
Received 4 December 2023, accepted 22 December 2023, date of publication 1 January 2024,
date of current version 11 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3348478

Low-Power Lane Detection Unit With
Sliding-Based Parallel Segment
Detection Accelerator for FPGA
HEUIJEE YUN AND DAEJIN PARK , (Member, IEEE)
School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, South Korea

Corresponding author: Daejin Park (boltanut@knu.ac.kr)

This work was supported in part by the Brain Korea 21 (BK21) 4th Project under Grant 4199990113966; in part by the Basic Science
Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education under Grant
NRF-2018R1A6A1A03025109 (5%) and Grant NRF-2022R1I1A3069260 (5%); in part by the Ministry of Science and Information
Communication Technology (MSIT) under Grant 2020M3H2A1078119; in part by the Institute of Information and Communications
Technology Planning and Evaluation (IITP) grant funded by the Korean Government (MSIT) through the Metamorphic Approach of
Unstructured Validation/Verification for Analyzing Binary Code (20%) under Grant 2021-0-00944; in part by the Processing-in-Memory
(PIM) Semiconductor Design Research Center (30%) under Grant 2022-0-01170; and in part by the Development of Flexible
Software-Hardware (SW-HW) Conjunctive Solution for On-Edge Self-Supervised Learning (40%) under Grant RS-2023-00228970.

ABSTRACT Recently, with the development of semiconductors and VLSI (Very Large Scale Integrated
Circuit), the technology required for autonomous driving is rapidly developing. One of the technologies that
cannot be left out is the lane detection function. Lane recognition requires a lot of data from the camera
sensor. As a result, the data size increases, making it difficult to process on a lightweight embedded board.
This paper proposes a sliding-based parallel segment image processing method to solve this problem. Most
boards in autonomous vehicles are lightweight, so the technique has been designed to reduce computation
and power consumption. After fetching the image’s pixel data, grayscale conversion, Gaussian smoothing,
Sobel operator, non-maximum suppression, and hysteresis are performed in parallel. Lanes were detected by
performing a Hough transform operation on an image for which edge detection was completed in parallel.
Due to the nature of parallel processing, it is more effective when image input is continuous and numerous
than single image processing. This algorithm is written in C language and VHDL (VHSIC Hardware
Description Language) for two parts in the board, DE1-SoC, FPGA (Field Programmable Gate Array) and
HPS (Hard Processor System. Due to the use of the C language and VHDL, parallel programming uses
3.1 times less time, twice as much memory and slightly more power than sequential programming. For
hardware languages such as Verilog, the computation algorithms have been converted to a fixed point. When
comparing HPS and FPGA, the FPGA consumed significantly fewer resources, with 18 times shorter run
time, 50 times fewer clock cycles, 3 times less power, and 183 times less energy. This provides a substantial
benefit.

INDEX TERMS Autonomous driving, lane detection, canny edge detection, hough transform, FPGA
acceleration, low power design.

I. INTRODUCTION
Video-based advanced driver assistance system (ADAS)
is essential for autonomous driving. Common ADAS
include lane departure warnings, traffic signs, and pedestrian

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino .

detection. ADAS has both basic and advanced video/image
processing technologies. Fast processing time and low power
consumption are critical requirements for driver assistance
systems. However, to implement better performance, the
resolution must be high and the number of pixel data will
grow tremendously. If each pixel data is calculated as a
matrix, a lot of computation and time will be consumed.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 4339

https://orcid.org/0000-0002-5560-873X
https://orcid.org/0000-0001-8336-9150

H. Yun, D. Park: Low-Power Lane Detection Unit With Sliding-Based Parallel Segment Detection Accelerator

FIGURE 1. Parallelization process of canny edge detection and lane recognition algorithm with hough transform operation.

Also, to be implemented in autonomous driving technology,
the processing computation must be conducted in a light
weighted embedded board. Lightweighted image processing
algorithms using camera sensors have always been a task
to be solved, and research is being conducted in various
ways [1].

This paper introduces a lane detection algorithm using par-
allel processing. Several deep learning models and methods
can recognize lanes, however, the fundamental techniques
of Canny Edge Detection and Hough transform [2], [3]
are the ones employed. These two methods are utilized
because they are processed as matrices and are the most
basic and widely used structures in image processing.
Figure 1 shows the overall operation of the algorithm.
The first step is to detect all edges of the input image.
Canny Edge Detection algorithm is conducted by conducting
grayscale conversion, Gaussian smoothing, Sobel operator,
non-maxima suppression and hysteresis operation. After
collecting all the image data processed in parallel, lanes are
detected using Hough transform. Due to the nature of the
Hough transform operation, it cannot be processed in parallel
because it scans and calculates all pixels in the image at once.

This structure can maximize efficiency by processing the
lane detection algorithm in parallel using a buffer. Since
this structure divides pixels according to the height of the
image and proceeds by threads, the area occupied by the
hardware increases as the number of threads increases.
Additionally, the time and resource benefits obtained when
filter matrix operations are parallelized are expected to

outweigh the overhead incurred by parallelization. It is
more efficient to read and process multiple small pieces
of RAM (Random access memory), even if access times
are longer, than sequentially reading one huge piece of
RAM [4]. By parallelizing the matrix operations required
for image processing, the execution time can be reduced
significantly. Also, since the same calculation is performed,
the lane recognition result will be the same. The peak power
consumption may be higher due to the complicated process
of parallelization, but the corresponding execution time will
be greatly reduced and the total energy consumption will be
reduced. This is a fast way to process high-resolution images
using less hardware resources.

