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ABSTRACT Infrared and visible image fusion (IVIF) aims to synthesize images that capitalize on the
strengths of both modalities. Addressing the common challenge in IVIF of preserving thermal radiation
from infrared and textural details from visible images, we introduce AMFusionNet. AMFusionNet uniquely
combines a multi-kernel convolution block (MKCBIlock) with parallel spatial attention and channel attention
modules (PSCNet), streamlining the feature extraction process. This integration enhances the model’s ability
to simultaneously capture essential details from both image types. Additionally, we incorporate a multi-scale
structural similarity (MS-SSIM) loss function in our comprehensive loss function to further refine the detail
preservation in the fused images. Our experimental evaluations on the TNO and FLIR datasets demonstrate
that AMFusionNet achieves superior performance in both objective and subjective assessments compared to

recent methods.

INDEX TERMS Infrared and visible image fusion, parallel attention mechanism, multi-kernel convolution,

MS-SSIM.

I. INTRODUCTION

Image fusion is an important problem in the field of
computer vision because it can provide more detailed and
reliable information for the enhanced understanding and
description of complex scenes [1], [2], [3], [4]. Among
all image-fusion scenarios, IVIF is one of the most pop-
ular [5]. Infrared and visible images exhibited remarkable
complementarity. For example, infrared images can capture
the thermal radiation emitted from objects; however, they
lack textural details. By contrast, visible images typically
contain abundant structural information. However, visible
images are highly susceptible to environmental conditions,
such as heavy fog and low-light conditions. Owing to the
complementary characteristics of infrared and visible images,
it is worthwhile to fuse them into a composite image. This
integration is beneficial for various downstream visual tasks,
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such as target detection [6], [7], tracking [8], pedestrian
re-identification [9], and semantic segmentation [10].

In recent decades, many methods have been proposed to
achieve high-quality fusion of infrared and visible images.
These image fusion methods can be divided into two
categories: pixel-based and deep learning (DL)-based.

Piexl-level image fusion techniques include multi-scale
transform (MST)-based [11], [12], [13], saliency-based [14],
[15], sparse representation-based [16], [17], optimization-
based [18], [19], and hybrid methods [20]. Among these,
MST-based methods have attracted considerable attention
because of their high flexibility and excellent performance in
image fusion. Specifically, MST-based methods use wavelet
and multiscale pyramid transforms, which generally include
three steps. First, the source images were decomposed into a
series of sub-images with different spatial resolutions. Then,
the subimages are fused at the corresponding levels using a
predefined fusion stategy. Third, the corresponding inverse
transform is applied to these fused sub-images to obtain
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the final fused image. Although pixel-level-based methods
have achieved commendable results, excessive manual
intervention may lead to significant ghosting and noise
in fused images. Furthermore, manually designed feature
extractors require manually designed feature extractors not
only require a substantial period of time but also are lack of
generalization capability.

DL based methods have achieved remarkable results in
various fields, such as object recognition [21], [22], object
segmentation [23], [24], and object tracking [25], [26]. Owing
to their excellent ability to represent features, DL-based
methods are becoming mainstream in IVIF. According to
different fusion architectures, DL-based methods can be
roughly divided into three classes: convolutional neural net-
work (CNN)-based methods [27], [28], [29] and generative
adversarial network (GAN)-based methods [30], [31], [32].
Although existing DL-based methods have achieved sat-
isfactory results in some typical scenes of image fusion,
some issues still need to be resolved. Methods based on
CNN or GAN consistently employ convolutional operations
to capture features from images with restricted receptive
fields, and these uniform convolutional processes also limit
the capabilities for feature extraction and representation,
thereby leading to the loss of crucial information during the
information extraction process. Recently, some researchers
have introduced attention mechanisms into these three
network architectures; however, the forms of these attention
mechanisms are implemented in a sequential manner [33]
for IVIF, which results in weakened information interaction
between the spatial attention module and channel attention
module within the attention mechanism.

To address the problems mentioned above, particularly the
challenge of balancing the emphasis on salient targets with
the preservation of texture detail, we propose AMFusionNet,
a fusion architecture that leverages the strengths of PSCNet
and MKCBlock, and incorporates a novel loss function
for enhanced performance. Specifically, the architecture
integrates spatial attention (SA) and channel attention (CA)
networks in a parallel manner and employs GELU as the
activation function. This parallel structure enables more
efficient information fusion across attention modules, thereby
reducing information loss and enhancing the capability of
the network to extract features within the IVIF framework.
Furthermore, the incorporation of attention mechanisms
guides the attention of the network to salient regions within
the images, ensuring the maximal retention of thermal
radiation information in the fused images. However, clear
foreground targets are also important in evaluating fused
images and detailed background information also helps
people better understand the image. To retain more textural
details, the MS-SSIM loss function to the total loss function.
We use three fusion rules: average weight, Li-norm, and
mean-filter-operator. Consequently, the fused images are
clear in the foreground objects and rich in background details.
In summary, our main contributions are as follows:
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« We propose a feature extraction layer that integrates
three MKCBlocks in the decoder. This enhances the
network’s feature extraction capability, extends its
receptive field, and allows multi-scale feature process-
ing, capturing richer semantic features from images.

o MS-SSIM is introduced into the total loss function.
MS-SSIM calculates a multi-scale feature map loss
function to assess the similarity between fused images
and their corresponding source images. This ensures that
the resulting fused image contains richer textural details
and distinct contours of the salient thermal targets.

« We propose a parallel attention mechanism architecture
that minimizes information loss during feature extrac-
tion, while concurrently enhancing the integration of
information between the channel and spatial attention
branches.

« Extensive experiments demonstrated that our method
outperforms other state-of-the-art fusion techniques in
both subjective and objective assessments.

Il. RELATED WORK

Based on the previous section, it is evident that the existing
methodologies for IVIF can generally be classified into two
main categories: pixel-level and DL-based methods.

