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ABSTRACT This work addresses Emotion Recognition in Conversation (ERC), a task with substantial
implications for the classification of the underlying emotions in spoken encounters. Our focus is on utilizing
a fully connected directed acyclic graph to represent conversations, presenting inter-locutor and intra-locutor
ties to capture intricate relationships. Therefore, we propose a novel methodology, Residual Relation-Aware
Attention (RRAA) with Positional Encoding, enhancing speaker relations’ contexts for improved emotion
recognition in conversation. The purpose of this mechanism is to facilitate a thorough comprehension of the
connections between speakers, hence enhancing the sophistication and contextual awareness of an emotion
recognition framework. We utilized the Gated recurrent units (GRU) to regulate context transmission,
ensuring adaptability to changing emotional dynamics. It regulates the transmission of conversation context
across all layers of the graph, guaranteeing a flexible and responsive representation of the changing emotional
dynamics within the discourse. Evaluations on IEMOCAP, MELD, and EmoryNLP datasets disclose our
model’s superior performance (F1 scores: 69.1%, 63.82%, 39.85%, respectively), outperforming state-of-
the-art approaches. In general, this work enhances speaker interactions by utilizing a fully connected graph,
and providing a more concise and efficient ERC framework.

INDEX TERMS Emotion recognition in conversation, residual relation-aware attention, deep graph-
recurrent model, fully connected directed acyclic graph, positional encoding.

I. INTRODUCTION
The topic of emotion recognition in conversation has gained
considerable attention due to the increasing prevalence of
open discussions on many platforms, such as social media
and film franchises. The motivation behind this fascination
is driven by the inherent complexity of interpreting the
emotional aspects of a spoken statement, which is influenced
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by various elements like the topic being discussed, the
speaker’s viewpoint, and the unique characteristics of their
personality. Moreover, the emotional tone attributed to a
particular segment of speech is subject to dynamic modifi-
cation through following utterances, whether they originate
from the same speaker or different speakers. To tackle this
challenge, it is crucial to effectively model the context of the
conversation. A strong representation of the context greatly
improves the performance of the model, especially when
individual utterances do not provide sufficient information
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for independent recognition, which is demonstrated by the
DialogueGCN model [1].

Nowadays, there are three prevailing strategies utilized
for modeling conversation context: graph-based methods [1],
[2], recurrent-based methods [3], and transformer-based
methods [4]. Graph-based methodologies [1], [2] demon-
strate exceptional proficiency in capturing relation-aware
characteristics among several participants in a conversational
context. However, numerous research endeavors commonly
utilize predetermined window sizes, which might have a
detrimental effect on the feasibility of using these techniques
in real-time applications. In contrast, recurrent-based tech-
niques [3] prioritize sequential processing, allowing them to
effectively capture temporal dependencies in conversations.
Although these strategies can be helpful in specific situations,
they may fail to consider complex multi-party relationships.
Transformer-based approaches, such as TODKAT [4], utilize
attention mechanisms to improve computing efficiency.
Although transformer-based models have benefits in parallel
processing, they may accidentally ignore sequential informa-
tion that is essential to understanding conversation dynamics.
In this context, we refer to the DAGERC framework [5] that
utilizes a directed acyclic graph to represent conversational
interactions, with a specific emphasis on capturing the
influence of prior utterances on future ones. Nevertheless,
the model’s capacity to fully use linkages among speakers is
constrained by restricted connections.

In response to these considerations, our research endeav-
ors to present an innovative methodology derived from
DAGERC, which aims to predict emotional states in utter-
ances inside conversational contexts. The main focus of our
research is the efficient exploitation of a fully connected
directed acyclic graph for the purpose of modeling talks.
This process entails the establishment of links between each
individual node and its preceding nodes, so providing a
nuanced depiction of the dynamics within a conversation.
In order to incorporate relation-aware features, we provide
a novel approach called Residual Relation-aware Attention
(RRAA), which is enhanced by the inclusion of Positional
Encoding (PE). This allows for the consideration of sequence
information, particularly in graphs that exhibit a high number
of connections. Furthermore, the integration of gated recur-
rent units (GRUs) [6] is employed to regulate the transmission
of conversational context between graph-recurrent layers.
Our experiments, conducted on three diverse ERC datasets,
demonstrate the efficacy of our proposed model, surpassing
the performance of state-of-the-art methods. The central goal
of our research is to enrich inter-speaker and intra-speaker
relations through a fully connected directed acyclic graph,
overcoming limitations in the number of connections among
speakers evident in existing studies like DialogueGCN and
DAGERC.

The main contributions of our work can be summarized
as follows: (1) We employ a fully connected directed acyclic
graph with two types of edge relations to comprehensively
leverage relations among speakers. (2) We introduce residual

relation-aware attention with positional encoding and GRUs
to capture relation-aware features and control conversa-
tion context propagation through graph-recurrent layers.
(3) Experimental results showcase improvements over state-
of-the-art methods on benchmark ERC datasets, validating
the effectiveness of our proposed methodology.

