege’ stands out as the top predictor of the fairness
versus power motive. This observation was not surprising,
as ‘privilege’ captures a player’s previous disposition toward
others’ status. The results confirm that players’ motives for
fairness or power do not undergo drastic changes over time.

2) PHASE 2: COMPOUND MOTIVE
The models have lower accuracies when predicting com-
pound motives compared than when predicting isolated
motives. Similar to what was observed in Phase 1, SMO-
TENC did not improve the accuracy of the models. Instead,
the models performed well on the training data but were
significantly lower on the test data. Hence, we report the
results obtained without using SMOTENC.

Table 8 shows that LR outperformed the other models in
terms of the accuracy score and ranked second in terms of
the f1-score. We did not expect these outcomes because LR is
less complex than other algorithms. However, simpler models
such as LR are less prone to overfitting, whereas complex
models are more likely to overfit the data.

We compared the results to a random guess to ensure
that the outcomes were not random and to demonstrate that,
although the accuracies were low, they were significantly
higher than a random guess. The difference between the
average accuracy of 10 random guesses and that of LR was
32.08%, affirming that the algorithms indeed learned from
the provided data.

Additionally, we assessed the contribution of each feature
using LR, the best performing model. Fig. 8. illustrates that

TABLE 8. The results of predicting compound motives.

FIGURE 8. Feature importance graph, showing that status is the most
important feature in predicting compound motives.

‘status’ is more influential in predicting compound motives,
while ‘outgroup ties’ is less important in the prediction by LR.

C. PERFORMANCE COMPARISON WITH C-HMM
We report the results of the C-HMM implemented to obtain
better predictions. Table 9 shows the performance of the
C-HMM in Phase 1. C-HMM predicted the reciprocation
motive with 86.96% accuracy, ranking first and better than
KNN by 0.53%. Similarly, C-HMM predicted fairness versus
power motive with 67.31% accuracy and ingroup favoritism
with 70.74% accuracy, ranking first in both predictions with
differences of 1.99% and 3.62%, respectively, compared to
the best model reported in Tables 6 and 7.

TABLE 9. The C-HMM results in phase 1 and 2.

We investigated the accuracy of the C-HMM to gain deeper
insight into the performance of the model. Fig. 9 confirms
that C-HMM exhibited a bias toward the larger class when
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predicting the reciprocation motive, resulting in consistently
high accuracy that did not show improvement across rounds.
Additionally, the standard deviations of accuracy, represented
by the width of the shadows on the graphs, were greater for
ingroup favoritism than for the other motives, indicating a
more varied accuracy per run.

FIGURE 9. The C-HMM accuracies, showing improvements in predicting
motives over rounds in Phase 1.

The accuracy of C-HMM, as shown in Table 9, ranks 4th
and is higher than that of RF, KNN, DT, and SVC in pre-
dicting compound motives. Notably, the standard deviation
of the C-HMM was larger and distinct from the range of
standard deviations exhibited by the other models (Table 8).
Additionally, the f1-score of C-HMM is considerably lower
than that of the other models, resulting in C-HMM being
ranked as the least well-performing model based on the
f1-score.

FIGURE 10. The C-HMM accuracy graph, showing that the model’s
accuracy in predicting compound motives improved over rounds.

Again, we conducted further analysis of C-HMM.
As shown in Fig. 10, the accuracy of the C-HMM dis-
plays a consistent improvement across rounds, accompanied

by decreasing standard deviations. Although the standard
deviations were above 1.0, the decreasing pattern indicated
improvement with more data.

D. THE IMPACT OF DATASET SIZE ON MODEL
PERFORMANCE
Dataset size has effect on the performance of many machine
learning algorithms [67]. For example, SVC underperforms
when trained with a small dataset size. Using compound
motives, we evaluated the impact of dataset size on the accu-
racy of the machine learning algorithms to gain insight on
how the algorithms might perform with increased dataset
size.

We generated eight distinct training set sizes: 637, 1456,
2275, 3094, 3913, 4732, 5551, and 6370. Using 3-fold cross-
validation for each training set size, we compute and graph
the average training and testing accuracy for each model.

Fig 11 shows the accuracy of each model in predicting
compoundmotives using various training set sizes. The figure
indicates that increases in the dataset size slightly improved
the accuracy of each model. For example, SVC improved
from 31% accuracy when the training set size was 637 to 40%
with a training set size of 6370, reflecting a 9% improvement.
However, models like LR and KNN exhibited improvements
of less than 5%. Except for SVC, an increase in the dataset
size will have minimal impact on the accuracy of the mod-
els, as evidenced by the training and testing accuracy lines
showing little variations and almost converging. Therefore,
we conclude that increasing the datasets can improve the
accuracy of the models, especially that of the SVC.