A. PIXEL-LEVEL IMAGE FUSION ALGORITHMS

Pixel-level fusion techniques can be grouped based on
their underlying principles, including MST-based [35], [36],
saliency-based [37], and sparse representation-based
methods [38].

MST-based methods are particularly important in image
fusion. When using MST-based methods to fuse images,
it is assumed that the images can be represented by multiple
layers at varying resolutions. MST-based methods primarily
include pyramid and wavelet transforms, such as Laplacian
Pyramid (LP) [39] and Discrete Wavelet Decomposition
(DWT) [40]. They then applied specific fusion rules to each
layer before reconstructing the fused images by using the
corresponding inverse transforms. By considering feature
variations at different scales, this approach preserves the
image details and texture information. Therefore, the quality
and clarity of the fused image can be enhanced [18], [41].

Saliency-based approaches are used to capture and pre-
serve critical features from both infrared and visible images
within the fused image. These techniques not only improve
the visibility of objects and scenes under low-contrast or
low-light conditions but also strengthen the detection and
recognition functions of computer vision systems [42], [43].
Saliency-based methods follow three main steps. First, they
generated saliency maps for infrared and visible images.
Subsequently, the pertinent features were extracted from
each image. Finally, these methodologies employ a specific
fusion rule to integrate features, producing a single image
that succinctly embodies the most significant elements of
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FIGURE 1. From left to right: infrared image, visible image, the fusion result of FusionGAN [30], the fusion result of U2Fusion [34], and the fusion

result of AMFusionNet.

both sources. The extracted key attributes typically comprise
the following: Texture, edges, and other distinctive visual
features that are essential for differentiating between various
regions.

In the IVIF domain, sparse representation is widely
employed as a prominent method. It seeks to derive an
overcomplete dictionary from high-quality natural images to
sparsely represent the source images. Fusion rules are applied
to sparse coefficients, and the fused image is reconstructed
using a learned dictionary based on these coefficients [44].
This methodology is suitable for merging images obtained
from multiple sensors. Compared to conventional multi-scale
transformations, our approach produces a dictionary that is
more stable and meaningful, as inferred from the training
images [45], [46].

Although conventional approaches to IVIF are character-
ized by their simplicity in structure and ability to provide clear
explanations, they often rely on predetermined algorithms
or mathematical models. This restriction can impede the
effective extraction and integration of critical information
from both the visual modalities. Consequently, artifacts or
distortions may arise in the fused image, particularly in sit-
uations characterized by significant contrast or brightness
changes.

B. DL BASED METHODS

Deep Learning (DL)-based techniques have significantly
advanced the field of image fusion by leveraging the
exceptional capabilities of deep neural networks for robust
feature extraction and representation. Initially, DL-based
image fusion methodologies utilized pre-trained networks to
derive features from source images [47], [48]. For instance,
Li [47] decomposed source images into a base layer and detail
layer, generating weights based on the features extracted
by deep neural networks. These weights were then applied
to the detail layer, and a simple averaging method was
employed for base-layer fusion. Li also introduced a fusion
approach in another study [49] and presented a fusion
strategy that involved the utilization of nested connections to
mitigate the loss of crucial information. By merging features
across different levels, this approach harnessed multi-scale
information, ensuring the preservation of both spatial and
textural details.
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Recognizing the potential of GAN in image fusion,
Ma et al. first introduced GAN in IVIF [30]. However,
their initial model, which relied exclusively on a discrim-
inator for visible images, resulted in substantial loss of
thermal infrared information in the fused output. Addressing
this limitation, subsequent research in [33] focused on
incorporating dual discriminators into a GAN, which can
simultaneously constrain the fused images produced by
the generator. Xu et al. proposed a unified image fusion
framework [34] that investigated the intrinsic associations
between different image fusion tasks, including infrared and
visible image fusion. However, this method inadequately
retains the thermal radiation information of an infrared image,
resulting in blurred edges in the fused image. To overcome the
hurdles in GAN training, Ma et al. proposed a novel fusion
framework [50], which more fairly integrates visible and
infrared images fairly. This method produces a fused image
with an enhanced contrast and detailed textural information.
Although GAN-based strategies are well suited for the
unsupervised task of fusing infrared and visible images, they
present substantial training challenges.

The application of auto-encoders (AE) for image fusion
is now widely recognized as an influential technique. AE is
a type of unsupervised neural network that is capable
of efficiently learning data representations by employing
encoding and decoding operations. DenseFuse [51] is
a remarkable AE-based IVIF method. It leverages MS-
COCO [52] for autoencoder pretraining and adopts unique
fusion strategies, including addition and L;-norm for feature
fusion. Additionally, Xu et al. [53] introduced a dual-branch
AE network that effectively captured both shallow and deep
information. Images are decomposed based on infrared and
visible differences with appropriate fusion techniques applied
during reconstruction. To further optimize the performance
of IVIF networks based on AE, some researchers have incor-
porated attention mechanisms. These mechanisms typically
encompass both channel and spatial attention branches. Thus,
the network can focus on the salient target areas of the
source images, thereby enhancing its feature representational
capability. For example, FusionGRAM [54] combines dense
connection networks [55] with attention mechanisms to
enhance the network’s feature extraction capability and adap-
tively allocate more weight to salient regions. Xu et al. [56]
introduced a network that combined skip connections and
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TABLE 1. Network configurations. Layer and Size denote the network
module and the size of convolutional kernel, respectively.

J B . Input Output S .
Module Layer Size | Stride Channel Channel Padding | Activation
SA - - 384 384
PSCNet CcA - - 384 384
MKCBlock - -
Encoder PSCNet ~ ~ ~
Conv3 768 384 ReLU
Conv3 384 192 ReLU
Decoder Conv3 192 96 ReLU
Conv3 96 48 ReLU

Conv3
Conv3

48 1
16,96,192 | 32,64,128

Tan
ReLU

PN wlww e el

MKCBlock Conv5 16,96,192 | 32,64,128 ReLU
Conv7 16,96,192 | 32,64,128 ReLU

SA Conv3 16.96,192 | 32,64,128 ReLU
Maxpooling 16,96,192 | 32,64,128 ReLU

Averagepooling 16,96,192 | 32,64,128 GELU

CA Conv3 3 384 384 ReLU
Maxpooling - - 384 1 ReLU

Averagepooling - - 384 1 ReLU

attention mechanisms. The attention module uses three
networks with various kernels to enhance multi-scale feature
fusion and detail retention. Although attention-based IVIF
networks yield positive results, the sequential nature of the
spatial and channel attention networks risks losing crucial
information during fusion.