The subsequent sections of the paper are organized as
follows: Section II reviews related works on recurrent-based
methods, transformer-based methods, and graph-based meth-
ods in the ERC task. Section III provides a problem statement
and our objectives. Section IV a detailed description of our
proposed method. Section V presents comprehensive data
information, implementation setup, and experiment results
compared with other methods. Finally, Section VI concludes
the paper and outlines avenues for future research.

II. RELATED WORKS
In this extended exploration of methods for emotion recog-
nition in conversation, we delve into recent references
that contribute to the evolving landscape of this field,
encompassing recurrent-based methods, transformer-based
methods, graph-based methods, and the specialized domain
of directed acyclic graph neural networks.

A. EMOTION RECOGNITION IN CONVERSATION
The comprehension of an individual’s emotional condition,
which is based on a synthesis of cognitive processes, affective
experiences, and behavioral manifestations, may be traced
back to Charles Darwin’s evolutionary account of emotions
during the latter part of the 19th century [7]. Plutchik’s semi-
nal work on emotions, as outlined in his 1984 publication [8],
established a comprehensive framework for categorizing
emotions into eight major kinds. This classification system
has since served as a foundational basis for investigating
the intricate subtleties and complexities inherent in human
emotional experiences. The acknowledgement of the signif-
icant influence of language as a reflection of an individual’s
mental state has led to the widespread adoption of emotion
recognition in the field of Natural Language Processing [9],
[10]. Strapparava and Mihalcea [11] investigate the emotion
recognition in news headlines using the ‘‘Affective Text’’
task. Their goal is to comprehend the relationship between
lexical semantics and emotions. Their contribution involves
providing a detailed description of the dataset used for evalu-
ation and demonstrating the outcomes of different automated
methods for emotion recognition. Strapparava [12] presents
the WORDNET-AFFECT resource, which is a lexical repre-
sentation of affective knowledge derived from WORDNET.
This resource provides a supplementary classification of
‘‘affective domain labels’’. It assigns affective meanings to
synsets, which are groups of words representing emotional
concepts. In addition, Mohammad and Turney [13] addresses
the limitation of small emotion lexicons by creating a high-
quality, moderate-sized emotion lexicon using Mechanical
Turk. Their approach involves implementing word choice
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FIGURE 1. Illustration of three-party conversation (Ross, Matt, Lisa).
Where different color boxes represent different speakers. (This example
is a generated sample not a real sample from a dataset).

problems to discourage malicious entries, detecting instances
of unfamiliarity, and acquiring sense-level annotations.

The field of Emotion Recognition in Conversation (ERC)
has gained significant attention in scientific research because
to the increasing availability of open conversation data
from platforms such as social media and movie series [14],
[15], [16], [17]. The ramifications of ERC encompass
various domains such as chatbots, social networking, and
customer service, so contributing to the advancement of
our comprehension of interpersonal communication. The
importance of incorporating context modeling into individual
utterances has been highlighted in research [13]. These
studies underline the significance of considering preceding
utterances and temporal sequence when doing this modeling
procedure. Figure 1 depicts a snapshot of a conversation
between three speakers.

B. CONVENTIONAL METHODS FOR ERC
In the realm of recurrent-based methodologies, the work by
Jiao et al. [18] presents HiGRU, a hierarchical framework
based on Gated Recurrent Units (GRUs). This framework
consists of two separate GRU components: a lower-level
GRU responsible for modeling inputs at the word level,
and an upper-level GRU designed to capture the contextual
intricacies present in embeddings at the utterance level. The
paradigm introduced by Majumder et al. [19] is extended
in DialogueRNN, which utilizes multiple GRUs to capture
various conversational contexts such as global state and
speaker-listener state. This contextual information is then
utilized for the purpose of emotion classification. In a
similar manner, the COSMIC model [3] integrates external
commonsense knowledge to enhance its performance within
the recurrent-based framework.

In the domain of transformer-based methodologies,
Li et al. [20] employ a three-block transformer architecture
to comprehensively model various facets of conversation,
encompassing conversation context, inter-speaker dynamics,
and intra-speaker intricacies. EmoBERTa [21] enhances
the performance of RoBERTa [22] in the Emotion
Recognition in Conversation (ERC) task by introducing
speaker names to utterances and embedding separation
tokens between utterances in dialogue. TODKAT [4],
another representative transformer-based model, integrates
external commonsense knowledge of emotion detec-
tion in dialogues into its Transformer Encoder-Decoder
structure.

The use of graph-based techniques, such as DialogueGCN
[1], involves the representation of dialogues as graphs.
In this representation, each utterance is connected to the
preceding and following utterances. Nevertheless, the lack
of feasibility of this method in real-time scenarios, when
future speech cannot impact previous utterances and vice
versa, necessitates the development of alternative solutions
such as RGAT [2]. The proposed research study, conducted
by RGAT, integrates positional encoding into the existing
DialogueGCN framework. This integration involves the
incorporation of relation graph attention mechanism, which
facilitates the aggregation of information from adjacent
nodes. The ConGCN model [23] employs a representation
that considers utterances and speakers as nodes. The edges
in this representation capture dependencies that are sensitive
to either the speaker or the context. The study conducted
by Shen et al. [24] introduces DialogXL, an improved
version of XLNET [25], which incorporates sophisticated
memory processes and dialog-aware self-attention. The
Speaker and Position-aware Graph Neural Network (GNN)
model, introduced by Liang et al. [26] under the name
S+PAGE, serves as a pioneering approach in the field. This
model is specifically tailored to incorporate inter-speaker
and intra-speaker contextual dynamics into conversational
graphs.