FIGURE 11. The average training and testing accuracy (dotted lines) of
the models at various dataset sizes.

VI. CONCLUSION
Understanding the motives underlying others’ actions is
pivotal for informed decision-making within a social con-
text. However, the complex interplay between uncertainty
and overlapping motives makes it difficult for humans to
predict. This study compared the performance of a Multi-
layer Perceptron, Decision Tree, Random Forest, Gaussian

2146 VOLUME 12, 2024



K. Igwe, K. Durrheim: Analyzing Social Exchange Motives With Theory-Driven Data and Machine Learning

Naïve Bayes, K-Nearest Neighbors, Support Vector Classi-
fier, Logistic Regression, and a combination of clustering
and hidden Markov model (C-HMM) to analyze and predict
motives in a social context, represented by an experimen-
tal game. The motives, namely, Reciprocation, Fairness vs.
Power, Ingroup favoritism, theoretically deduced from sec-
ondary data derived from game-like experiments, were suc-
cinctly represented as binary (Phase 1) or three-digit binary
(Phase 2).

This analysis aimed to provide insights into how individ-
uals prioritize motives in social exchanges. Phase 1 assumed
that individuals concentrate on a single motive during allo-
cation decisions, whereas Phase 2 suggests that individuals
in the game consider multiple motives in making an alloca-
tion decision. Based on these assumptions, we trained eight
machine learning algorithms. We analyzed how individuals
prioritize motives within the experiment by comparing the
performance of all the tested machine learning algorithms
when aligned with Phase 1 and Phase 2.

The dataset, preprocessed from the game context, con-
tained four observable features and three theory-driven fea-
tures. The Python programming language and Scikit-Learn
machine learning librarywere utilized to implement and com-
pare the selected algorithms. These algorithms were trained
and tested using 10-fold cross-validation to mitigate the
effects of imbalanced class distributions and small dataset
size.

The C-HMM performed better than the selected machine
learning models in terms of accuracy across all predictions in
Phase 1. Logistic regression outperformed the other selected
algorithms in predicting motives in Phase 2, whereas the
performance of C-HMM was ranked fourth based on accu-
racy. Notably, in Phase 2, the results revealed that status
was a stronger predictor of compound motives than the other
features. Additionally, the strength of relationships with the
ingroup had a more significant influence on motives than
mere group membership. The performance of the models was
best in Phase 1. We conclude that Phase 1 more accurately
represents how individuals prioritize motives in the experi-
mental game.

Interestingly, we discovered that the behavior of individu-
als in the game was in line with theoretical assumptions [65],
[66] that individuals expect that ingroup members will recip-
rocate a favor more than outgroup members. This is evident
from the results of Phase 1, where the feature, ‘Ingroup ties’
emerged as the best predictor of reciprocation motive, against
our expectation that previous ‘Reciprocator’ would be a better
predictor of reciprocation motive.

In line with many behavioral studies that use machine
learning to predict motives, including those that rely on self-
reporting, a critique that can be made of this study is whether
the ground truth is accurate. Self-reporting introduces inher-
ent biases, including impression management, such as faking
and lying [68]. This raised the question: why should we
place trust in individuals’ self-disclosures? Consequently,
self-reporting does not serve as a benchmark for accurately

identifying motives. In our study, we combined previous
moves and the knowledge of well-established theories on
social exchanges to identify motives signaled by the recipi-
ent’s identity. While this approach mitigated the trust issues
associated with self-reporting, it introduced a dependency
on, and necessitated trust in, psychological theories about
motives in social exchanges.

The insights provided by theories on social exchange
behaviors help predict motives in the experimental game.
Conversely, our approach can help social scientists identify
the factors that predict motives. The C-HMMalgorithm intro-
duced in this study performed competitively well with other
selected machine learning algorithms. However, its perfor-
mance indicated that it was susceptible to an imbalanced
dataset. An improvement would be to incorporate a search
strategy that penalizes the algorithm when it is biased toward
a class.

The ability to predict the underlying motives of actions is
crucial for ongoing efforts to enhance human-agent collab-
oration and foster equitable social dynamics. For example,
agents that predict motives can effectively nudge proso-
cial behavior based on predicted outcomes. This study thus
makes a valuable contribution to the existing literature on
human-agent collaboration in interactive social exchanges.
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