To address the aforementioned challenges, we propose
AMFusionNet, a network architecture that integrates
MKCBIlock and PSCNet modules. MKCBIlock efficiently
extracts diverse features from images using a multi-kernel
convolution. PSCNet, which employs parallel spatial and
channel attention mechanisms, enhances the representation of
essential information, thereby generating high-quality fused
images. Furthermore, we incorporated MS-SSIM loss into
the loss function to ensure more detailed preservation of the
fused images.

lll. THE PROPOSED METHOD

As depicted in Fig. 2, AMFusionNet is composed of two main
segments: an encoder and decoder. The encoder includes a
basic convolutional layer, three MKCBlocks, and a PSCNet,
whereas the decoder consists of five convolutional layers.
The Tab. 1 lists the network configuration. The encoder is
composed of a basic convolutional layer, three MKCBlocks,
and a PSCNet. The decoder functions as a component for
reconstructing the features and consists of five convolutional
layers with kernel sizes of 3 x 3. The activation functions
utilized in the first four layers consist of Batch Normalization
(BN) and Parameterized ReLU (PReLU). The fifth layer uses
the hyperbolic tangent (Tan) as its activation function.

A. MKCBLOCK

MKCBIock forms an integral part of the encoder comprising
convolutional kernels of various sizes (3 x 3,5 x 5,7 x 7).
The presence of diverse convolutional kernels extends the
receptive field of the network by enabling the encoder to
extract a rich set of feature information. The MKCBlock
architectural diagram is shown in Fig. 3-A.

B. PSCNET
The architectural diagrams of PSCNet and CBAM [57]
are shown in Fig. 4 (a) and Fig. 4 (b), respectively.
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The channel attention network of PSCNet is inspired by the
findings presented in CBAM [57]. As depicted in Fig. 4,
PSCNet is organized with a spatial attention module and
channel attention module. The channel attention module is
identical to that found in the CBAM. In the spatial attention
module, the inputs to the maxpool and average pool are the
intermediate feature maps and original image, respectively.
The activation function used in the spatial attention module
is GELU. PSCNet exhibits three distinct differentiations
from CBAM [57]. First, the PSCNet model incorporates
a parallel attention mechanism. Within the field of image
fusion, this particular framework enables the integration of
features from the channel and spatial attention branches in
a channel-wise manner. Consequently, this helps alleviate
the loss of information to a certain degree. In addition, the
sigmoid function is substituted by the GELU function within
the spatial attention module. The GELU activation function
possesses nonlinear properties that enable it to preserve the
texture information and mitigate gradient vanishing. Finally,
the original image is fed into the spatial attention module to
minimize information loss.

C. LOSS FUNCTION

The design of the loss function is essential for effective
reconstruction of the input images. Therefore, many types
of loss functions have been developed in the literature
by integrating pixel-based loss Ly and SSIM loss
Lgsim [28], [58]. These functions can be mathematically
expressed as follows:

= 0-1 1
pixel BCHW l ll2 (D
Lgsim =1 — SSIM(O — 1) 2)
2 C C
SSIM(O. 1) = Cpopr + Ci)loor + C2) 3)

(12 + ui + C)(03 + o} + C2)

where O and [ are the output and input images, respectively;
| ® |2 is the Lp-norm; B represents the batch size; C is
the number of image channels; H and W are the height
and width, respectively. Notably, channel C of the input and
output images are the same; similarly, H and W of the output
and input images are also the same. pp and pj represent
the mean pixel values of O and I, respectively; op and oy
denote the standard deviations of the input and output images,
respectively; ooy represents the covariance between the two
images; and C; and C; are small positive constants.
Because Lp;y; minimizes the Euclidean distance between
the pixel values in input image / and output image O, it does
not account for the semantic relationships between the pixels.
Moreover, they are susceptible to challenges related to detail
losses and excessive smoothing. To address these limitations,
we introduce a novel loss function denoted as Lllll[S— ssi» that
integrates Lyss_ssiy and Li-norm. These two loss functions
enable the fused image to retain the detail and luminance from
the input images while enhancing the contrast of the fused
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FIGURE 2. The architecture diagram of the AMFusionNet. AMFusionNet is composed of two core network modules, namely PSCNet and MKCBlock.
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FIGURE 3. The architecture diagram of the MKCBlock.

image. The LIIJIS_ sy 18 computed as follows:

Live o = (1 — B)Lys—ssns + BLy, )
where
M
Lys—ssiy =1 —1(0,1) - ch(O, Dsi(0,1) (5)
j=1
1
Ly, =WIIO—III1 (6)
2uopr +C
[0, = SO T o My ()
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Wo, +ui +Cr

200,07 + €2

C(O3I)= 5 j={1721“'7M} (8)
! 05, +of +C
oo, + C3
SO = {12 M) O)
0,05, +C3

where 8 is a weight parameter. /;, ¢;(O, I) and s;(O, I) are
the luminance comparison at the j-th scale, the contrast
comparison at the j-th scale and the structure comparison at
J-th scale, respectively. j10; and pul; are average luminance of
O and [ at j-th sacle.

Inspired by [59] and [60], the gradient loss function can
force fused images to obtain richer texture information, which
is defined as

Lgrad = ”VO - VI”] (10)

By combining Eq. (1), Eq. (2), Eq. (4), and Eq. (9), the total
loss function can be expressed as:

l
Liotal = aleixel + asLggim + aSL/\/l]S,SSIM + 054Lgrad (11)

where a1, oz, o3, and o4 are positive tuning parameters.