The Directed Acyclic Graph (DAG) is a fundamental
structure in neural networks such as DAGRNN [27],
DAGNN [28], and DAGERC [5]. DAGRNN addresses the
challenge of combining extensive contextual information into
localized representations for image elements. This technol-
ogy enables the computation of DAG-structured images,
allowing the network to accurately represent and analyze the
relationships between image units that are far apart in a mean-
ingful way. In contrast to its predecessors, DAGNN intro-
duces the capability to stack multiple levels, so enabling each
node to gather information from its counterparts on the same
layer rather than the preceding layer. The unique architectural
design utilizes graph attention mechanisms to aggregate
information. DAGERC is an extension of DAGNN that aims
to enhance and customize the architecture for the specific
job of emotion recognition during conversations, by incor-
porating the evolutionary progression within directed acyclic
graphs.
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III. PROBLEM STATEMENT AND OBJECTIVES
The complexity of emotion recognition in conversation
arises from the intricate interplay of contextual factors,
including the topic under discussion, speaker viewpoints, and
individual personality traits. Existing methodologies, encom-
passing graph-based, recurrent-based, and transformer-based
approaches, demonstrate varying strengths and limitations.
Graph-based methods excel in capturing relation-aware
features but often face challenges in real-time applications
due to fixed window sizes. Recurrent-based methods pri-
oritize sequential processing but may neglect multi-party
relationships. Transformer-based methods leverage attention
mechanisms for efficiency but may overlook sequential infor-
mation. Moreover, current directed acyclic graph models,
while addressing some challenges, have limitations in fully
leveraging inter-speaker relations.

Therefore, the primary objective of this paper is to
propose an advanced methodology for Emotion Recognition
in Conversation (ERC) by building upon the directed acyclic
graph architecture. The key goals include:

1) Efficient Context Modeling: Develop a methodology
that efficiently models conversation context, con-
sidering the dynamics influenced by preceding and
subsequent utterances within a fully connected directed
acyclic graph.

2) Enhanced Relation-Aware Features: Introduce
Residual Relation-aware Attention with Positional
Encoding to capture nuanced relation-aware features,
addressing the limitations of fixed window sizes and
ensuring effective use of sequence information.

3) Sequential Information Integration: Utilize Gated
Recurrent Units (GRUs) to regulate the propagation
of conversation context through graph-recurrent lay-
ers, ensuring the effective integration of sequential
information.

4) Enriched Speaker Relations: Enrich inter-speaker
and intra-speaker relations within the conversation by
leveraging the fully connected directed acyclic graph,
overcoming limitations observed in existing studies
such as DialogueGCN and DAGERC.

5) Comparative Evaluation: Conduct extensive experi-
ments on three diverse ERC datasets to evaluate the
proposed methodology’s performance against state-of-
the-art models, demonstrating its efficacy in enhancing
emotion recognition accuracy.

By addressing these objectives, this paper aims to
contribute to the advancement of ERC methodologies,
providing a more nuanced and effective approach for emotion
recognition within conversational contexts.

IV. METHODOLOGY
A. FULLY CONNECTED DAG BUILDING FROM
CONVERSATION
In the domain of ERC, the structured nature of dia-
logues is characterized by sequences of utterances denoted
as {u1, u2, . . . , un}, each corresponding to emotion labels

{y1, y2, . . . , yn}. The primary objective of ERC involves
predicting accurate emotion labels for individual utter-
ances based on the encompassing conversation context
{u1, u2, . . . , un} and relevant speaker information.
In order to efficiently tackle this challenge, we have

developed a conceived and created a Directed Acyclic Graph
(DAG) as a modeling framework for the conversational
dynamics. The graph, denoted as G = {V ,E}, consists
of nodes V that represent individual utterances inside the
discussion. The edges E represent the directional connections
and relationships between two nodes. Specifically, E can
be defined as a tuple (D,R), where D denotes the nodes
connected by the edge and R represents the set of edge types,
denoted as R = {R1,R2}. The development of connections is
governed by a crucial temporal constraint, which ensures that
links are generated in accordance with the temporal order of
utterances. It is worth noting that every statement is linked to
previous utterances, enabling the transmission of information
from earlier to later utterances, but preventing the opposite
direction.

In the present graph structure, we provide two separate
categories of relationships: intra-speaker relationships, where
interconnected nodes reflect utterances originating from the
same speaker, and inter-speaker relationships, where linked
nodes correspond to utterances from different speakers.
The distinction stems from the acknowledgment that the
emotional effect of a statement is shaped not just by
prior statements but also by the speaker who delivers the
statement. Hence, the emotional impact originating from a
single speaker and that originating frommultiple speakers are
seen as distinct components that contribute to the emotional
context of a spoken statement within a conversation.