D. FUSION STRATEGY

The fusion layer is essential for generating fused images,
and we implement three distinct fusion strategies: (1) the
weighted average method, (2) the Lj-norm method, and
(3) the mean operator method.

After passing the input images through the encoder, the
feature maps were obtained. Fused maps are created using
a special fusion strategy to perform the weighted fusion of
feature maps from different modalities. Subsequently, the
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FIGURE 4. (a) Architecture of PSCNet. (b) Architecture of CBAM.

fused maps are input into the decoder to generate a high-
resolution fused image.

1) WEIGHTED-AVERAGE METHOD

The weighted average method [61], recognized as a straight-
forward fusion strategy, has been widely applied in the field
of image fusion. This is not only due to its simple design but
also its commendable fusion performance. Its formula can be
expressed as:

2 m
Tusea > ¥) = Zfl (;C,y)

i=1

(12)

where f"(x,y) denotes the feature map obtained by the
encoder from input images, ffys «q(X,y) denotes the fused
featured maps, m € {1, 2, - -- , M}, M is total channel number
of feature maps.

2) THE L;-NORM METHOD

Inspired by [62], we used a L;-norm operator to the measure
activity. Thus, we obtained the weighted maps w;, which were
computed as:

> @l

wi(x,y) = . (13)
S 2 I i
Finally, the fused maps can be obtained as following:
k
Fr (e, y) = D" i, y) x fM(x, y) (14)

i=1

3) THE MEAN FILTER OPERATOR METHOD

The mean filter operator is used to process the feature map
extracted by the encoder. The weights of the feature maps can
be calculated by

o(lfix, ylh)
S elfie, mih)

wi(x,y) = 15)
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where ¢(-) is a 3 x 3 mean filter. Consequently, the fused
feature maps can be expressed as:

k
S (e y) =D wile, ) x M (x, y) (16)

i=1

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we describe the experimental settings and
environment. Subsequently, we compared the performance
of our proposed model with other SOTA models, including
one traditional methods, namely MDLatLRR [13], and
eight DL-based methods, namely CUFD [53], Fusion-
GAN [30], Densefuse [51], DIDfuse [63], FusionGAN [30],
U2Fusion [34], AEFusion [64], and MUFusion [65]. All
experiments were conducted using PyTorch on a work
station equipped with an Intel Xeon CPU@2.2GHz and an
RTX 3090 GPU.

A. DATASETS AND PREPARATION

During the training stage, 180 pairs of images were randomly
selected from the dataset [66] to train the proposed model.
Before training, all images were converted to grayscale
and a center crop of 224 x 224 pixels was applied to the
input images. The pixel intensities of the input images were
normalized to the range of —1 to 1. For the training phase, the
loss function was optimized using the Adam solver. In the
testing phase, we used two datasets, namely TNO [67] and
FLIR [68], to evaluate the efficiency and performance of the
proposed model.

B. TRAINING SETTINGS AND FUSION METRICS
The training parameters were established using batch image
sizes of 12 and 160 training iterations. The hyperparameters

within the loss function were empirically determined as ¢
Lap =1,03 =2, 4 = 0.005, o5 = 10, and g = 0.0025.
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A visual assessment of fusion performance can be
intricate; hence, we utilized quantitative fusion metrics for
an unbiased evaluation. In our study, we adopted eight
metrics: entropy (EN) [69], which denotes the informational
content of the image; mutual information (MI) [70], which
gauges the similarity between input image pairs and the
fused output; SSIM [71], which determines the structural
resemblance between the source and fused images; average
gradient (AG) [72], which is indicative of the image’s
detail representation and its clarity; standard deviation
(SD) [73], which portrays the image’s distribution and
contrast; spatial frequency (SF) [74], which evaluates the
gradient distribution, as well as the image’s detail and texture;
Qupr [75], which represents the quality of the visual data; and
visual information fidelity (VIF) [76], which assesses visual
data fidelity; SCD [77] calculates the image quality metric
value based on the sum of the correlations of differences. For
these metrics, higher values indicate superior performance.

C. EXPERIMENTS ON FUSION STRATEGY

In this section, we evaluate the performance of the three
fusion strategies using 40 randomly selected image pairs from
the TNO and FLIR datasets. The assessment relies on the
average metrics derived from these image pairs. Tab. 2 shows
the performance outcomes based on the nine evaluation
metrics. Notably, the Li-norm fusion strategy achieved the
four best values for the FLIR dataset and three best values for
the TNO dataset. Therefore, subsequent experiments adopted
Li-norm fusion strategy.

TABLE 2. Results of the validation set for choosing the addition strategy.
Bold indicates best result.

Dataset: FLIR Dataset

Method ~ Summation Average L1-norm
EN 7.3829 7.3934 7.3869
AG 5.9153 5.7364 5.8207
MI 2.7693 2.8365 2.8520
SD 51.3609 51.8447 51.5468
SF 14.9921 14.6948 14.8068

Qaby 0.4661 0.4598 0.4732

SSIM 0.9680 0.9703 0.9745

VIF 0.5782 0.5874 0.5906

SCD 1.6975 1.6924 1.6892
Dataset: TNO Dataset

Method Summation Average L1-norm
EN 7.3431 7.3762 7.3654
AG 5.9753 5.8069 5.8853
MI 2.2406 2.3294 2.3226
SD 47.0399 48.5152 47.7786
SF 14.8042 14.5458 14.6055

Qaby 0.3718 0.3872 0.3810

SSIM 0.8396 0.8494 0.8538
VIF 0.6535 0.6590 0.6683
SCD 1.6922 1.6871 1.6987

D. EXPERIMENTAL RESULT AND ANALYSIS
In this section, we evaluate the performance of our proposed
model in comparison with other state-of-the-art methods.
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FIGURE 5. Qualitative comparison of the AMFusionNet with seven
state-of-the-art methods on FLIR_04424. For a clear comparison,

we selected a salient region (i.e., the red box and green color box) in each
image and zoomed in on it using the same color box, respectively. From
top to bottom (from left to right): infrared and infrared image pair, fusion
results of the CUFD [53], MDLatLRR [13], Densefuse [51], DIDfuse [63],
FusionGAN [30], U2Fusion [34], STDFusionNet [78], AEFusion [64],
MUFusion [65], and AMFusionNet.