Figure 2 illustrates a fully connected DAG model for
a three-party conversation, where each node establishes
connections with its preceding nodes. Unlike the constraints
imposed by DAGERC [5], our model does not restrict the
connections of each node to a fixed number of previous
nodes. This lack of restriction is particularly beneficial given
the inherent variability in conversational data. For instance,
as illustrated in the sample Directed Acyclic Graph (DAG) in
Figure 2, the connectivity constraints imposed by DAGERC
limit the connections of each node to the closest node spoken
by the same speaker. Consequently, node 4 is exclusively
connected to node 3, with no linkage to nodes 1 or 2.
This restriction impedes the model’s ability to learn relation-
ships between these nodes, underscoring the importance of
adopting a fully connected DAG model to comprehensively
leverage relations among speakers. Additionally, we augment
the graph with positional encoding for each node, enabling
the model to discern the significance of individual nodes
within the sequence.

B. DEEP GRAPH-RECURRENT MODEL
The comprehensive structure of the Deep Graph-Recurrent
model designed for Emotion Recognition in Conversation
(ERC) is visually depicted in Figure 3. In the initial
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FIGURE 2. DAG of three-party conversation. Each speaker is colored in
one of the colors: pale orange, green, or gray. The arrow represents the
information propagation from prior nodes to later nodes. Solid lines
represent the inter-speaker relation, and the dash lines represent the
intra-speaker relation. The number from 1 to 6 represents the order of
utterances in dialog.

phase, individual utterances undergo embedding utilizing the
RoBERTa model. Subsequently, a graph is systematically
generated for each conversational interaction, employing
the innovative Fully Connected (DAG) approach. Following
the graph construction, a specialized module, comprising
residual relation-aware attention with positional encoding
and GRUs, is employed. This strategic utilization is intended
to adeptly capture relation-aware features while concurrently
regulating the propagation of conversational context through-
out the layers of the graph-recurrent structure. Ultimately,
the outputs derived from all graph-recurrent layers are
concatenated, constituting the conclusive representation that
informs the final decision-making process.

1) UTTERANCE FEATURE EXTRACTION
Our research utilizes a pre-trained Transformer-based model,
RoBERTa, in a way similar to the approaches applied in
COSMIC and DAGERC. RoBERTa, also known as Robustly
optimized BERT method, represents an enhanced iteration
of the Bidirectional Encoder Representations from Trans-
formers (BERT) model. RoBERTa, an AI model developed
by Facebook, enhances the original BERT architecture by
making improvements to the training objectives and dynami-
cally modifying hyperparameters. These enhancements result
in enhanced performance across several natural language
processing tasks.

The incorporation of RoBERTa into our system entails the
retrieval of feature vectors from utterances. The aforemen-
tioned procedure involves the refinement of the model on
every Emotion Recognition in Conversation (ERC) dataset.
The generated utterance feature representation is produced
from the pooled embeddings located in the final layer of
the RoBERTa architecture in the fine-tuned model. The
feature representation in question possesses a dimensionality
of 1024, effectively capturing the intricate linguistic nuances
inherent in the utterances. Consequently, it enables a thorough
comprehension of the emotional subtleties that exist within
conversational situations.

2) RESIDUAL RELATION-AWARE ATTENTION
We introduce a novel mechanism termed residual relation-
aware attention (RRAA), designed to systematically process

each node within the directed acyclic graph (DAG) by
adhering to the established partial order. Specifically, for
a given node denoted as u situated at the L th layer of the
graph, the resultant output ML

u is computed through the
application of RRAA layer. This computation involves the
aggregation of pertinent information from its predecessors
denoted as v at the same L th layer, subsequently combining
this aggregated information with the intrinsic information
pertaining to node u positioned at the (L − 1)th layer. To this
end,ML

u is expressed as follows:

ML
u = RRAAL

(
HL−1
u ,HL

v

)
=

∑
v∈P(u)

aLuv(W
L
r1H

L
v Mask1 +W L

r2H
L
v Mask2) + HL−1

u

(1)

where the parameters W L
r1 and W L

r2, constituting trainable
elements, are indicative of two distinct categories of rela-
tions inherent in the edge structure, specifically denoting
intra-speaker and inter-speaker relations. The utilization of
Mask1 and Mask2 serves the purpose of discerning the
nature of the relation involved. The weighting coefficient aLuv
adheres to the design principles of the query-key paradigm
within the attention mechanism. Herein, the query element
corresponds to the representation of the primary node u
within the (L − 1)th layer, while v signifies the antecedents
of node u. The introduction of a residual connection is
imperative to preserve the informational content of the
principal utterance, which undergoes partial loss subsequent
to the computation of the attention score with its antecedent.
Additionally, considering that the emotional characteristics of
an utterance are predominantly derived from its own intrinsic
attributes, the overall formulation can be succinctly expressed
as follows:

aLuv = soft max
v∈P(u)

(
HL−1
u (HL

v )
T
)

(2)

An augmentation method is implemented to address the
significant number of connections in the DAG, which vary
depending on different Emotion Recognition in Conversation
datasets. In this study, we incorporate position encoding (PE)
into the encoded properties of utterances. The augmentation
employed in this study enhances the learning process of the
RRAA function, hence ensuring its capacity to accurately
identify and capture the intrinsic sequential patterns present
in the input data. The chosen approach for incorporating
positional information into the Transformer design is based
on the theoretical foundations of the model. This involves
using sine and cosine functions for encoding positional
information as follows:

PE(pos,2i) = sin
(
pos/100002i/dembedding

)
PE(pos,2i+1) = cos

(
pos/100002i/dembedding

)
(3)

where pos is the position index, dembedding is the dimension
of output, 2i represent the index of output. In the course of
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FIGURE 3. Overall Architecture of Deep Graph-Recurrent model for ERC.