(i) cm« @) AEFus k) M (1) Ours
FIGURE 6. Qualitative comparison of the AMFusionNet with seven
state-of-the-art methods on FLIR_07620. For a clear comparison,

we selected a salient region (i.e., the red box and green color box) in each
image and zoomed in on it using the same color box, respectively. From
top to bottom (from left to right): infrared and infrared image pair, fusion
results of the CUFD [53], MDLatLRR [13], Densefuse [51], DIDfuse [63],
FusionGAN [30], U2Fusion [34], STDFusionNet [78], AEFusion [64],

MUFusion [65], and AMFusionNet.

[0} QUFD o) 'AEFusion (k) MUFusion o «

FIGURE 7. Qualitative comparison of the AMFusionNet with seven
state-of-the-art methods on FLIR_09488. For a clear comparison,

we selected a salient region (i.e., the red box and green color box) in each
image and zoomed in on it using the same color box, respectively. From
top to bottom (from left to right): infrared and infrared image pair, fusion
results of the CUFD [53], MDLatLRR [13], Densefuse [51], DIDfuse [63],
FusionGAN [30], U2Fusion [34], STDFusionNet [78], AEFusion [64],
MUFusion [65], and AMFusionNet.

We conducted both qualitative and quantitative evaluations
of publicly available TNO and FLIR datasets. Qualitative
comparison results for the FLIR dataset are shown in Fig. 5-7.

8365



IEEE Access

Q. Xu, Y. Zheng: Integrating Parallel Attention Mechanisms and Multi-Scale Features

MI

SF

Densefuse:6.787
—0— DIDfuse:7.344 45

FusionGAN:7.017

Values of The Metric
2

—0— CUFD:5.176
MDLAtLRR:6.835

STDFusionNet:7.108

Values of The Metric

Densefuse:2.784 Densefuse:8.477

DIDfuse:2.882 20 —O— DIDfuse:14.274
FusionGAN:2.684. FusionGAN:8.126
CUFD:2.360 —0— CUFD:3.243
MDLatLRR:2.726 —0— MDLatLRR:9.473

STDFusionNet:3.833 STDFusionNet: 15.920

Values of The Metric

55 e e 10 e U
o —9— U2Fusion:7.232 U2Fusion:2.658 —9— U2Fusion:14.938
o mndﬂjgmmnﬂﬂ 25
oo —— AEFusion:7.337 AEFusion:2.812 —— AEFusion:11.850
50 o
o —— MUFuison:7.408 20 MUFusion:2.113 s{ @ AT | T MUFsion:12.730
as{ | R eaieia
1 —— Ours:7.327 Is Ours:3.204 R —6— Ours:13.477
00 02 04 06 0% 10 00 02 04 06 08 1o
Cumulative Distribution Cumulative Distribution
AG SCD
20
10 0
Densefuse:3.360 Densefuse:31.029 s Densefuse:1.394
. DIDfuse:5.574 o0 DIDfuse:50.982 —0— DIDfuse:1.772
FusionGAN:3.205 , FusionGAN:37.486 2 10 FusionGAN:1.182
50
CUFD:1.262 CUFD:11.011 —(— CUFD:0.430

MDLatLRR:3.732

STDFusionNet:5.304

Values of The Metric
Values of The Metric

U2Fusion:6.156

AEFusion:4.935 2] ¢

MDLatLRR:31.903 —0— MDLatLRR:1.411

STDFusionNet:46.9915 STDFusionNet:1.359

Valuss of The Metric
°

U2Fusion:41.437 00 —%— U2Fusion:1.651

AEFusion:44.569 —s—  AEFusion:1.683
—+— MUFusion:47.494 —+— MUFusion:1.502

—&— Ours:46.576 —&— Ours:1.599

MUFusion:5.848 d a
nO0000c
PoonpooooonoOaoaoEs
Ours:5.120 10 EPDDDDDDDDDD
00 02 04 06
Cumulative Distribution
VIF Qabf

08 10 00 02 04 06 08 0
Cumulative Distribution

SSIM

Densefuse:0.545
DIDfuse:0.560

FusionGAN:0.364

Densefuse:0.380 10 Densefuse:0.963

—O— DIDfuse:0.471 DIDfuse:0.927

FusionGAN:0.254 FusionGAN:0.593

=} £ 2
= CUFD:0327 = ~O- CUFD:0.122 = CUFD:0.419
E] 2 2
e MDLatLRR:0.591 = —o— MDLatLRR:0471 = 07 MDLatLRR:0.973
505 3 5
] STDFusionNet:0.596 % STDFusionNet:0.407 STDFusionNet:0.742
=2 2 206
O UFusion:0.558 = —— U2Fusion:0.514 > U2Fusion:1.000
AEFusion:0.578 02 o |~ ABFusion:0.456 03 AEFusion:0.871
03 MUFusion:0.478 DDDDDEFF —+— MUFusion:0.368 04 MUFusion:0.816
Apoooo
Ours:0.626 01 DDDDDDDDDDDDDDDDDDDD —— Ours:0.499 0 Ours:0.984

00 02 04 06

Cumulative Distribution

Cumulative Distribution

08 10 00 02 04 06 08 1o
Cumulative Distribution

FIGURE 8. Quantitative comparisons of the nine metrics, i.e., EN, M, SF, AG, SD, SCD, Qg VIF and SSIM, on forty image pairs from the FLIR dataset. The
nine state-of-the-art methods such as CUFD [53], MDLatLRR [13], Densefuse [51], DIDfuse [63], FusionGAN [30], U2Fusion [34], STDFusionNet [78],
AEFusion [64], MUFusion [65] are used for comparison. A point (x, y) on the curve denotes that there are (100 = x) % percent of image pairs which have
metric values no more than y. Our proposed AMFusionNet is indicated by a red X mark line.