FIGURE 4. Residual Relation-aware Attention. Mask1 and Mask2 are used
to identify the relation type of the edges. Nodes v are predecessor of
node u.

our experimental investigations, we scrutinize the impact of
index normalization on positional encoding and discern that
the performance of the sine and cosine positional encoding
surpasses that achieved through the utilization of index nor-
malization of positional encoding. A graphical representation
of the RRAA module is provided for elucidation in Figure 4.

3) RELATION-AWARE ATTENTION GRAPH WITH RECURRENT
LAYER (RAG-R)
After performing the computation of ML

u using the RRAA
aggregate function, the subsequent phase in the process

entails employing GRUs to control the information flow from
previous layers to the current layer. Given the input ML

u and
the representation HL−1

u of node u at the (L − 1)th layer as
the hidden state, the formulation can be written as follows:

HL
u = GRUCell

(
ML
u ,HL−1

u

)
(4)

where HL−1
u denotes the updated representation of node u at

the L th layer. Notably, RRAA aggregates information from
nodes within the same layer, necessitating the sequential
computation of each node’s representation in the subsequent
layer through a loop function. This involves iteratively
computing the aggregate information ML

u for each node u
using RRAA (as per formula (1)), subsequently employing
this output as the initial input for formula (4), where the GRU
utilizes HL−1

u at the (L − 1)th layer as the hidden state.
To mitigate the potential over-smoothing issue [29]

associated with graph-basedmethods, specifically the decline
in performance upon stacking additional layers, we avoid
direct utilization of the RRAA output. Instead, the gating
mechanism within the GRUs is employed to selectively
retain information from the previous Residual Relation-aware
Graph-Recurrence (RAG-R) layer along with the new input
data.

This architectural choice contrasts with DAGNN, where
the positions of the two arguments are inverted. In DAGERC,
a dual GRU approach is employed, with the positions of
ML
u and HL−1

u alternated in each turn, and the outputs of
both GRUs concatenated to obtain the final representation.
However, for the Emotion Recognition in Conversation
(ERC) task, the emotional content of an utterance should be
inferred from its context. Thus, to prevent over-smoothing
and to avoid direct utilization of the RRAA output, a single
GRU with HL−1

u as the hidden state is employed to regulate
context propagation across all RAG-R layers.
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Subsequently, the concatenation of all HL layers serves as
the ultimate representation for each node, passing through a
fully connected layer. In the initial layer, feature dimension-
ality is reduced, while in the final layer, the number of output
nodes matches the class labels, facilitating the prediction of
the emotion associated with each utterance, as denoted by
Equations 5, 6, and 7 in Shen’s work [5] as follows:

Hu =∥
L
L=0 H

L
u (5)

Pu = ReLU
(
W hHu + bh

)
(6)

ŷt = argmax
S

(Pt |s|) (7)

In addition, cross-entropy loss is employed as the objective
function during training to identify emotional state of each
utterance.

V. EXPERIMENTAL RESULTS
This section provides a thorough description of the dataset
used, explains the complexities of the training process,
and includes a complete evaluation of the performance
demonstrated by the proposed methodology. Following
this, a comprehensive examination has been undertaken on
many aspects of the model’s structure, including signifi-
cant factors such as positional encoding, the amount of
preceding connections, and the quantity of graph layers.
The purpose of this analytical examination is to identify
and understand the subtle impacts of these architectural
components on the overall effectiveness of the suggested
approach.

A. DATASETS
In this paper, our proposed methodology undergoes rigorous
evaluation across three distinct datasets: IEMOCAP [16],
MELD [14], and EmoryNLP [15]. A comprehensive
overview of the statistical characteristics pertaining to these
datasets is elucidated in Table 1. According to Table 1,
it shows that the datasets, such as IEMOCAP, MELD,
and EmoryNLP, have class imbalance for different emotion
categories. However, our main research is to investigate
the connections between speakers in a conversation using a
fully connected directed acyclic graph, rather than addressing
the issue of imbalance. Therefore, we utilized categorical
cross-entropy loss to align with the goals of researching on
the interconnections between speakers and the dynamics of
conversational emotion. Figure 5 presents the distribution and
variability of dialogue lengths across the training, validation,
and test sets for each dataset. The test set in the EmoryNLP
dataset has a slightly higher average number of utterances
per dialogue compared to both the training and validation
sets. In contrast, the IEMOCAP dataset indicates an obvious
increase in the average amount of utterances per dialogue
when comparing the training set to the validation and test
sets. The MELD dataset shows slight differences in the
average number of utterances per dialogue among the three
sets.

IEMOCAP: This subject-independent dataset contains
prepared dialogues performed by professional actors. The
first eight speakers’ dialogues form the training set, while the
next two contribute to the test set.We select 20 dialogues from
120 in the training set for validation. The range of emotions
includes happiness, sadness, anger, excitement, frustration,
and neutrality.

MELD: It extends the EmotionLines dataset [30] for emo-
tional analysis using over 1400 dialogues and 13000 utter-
ances from the popular TV program ‘‘Friends’’. Emotions
are labeled: neutral, joyful, surprise, sadness, anger, disgust,
and fear. The dataset is separated into training, validation, and
testing sets to match conventional experimental designs.

EmoryNLP: This dataset, based on ‘‘Friends’’, identifies
emotions neutral, sad, mad, scared powerful, peaceful,
and joyful. The dataset achieves an episode independence
condition with 77, 11, and 9 episodes in the training,
validation, and test sets. All utterances from an episode are
kept in the same set, giving the dataset its unique structure
for emotion recognition studies.

FIGURE 5. Number of utterances per dialogue on three datasets.

B. EXPERIMENTAL SETTINGS
1) CONFIGURATION
During training, two variants of positional encoding (PE)
were implemented. For index normalization, the index value
for each speech was determined and divided by the maximum
number of utterances in a discussion. Sine and cosine
functions were also utilized for PE, with a fixed value of
4 for the number of embedding dimensions. The graph-
recurrent module’s layer count was left flexible to achieve
architecture adaptability. The Adam optimizer facilitated
weight optimization, and evaluation metrics included the
weighted-average F1 score and Accuracy. Implementation
was in PyTorch, and experiments involved comparisons with
several baseline methods, which detailed in Section V-B2.
The training process utilized an RTX 3070 for processing
power. Detailed hyperparameter specifications are provided
in Table 2.

2) BASELINE METHODS
We compare our proposed method with the following
baseline approaches:
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TABLE 1. Data statistics and emotion category distribution of IEMOCAP, MELD, and EmoryNLP datasets.

TABLE 2. Implementation setting.

• DialogueGCN [1]: Utilizes a graph neural network for
modeling self and inter-speaker dependencies, enhanc-
ing emotion-relevant context through information
propagation.

• RoBERTa and RoBERTa+GRU: We implement
RoBERTa-based and combination of RoBERTa and
GRU networks as baseline methods for ERC.

• COSMIC [3]: Leverages commonsense knowledge
for utterance-level emotion recognition, providing a
comprehensive understanding of emotional dynamics.

• DAGERC [5]: Introduces a directed acyclic graph
to encode utterances, combining graph-based and
recurrence-based models.

• SenticGAT [31]: Introduces a context- and sentiment-
aware framework using a dynamic representation of
common-sense knowledge through a graph attention
mechanism.

• MVN [32]: Introduces a Multi-View Network to capture
word- and utterance-level dependencies for emotion
recognition.

• MM-DFN [33]: A graph-based dynamic framework
capturing contextual information dynamics in different
semantic spaces.

• HSGCF [34]: Introduces a hierarchical structure
with five graph convolution layers for discriminative
emotional features.

• GraphCFC [35]: Introduces a directed graph-based
cross-modal feature complementation module for
learning contextual and interactive information.

• MVTCN [36]: Introduces amultiview attention network
to integrate dynamic interaction information and capture
cross-modal dynamic dependencies.

• AccumWR [37]: Enhances sentence modeling by accu-
mulating word vector representations with multilevel
contextual integration.

• DBL [38]: Leverages conversational context, models
speaker and emotion dynamics, interprets informal
language and sarcasm for emotion recognition.

• Topk-Soft [39]: Incorporates variable-length context
and two speaker-aware units for explicit modeling of
inner- and inter-speaker dependencies.

C. PERFORMANCE
The results of our proposed method, as well as compar-
isons with state-of-the-art models on three distinct datasets
(IEMOCAP, MELD, and EmoryNLP), are summarized in
Table 3. For the IEMOCAP dataset, our method achieved
a weighted average F1 (WA-F1) score of 69.10 and an
accuracy of 68.72, surpassing the top-performing model,
MM-DFN [33], which achieved a WA-F1 score of 68.18 and
accuracy of 68.21. For the MELD dataset, our proposed
method attained a WA-F1 score of 63.82 and an accuracy
of 64.04. In comparison with the highest-performing model,
AccumWR [37], which achieved aWA-F1 score of 64.99, our
model demonstrates competitive performance in effectively
identifying emotions within the conversational context.
On the EmoryNLP dataset, our proposed method achieved
a notable WA-F1 score of 39.85, surpassing the recent
top-performing model, Topk-Soft [39], which obtained a
WA-F1 score of 38.93.