1) QUALITATIVE RESULTS

To directly compare the effectiveness of our proposed
algorithm for image fusion with existing methods, we chose
three representative pairs of source images from the FLIR
dataset. The fusion results of the different algorithms are
presented in Fig. 5-7. In Fig. 5-7, we identified two regions
for comparative analysis: a background region and a salient
target region. As shown in Fig. 5, CUFD, FusionGAN and
AEFusion overlooked the essential thermal emission details,
thereby missing the thermal information of the car. Although
STDFusionNet, MUFusion and U2Fusion highlight the
salient target, they fall to capture key background elements
such as the manhole cover. In contrast, AMFusionNet
effectively differentiates the target from its background, while
preserving the texture of the visible image. As shown in
Fig. 6, each algorithm consistently captured the thermal
details, thereby enabling a distinct separation between the
target and its background. However, our method distinguishes
itself by preserving intricate background details. It effectively
captured the thermal details of the infrared image and the
texture of the visible image, as shown in the magnified red
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box. This exceptional performance serves as an evidence of
the effectiveness of the proposed approach.

From Fig. 7, it appears that both FusionGAN Densefuse
and MDLatLRR potentially compromise the thermal radia-
tion details of the infrared salient target, which is attributable
to the constraints of the visible light image under low-
light conditions. Although STDFusionNet, AEFusion, and
MUPFusion captured most of the infrared data, their preser-
vation of background details was lacking, as indicated
by the blurred boundaries of the tree. U2Fusion retains
details from both the infrared target and background texture.
CUFD [53] loss of both infrared information and fine details,
indicating a significant limitation in its ability to preserve key
image attributes. Additionally, although DIDfuse effectively
retains thermal information from infrared images and textural
details, it tends to produce background artifacts.

In comparison, the proposed algorithm clearly stands out,
delivering fused images with enhanced target brightness,
sharper edge contours, and superior retention of intricate
detail. Noteworthy examples include the manhole cover
in Fig. 5 and cyclist in Fig. 7.
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2) QUANTITATIVE RESULTS

We evaluated the performance across 40 image pairs from
the FLIR dataset using nine established quantitative metrics,
as illustrated in Fig. 8 and Tab. 3. Compared to nine other
state-of-the-art algorithms, our algorithm secured the leading
position in the SD evaluation metric. In addition, it exhibited
exceptional performance in the EN, SCD, VIF, SSIM, and
SF which were comparable to those of the top performers
in the other methods. Even with second-place standing, our
algorithm consistently exhibited competitive performance,
highlighting its advantages in producing high-quality fused
images.

As illustrated in Fig. 5-7 and detailed in Tab. 3, the efficacy
of the algorithm can be assessed subjectively through visual
inspection and objectively by using nine distinct metrics.
Acknowledging the unique strengths of each algorithm,
as reflected in these metrics, we introduce an evaluation
metric called the normalized evaluation index, denoted as

S MiF.V.D)

5= le max M;(F, V, T)

a7

where M;(e) indicates the formula of the evaluation metric;
N = 9 denotes the nine evaluation metrics; F, V and [
represent the fused, visible, and infrared images, respectively.

Based on the aggregated normalized values from these nine
metrics, the proposed algorithm has the highest value. This
performance distinction further emphasizes the superiority of
the proposed algorithm.

E. GENERALIZATION ANALYSIS
Evaluating the generalization capability of a DL model
is crucial to determine its overall efficacy. To assess the
generalization performance of our AMFusionNet model,
we tested it on image pairs from the TNO dataset as the model
was trained on the FLIR dataset.

1) QUALITATIVE RESULTS

Examining Fig. 9-11, we can observe the fusion results of
the various methods. Our algorithm effectively retains the
thermal information from the infrared images and accentuates
the boundaries of prominent targets in the fused images.
Compared to other methods, our technique preserves more
background details, offers heightened contrast, clarifies
finer details, and renders targets more distinguishable. For
instance, consider Fig. 9, where the fusion of MDLatLRR
fails to account for the radiation details of the infrared
target. Although DIDfuse, AEFusion, and STDFusionNet
effectively identify significant infrared targets in their fusion
results, their outputs show smoothing effects, leading to a
loss of thermal detail, such as the subdued thermal radiation
details of streetlights. In Fig. 10, in addition to the fusion
images of MDLatLRR, U2Fusion, and AEFusion, the fusion
results of almost all methods successfully retained the
infrared information. However, a drawback was observed in
the fusion results of Densefuse, CUFD, and FusionGAN,
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FIGURE 9. Qualitative comparison of the AMFusionNet with seven
state-of-the-art methods on soldier_behind_smoke. For a clear
comparison, we selected a salient region (i.e., the red box and green color
box) in each image and zoomed in on it using the same color box,
respectively. From top to bottom (from left to right): visible and infrared
image pair, fusion results of the CUFD [53], MDLatLRR [13],

STDFusionNet [78], FusionGAN [30], Densefuse [51], DIDfuse [63],
U2Fusion [34], and our AMFusionNet.

in which the background information was excessively
smoothed. In addition, in the fusion results of MUFusion, the
contrast between the foreground and background information
is not pronounced, which makes it difficult to distinguish the
significant target. In Fig. 11, the fusion results of each method
easily distinguish significant targets from the background;
hovever, each method has drawbacks. For instance, STDFu-
sionNet loses cloud information, and MDLatLRR, CUFD,
and Densefuse fail to capture information about people,
as shown in the green box. The MUFusion fusion method
retains detailed information from the visible image and
thermal radiation information from the infrared and generates
numerous artifacts, such as cloud information that does not
exist in the source image. By contrast, our algorithm produces
fusion results that clearly distinguish infrared targets with
sharp boundaries.