In summary, the proposed method stands out as the
top-performing model across both WA-F1 and Accuracy
metrics, showcasing its effectiveness in advancing the state-
of-the-art in ERC. The development of a novel benchmark
for the EmoryNLP and IEMOCAP datasets is particularly
remarkable. However, while examining MELD, it becomes
apparent that the conversational environment is marked by
a relatively small number of utterances, with an average
of roughly 9 utterances each discussion. It is worth noting
cases in which certain dialogues consist of only a single
utterance. In contrast to the IEMOCAP dataset, which
is characterized by a more extended dialogue structure
consisting of roughly 50 utterances per discussion, and the
EmoryNLP dataset, which exhibits an intermediate dialogue
length of around 15 utterances per discourse, the present
dataset demonstrates a different pattern. In the given situation,
the potential benefits of our fully connected DAGmay not be
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TABLE 3. A comparative analysis between the proposed methodology
and prevailing approaches in the realm of ERC, employing evaluation
metrics such as Weighted-average F1 (WA-F1) and Accuracy (Acc).
Emphasis is denoted through the use of bold text to underscore instances
of superior performance.

TABLE 4. Performance of the proposed model on each emotional state.
Evaluation metric is WA-F1 score.

fully utilized, suggesting a need for additional investigation
and optimization when dealing with limited conversational
content.

In addition, Table 4 provides a nuanced analysis of the
proposed model’s performance across various emotional
states, as measured by the weighted-average F1 score,
on three distinct datasets. In the IEMOCAP dataset, the
proposed model excels in recognizing emotional states such
as Happiness (49.83) and Sadness (81.73), showcasing its
proficiency in capturing nuanced expressions of joy and
sorrow. The model also demonstrates substantial competence
in identifying Anger (67.82) and Excitement (70.83). How-
ever, it faces challenges in discerning Frustration (67.1) and
exhibits a moderate performance in recognizing Neutral emo-
tions (68.76).Moving to the EmoryNLP dataset, the proposed
model exhibits strong performance in identifying Joyful
(50.73) and Neutral (53.82) emotions. However, it faces
difficulties in recognizing emotions such as Sad (22.51) and
Powerful (16.04), indicating potential areas for improvement.
In the MELD dataset, the model excels in recognizing
Happiness (61.5), Surprise (57.63), and Neutral (77.31)
emotions, while facing challenges in identifying emotions
like Sadness (38.22) and Fear (25.9). This comprehensive
breakdown underscores the model’s capability in capturing
certain emotional nuances effectively, while also highlighting
specific areas where further refinement may enhance its
overall performance.

D. ABLATION STUDIES
In this section, we meticulously dissect the components
that contribute to the effectiveness of the proposed emotion

TABLE 5. Performance on different types of positional encoding
approaches using in residual relation-aware attention. evaluation metric
is weighted-average F1).

TABLE 6. Performance on different number of connections on DAG.
evaluation metric is weighted-average F1.

recognition model. A series of ablation studies are conducted,
systematically exploring the impact of varying Positional
Encoding approaches, different numbers of predecessor’s
connections, and diverse configurations of the number of
RAG-R Layers. Through these experiments, we aim to
unravel the intricate interplay of these elements and discern
their individual contributions to the overall success of the
model. This detailed analysis provides valuable insights
into the model’s robustness, shedding light on the key
factors influencing its performance in the challenging task of
emotion recognition within conversational contexts.

1) PERFORMANCE ON DIFFERENT TYPES OF POSITIONAL
ENCODING APPROACHES
In this study, we purposefully abstain from setting constraints
on the quantity of links within the DAG. As a result, the
extent of links assumes significant dimensions, which is
particularly noticeable in the IEMOCAP dataset. In this
dataset, a single discussion consists of around 50 utterances.
It is worth mentioning that the dataset includes a conver-
sation that holds the record for the maximum number of
utterances, amounting to a total of 176. Due to the inherent
limitations of Attention mechanisms in capturing sequential
information, incorporating positional information becomes
a crucial approach to improve the model’s capability to
accurately identify the specific position of an utterance within
a conversation. This, in turn, aids in the effective integration
of sequential data. In order to undertake an empirical
investigation on the effects of several Positional Encoding
(PE) methods, specifically no PE, index normalization PE,
and sine cosine PE, we systematically performed trials in
various circumstances. The results of these experiments are
presented in Table 5.

The results collected from the study provide significant
insights into the impact of physical education (PE) on
enhancing the performance of models. Significantly, the
model achieves its highest level of performance when
sine and cosine positional encodings are utilized, but the
least desirable results are found when positional encodings
are not present. Moreover, it is important to notice a
significant decrease in performance, specifically observed
in the IEMOCAP dataset, when the feature of PE is
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FIGURE 6. Visualization of utterance connection during training process.

FIGURE 7. Performance on EmoryNLP dataset using different number of
RAG-R layers ranging from 1-10.

excluded. The noticeable decrease in performance highlights
the significant importance of including phonetic encoding,
especially in datasets with a large number of utterances in a
single discussion.

2) PERFORMANCE ON DIFFERENT NUMBER OF
PREDECESSOR’S CONNECTIONS
In our research, we introduced a fully connected Directed
Acyclic Graph (DAG) as a novel approach for modeling
conversational dynamics. To assess the impact of complete
connectivity within the DAG structure, we conducted a
series of experiments varying the number of predecessor
connections that explore configurations with 5 connections,
10 connections, and a scenario with full connectivity. The
comprehensive results of these experiments are detailed in
Table 6.