2) QUANTITATIVE RESULTS

To provide an objective evaluation of the performance across
different fusion algorithms, we analyzed 40 image pairs from
the TNO dataset. Fig. 12 and Tab. 4 presents the fusion
outcomes, clearly demonstrating the robust performance of
our algorithm across the nine metrics. On the TNO dataset,
our method clinched the top scores in EN, AG, MI, SD, SE,
SCD and Normalized Values and secured a commendable
second place in VIF. A leading EN score indicates that
our fused images encompass more information richness
than other methods. High AG, SD, and SF scores highlight
information-rich and visually striking results that adeptly
preserve details, contrast, and texture from the source images.
Leading scores in MI and SCD further attest to the capability
of our technique to optimally transfer information from the
source images to the fused outputs. Furthermore, AMFu-
sionNet achieved the best outcome in terms of Normalized
Values, suggesting that the proposed approach exhibits an
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TABLE 3. Quantitative comparisons of the nine metrics, i.e., EN, AG, M, SD, SF, Qgp¢, SSIM, VIF, SCD, on the 40 image pairs from the FLIR dataset.

Bold indicates the best result and _ indicates the second best result.

Methods EN AG MI SD Qabf SSIM VIF SCD Normalized Values
CUFD 5.1761  1.2616 23602 11.0114 3.243 0.1216  0.4195 0.3271  0.4303 3.4571
MDLatLRR 6.8351 3.7318 2.7263  31.9031 9.473 0.4707 09672  0.5906 1411 7.1220
STDFusionNet ~ 7.1080  5.3042  3.8334 46.9905 15.9198 0.4066 0.7367  0.596 1.3588 8.0235
U2Fusion 72324 6.1577 2.6577 414372 149383 0.5145 09941 0.5584 1.6513 8.2733
FusionGAN 7.0167 3.2046 2.6836 37.4861 8.1258  0.2536  0.5951 0.3638  1.1815 5.7669
Densefuse 6.7865  3.3599 27839 31.0294  8.4774  0.3801 0.9569 0.5446  1.3938 6.7173
DIDfuse 7.3441 55742 2.8822 50.9818 14.2743  0.4713 09166 0.5602 1.7719 8.3047
AEFusion 7.337 4.935 2.812 44.569 11.850 0.456 0.871 0.578 1.683 7.8090
MUFusion 7.408 5.848 2.113 47.494 12.73 0.368 0.816 0.478 1.599 7.4549
Ours 7.3841 5.8207 2.8520 51.5468 14.8068 0.4732 0.9745 0.5906 1.6892 8.4529

TABLE 4. Quantitative comparisons of the nine metrics, i.e., EN, AG, MI, SD, SF, Qgp¢, SSIM, VIF, SCD, on the 40 image pairs from the TNO dataset.

Bold indicates the best result and _ indicates the second best result.

Methods EN AG MI SD Qabf SSIM VIF SCD Normalized Values
CUFD 4.8132 0.8669 2.1764 8.9437 2.1749 0.0999  0.3824 0.2756  0.9824 3.3481
MDLatLRR 6.3904 2.7937 2.1048  25.5972 7.3137 0.4427 1.0158 0.6195 1.6237 6.8203
STDFusionNet  6.8700 42318 3.2912 39.734 11.7147  0.4376  0.7982 0.694 1.4352 7.8635
U2Fusion 6.9655 4.94 1.1924  36.5903 11.6162 0.4266 0.9588 0.6066 1.7856 7.4901
FusionGAN 6.5761  2.41691 2.341 31.1199 6.2466 0.2328  0.6603  0.4201 1.3955 5.6566
Densefuse 6.3518 2.5148 2.216 24.7829 6.3794 0.3506  1.0127 0.5727  1.6056 6.4318
DIDfuse 7.0061 4.2942 2.3468 46.8854 11.2839  0.4027 0.8658 0.6235  1.7837 7.8071
AEFusion 7.027 3.463 2.357 38.505 7.760 0.358 0.790 0.554 1.693 6.9142
MUFusion 7.219 4.614 1.940 45.244 9.705 0.365 0.799 0.540 1.569 7.2328
Ours 7.3654 5.8853 2.3226 47.7786  14.6055 0.3810 0.8538  0.6683  1.6987 8.3211

(j) AEFusion jon (1) Ours

FIGURE 10. Qualitative comparison of the AMFusionNet with seven
state-of-the-art methods on Kaptein_1654. For a clear comparison,

we selected a salient region (i.e., the red box and green color box) in each
image and zoom in on it using the same color box, respectively. From top
to bottom (from left to right): visible and infrared image pair, fusion
results of the CUFD [53], MDLatLRR [13], Densefuse [51], DIDfuse [63],
FusionGAN [30], U2Fusion [34], STDFusionNet [78], AEFusion [64],
MUFusion [65], and AMFusionNet.

optimal overall performance. Specifically, it achieves a better
balance between preserving the thermal radiation information
in infrared images and capturing texture details in visible
images.

In conclusion, the images produced by our approach
are superior for visual perception because they offer
improved contrast, clear salient targets, and minimal texture
degradation. Objectively and subjectively, these attributes
underscore the robust generalization capabilities of our
method. According to Eq. (17), we calculated the normalized
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=
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FIGURE 11. Qualitative comparison of the AMFusionNet with seven
state-of-the-art methods on Jeep. For a clear comparison, we selected a
salient region (i.e., the red box and green box) in each image and zoomed
in it use same color box, respectively. From top to bottom (from left to
right): visible and infrared image pair, fusion results of the CUFD [53],
MDLatLRR [13], Densefuse [51], DIDfuse [63], FusionGAN [30],

U2Fusion [34], STDFusionNet [78], AEFusion [64], MUFusion [65], and
AMFusionNet.

evaluation metrics for the fused images generated by AMFu-
sionNet and the other seven algorithms, as listed in Tab. 4.