Analysis of the outcomes reveals that our model achieves
optimal performance when implemented without restrictions
on connections within the DAG. This substantiates the
efficacy of our proposed methodology employing a fully
connected DAG. Further scrutiny of the results indicates a
more significant decline in performance on the IEMOCAP

dataset compared to the MELD and EmoryNLP datasets.
This discrepancy can be attributed to the substantial variance
in the number of utterances per dialogue across datasets,
with IEMOCAP exhibiting approximately 50 utterances
per dialogue compared to the approximately 10 utterances
per dialogue in MELD and EmoryNLP. The observation
underscores the superior performance of our method when
applied to datasets characterized by a higher number of
utterances within each dialogue. Additionally, an explo-
ration into the learning dynamics of attention weights in
Equation (2) is undertaken, as shown in Figure 6. Notably,
the visual representations illustrate that during the initial
stages of training, the most critical information is localized
in the immediate vicinity of the utterance requiring emotion
prediction. Over time, this information diffuses across
the entire conversation, emphasizing the adaptability and
effectiveness of our proposed methodology utilizing a fully
connected DAG for modeling conversational intricacies.

3) PERFORMANCE ON DIFFERENT NUMBER OF RAG-R
LAYER
In these experiments, the aggregation of information from
preceding nodes is achieved by sequentially stacking numer-
ous layers. The final representation of each node is obtained
by concatenating all graph-recurrent layers. Our investigation
examines the intricate impact of altering the quantity of
graph-recurrent layers on the overall efficacy, a meticulous
examination carried out precisely utilizing the EmoryNLP
dataset. In order to comprehensively analyze the effect,
we methodically manipulate the number of layers within the
range of 1 to 10 and display the results in Figure 7. The results
demonstrate a notable level of consistency in the performance
of models using various configurations of graph-recurrent
layers. A significant majority of the outcomes exceed the
criterion of 39. It is worth mentioning that there is a singular
instance in which the performance experiences a decline,
specifically when the quantity of graph-recurrent layers is
established at 8. The presence of this anomaly highlights the
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effectiveness of utilizing Gated Recurrent Network (GRN) as
a strategic approach to address the issue of over-smoothing
that is inherent in graph-based approaches.

VI. CONCLUSION AND FUTURE WORKS
This paper has introduced an innovative method for Emotion
Recognition in Conversation (ERC) by the utilization of
a fully connected directed acyclic graph. The thorough
knowledge of the subtle dynamics inside a conversation
is facilitated by the employment of two types of edge
relations in this graph, together with the introduction of
residual relation-aware attention and positional encoding.
The utilization of Gated Recurrent Units (GRUs) serves to
augment the model’s capacity in regulating the transmission
of conversational context across many levels.

The experiments conducted on diverse ERC datasets
demonstrate the significant improvements achieved by our
proposed methodology over baseline models. The central
contributions of our work can be summarized as follows:
(1) Utilization of a fully connected directed acyclic graph
with two types of edge relations to comprehensively leverage
relations among speakers. (2) Introduction of residual
relation-aware attention with positional encoding and GRUs
to capture relation-aware features and control conversation
context propagation through graph-recurrent layers. This
research not only contributes to the expanding knowledge
in ERC but also establishes an essential foundation for
future progress in comprehending and representing emotional
dynamics in conversational environments.

Although our current focus is on speaker relationships,
we recognize the importance of improving model robustness
through balanced dataset considerations. Therefore, in future
work, we will address the class imbalance issue in emotion
recognition by exploring techniques such as oversampling,
undersampling, or weighted loss functions. Furthermore,
future work will not only explore additional dimensions
of conversation, such as topic, viewpoint, and personality
but will also focus on refining and improving the proposed
method. One avenue for improvement involves a more
nuanced understanding of conversation topics. Investigating
how the proposed model can adapt to and identify varying
topics within a conversation will contribute to a more
contextually aware and adaptive emotion recognition system.
Incorporating topic modeling techniques and dynamic atten-
tion mechanisms could be explored to enhance the model’s
sensitivity to evolving discussion themes.

In addition, the enhancement of the proposed approach
will entail a more comprehensive investigation of distinct
perspectives inside a discourse. Onemight potentially explore
modifications to the model’s architecture in order to more
effectively capture and distinguish the various emotional
nuances that emerge from a range of perspectives. The poten-
tial enhancement of the model’s performance in emotion
recognition and interpretation can be achieved by fine-tuning
the attention mechanisms to accommodate diverse speaker
roles and viewpoints.

In terms of personality traits, future research will aim to
tailor the proposed method to accommodate individual dif-
ferences in emotional expression. Investigating how specific
personality characteristics influence emotional responses and
expression patterns will guide the development of a more
personalized and adaptive emotion recognition framework.
This may involve incorporating features or embeddings
that account for speaker-specific traits, fostering a more
individualized understanding of emotional cues.
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