F. ABLATION EXPERIMENT

In this section, we evaluate the impact of the attention
mechanisms and MS-SSIM loss function on the performance
of the AMFusionNet. We explored three variations: AMFu-
sionNet without the attention mechanism (AMFusionNet-
SC), AMFusionNet employing a parallel form of the attention
mechanism (PSCNet), and AMFusionNet excluding the
MS-SSIM loss function (AMFusionNet-MSSSIM).
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FIGURE 12. Quantitative comparisons of the nine metrics, i.e., EN, M, SF, AG, SD, SCD, Qg¢, VIF and SSIM, on forty image pairs from the FLIR dataset.
The nine state-of-the-art methods such as CUFD [53], MDLatLRR [13], Densefuse [51], DIDfuse [63], FusionGAN [30], U2Fusion [34], STDFusionNet [78],
AEFusion [64], MUFusion [65] are used for comparison. A point (x, y) on the curve denotes that there are (100 = x) % percent of image pairs which have

metric values no more than y. Our proposed AMFusionNet is indicated by a red X mark line.

1) ATTENTION MECHANISM IMPACT

The role of the attention mechanism is crucial for tasks
related to feature extraction and fusion [79], [80]. To assess
its importance, we performed an experiment that excluded the
attention module while maintaining the remaining network
components.

Fig. 13 shows the fusion results of both AMFusionNet
and AMFusionNet-SC. Notably, AMFusionNet emphasizes
distinct targets in salient areas and preserves the intricate
textures of background regions. In contrast, AMFusionNet-
SC struggles to retain key infrared image details and delineate
sharp boundaries for salient targets, unlike AMPFusion-
Net. Quantitative metrics further highlight the enhanced
performance of AMFusionNet compared with that of
AMFusionNet-SC. Tab. 5 shows that AMFusionNet achieved
the highest scores in five metrics and a commendable second
place in one metric.

2) ANALYSIS OF MS-SSIM LOSS

Integrating the MS-SSIM loss function bolsters the network’s
ability to preserve the texture details. This enhancement
arises from the technique of comparing features between
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the input and output images at various scales, making
the network more sensitive to subtle image changes.
Consequently, the network is less prone to excessive image
smoothing, thereby ensuring the preservation of finer image
details. Fig. 13 presents a qualitative comparison between
AMFusionNet and AMFusionNet-MSSSIM using the image
sets men_in_front_of_house and Kaptein_I19. Comparing
the fusion outcomes, AMFusionNet was observed to
preserve more texture details, as exemplified by the
tree textures, compared with AMFusionNet-MSSSIM.
Tab. 5 indicates AMFusionNet’s superior performance over
AMFusionNet-MSSSIM in four key metrics: EN, AG, SD,
and SF. EN measures the amount of information contained
in a fused image, AG measures the richness of the edge and
texture information in the image, SF measures the complexity
of the texture, and SD measures image contrast. All three
indicators intuitively indicate that AMFusionNet performed
better than AMFusionNet-MSSSIM.

3) IMPACT OF THE PARALLEL ATTENTION MECHANISM
Building on our earlier discussion, the sequential attention
mechanism inherently suffers from information loss given its
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TABLE 5. Quantitative comparisons of the four metrics, i.e., EN, AG, M, SD, SF, Qgp¢, SSIM, VIF, and SCD, on 40 image pairs from the TNO dataset. Bold

indicates the best result.

AMFusionNet-SC ~ AMFusionNet-MSSSIM ~ PSCNet ~ AMFusionNet
EN 7.2525 7.225 7.2579 7.3654
AG 4.5848 4.8944 4.8083 5.8853
MI 2.536 2.239 3.0903 2.3226
SD 45.8586 42.0822 44.7442 47.7786
SF 11.6601 11.9025 12.2281 14.6055
Qabyf 0.4253 0.3883 0.4911 0.3718
SSIM 0.8892 0.9666 0.9959 0.8538
VIF 0.6644 0.6879 0.6015 0.6683
SCD 1.7023 1.7717 1.5722 1.6987

o
LUK

1
T |

FIGURE 13. A qualitative comparison of AMFusionNet with AMFusion-SC,
as well as AMFusion-MSSSIM and PSCNet on men_in_front_of_house,
was conducted on Kaptein_1123, Kaptein_19, and solid_inbranch. For a
clear comparison, we selected a salient region (i.e., the red box and green
color box) in each image and zoomed in on it using the same color box,
respectively. From top to bottom (from left to right): infrared and visible
image pair, fusion results of AMFusionNet-SC, AMFusionNet-MSSSIM,
PSCNet, and AMFusionNet.

reliance on the outputs of the preceding steps. This limitation
stems from the constrained capacity of the mechanism to
effectively merge features from both the channel and the
spatial attention branches. From a subjective standpoint,
as illustrated in Fig. 13, PSCNet struggles to conserve
infrared thermal radiation details, resulting in a fused image
with overly smoothed features. Conversely, AMFusionNET
effectively retains both forms of information. From an
objective perspective, AMFusionNet outperformed PSCNet
in four key metrics: EN, AG, SF, and SD. These observations
corroborate the results of our theoretical analysis.

V. CONCLUSION
In this paper, we propose a network framework called
AMPFusioNNET for IVIF, which is based on MKCBIlock,
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PSCNet and MS-SSIM loss. The MCKBIlock contains three
distinct types of convolutions, each characterized by a unique
convolution kernel size. These convolutional operations
enable feature extraction at various scales, thereby enhancing
the ability of the network to capture complex and detailed
feature information. PSCNet, which is designed based on the
parallel attention mechanism, allows the network to attend
to salient information from the source image. In PSCNet,
GELU was also introduced to replace ReL.U, which allows the
network to retain more detailed information. The introduction
of MS-SSIM guided AMFusionNet to compute the similarity
between the fused image and original image at multiple
scales, which, to a certain extent, mitigated the information
loss caused by the depth network. Various experiments have
shown that the fusion image obtained by our method achieves
competitive results both subjectively and objectively.
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