There are a number of studies that have applied edge
detection algorithms or hough transform to FPGAs using
HDL language [5], [6], [7]. However, for lane detection
algorithms that integrate edge detection and hough transform,
several studies use Linux-based high-level systems (HLS)
or high-level languages [8], [9], [10]. When implemented
in a high-level system, it is bound to use a lot of resources
because it goes from the core to the operating system.
To enable implementation on a lightweight board, proposed
architecture was implemented at the RTL level using the
hardware language.

There are not many papers that have studied lane detection
algorithms that combine edge detection and line detection
applied to FPGAs at the RTL level [11], [12]. Most researches
only parallelized the hough transform or implemented it using
OpenCL and GPU parallelism.

4340 VOLUME 12, 2024

H. Yun, D. Park: Low-Power Lane Detection Unit With Sliding-Based Parallel Segment Detection Accelerator

The goal was to create a lightweight lane detection
algorithm that could run on a single core without a GPU.
To make it even lighter, parallelization of the edge detection
which requires computing every pixel in the image was used.
Unlike other research, proposed algorithm was parallelized
and implemented at the RTL level, eliminating the need for
APIs and allowing for greater chip flexibility.

Analyzing research trends, it is evident that these technolo-
gies incorporate artificial intelligence features, particularly
deep learning and machine learning. The majority of research
papers are programmed with high-level languages like C and
Python, utilizing various APIs, with limited utilization of
FPGA or gate-level implementations. The reason that it was
restricted is due to a lack of APIs and the necessity for manual
transformation of operations and processes. As none of the
previous work has implemented all of these processes in a
hardware language in parallel, it is worthwhile to pursue this
approach.

II. CONSIDERATION OF THE METHOD
Currently, as AI (Artificial intelligence) technologies have
advanced, researchers have developed a range of methods
for lane recognition.Numerous deep learning architectures
are under research and when applied to Advanced Driver
Assistance Systems (ADAS), they yield remarkable progress.
Notably, numerous studies have investigated precise lane
recognition utilizing deep learning techniques. This section
describes the rationale for applying traditional canny edge
detection and hough transform instead of deep learning in this
study.

For comparison purposes, the Verilog HDL (Hardware
Description Language) language was used to implement both
the widely-used CNN (Convolutional neural network) and FC
(Fully Connected) structures in deep learning. However, the
primary objective of this study is not the implementation of
deep learning for lane recognition, but rather comparison.
Therefore, only the structure was implemented. MNIST
(Modified National Institute of Standards and Technology
database), which has a relatively small dataset and input
image size of 28 × 28, was utilized. The CNN architecture
utilized two 2D (Two dimensional) convolution kernels, two
max-pooling layers, and one fully connected layer. The
optimization algorithm used was SGD (Stochastic Gradient
Descent), employing negative log-likelihood and ReLU
(Rectified Linear Unit) activation functions. Python was
used to extract the weights. Furthermore, the implementation
exclusively relied on the FC layer, which consisted of only
two layers.

The hardware size of these two deep learning structures
was measured through the design compiler. Figure 2 shows
the result of hardware measurements of two structures. The
CNN structure occupied a total of 132671.75 design areas
and the FC structure occupied 2905179.77. The gate count
was obtained by dividing by the aforementioned NAND
gate area, 1.524. The CNN was calculated as 87054.95 and
the FC structure as 1911302.48. This result occupies a

FIGURE 2. The result of logic utilization in the design compiler.

very large area to be used in lightweight embedded boards.
The process necessitates abundant resources leading to
an increase in power consumption and chip size. Despite
many developments in chip manufacturing and digital circuit
design technologies, current efforts are inadequate. Thus,
a more lightweight algorithm can be implemented for lane
detection by utilizing Canny edge detection and Hough
transform solely for calculation purposes and without any
learning. Despite the difference in the artificial intelligence
and algorithm employed, our approach demonstrates a
significantly lighter algorithm for achieving the objective
of lane recognition. Also, as a result of measuring the
execution time, CNN takes 0.0135s and FC takes 0.246s.
This result is also seen as resource intensive because the
hardware structure has to run in fewer clock cycles using fast
frequencies.

Also, the same structure was implemented with Python,
not a hardware language. CNN trained with MNIST took
96.74 seconds and 69.58MB of memory. The structure
composed of two FC layers used a total of 6.31 seconds
and 607.83984 KB of memory. Memory usage of more
than MB and time of more than 1 minute is not effi-
cient to implement due to lightweight hardware. Recently,
lightweight hardware deep learning has been studied a lot,
but simple and traditional calculations are more efficient due
to such a complex structure. To maximize hardware benefits,
conventional canny edge detection and hough transform
methods were utilized rather than relying on AI-based
approaches.

III. BACKGROUND
In this section, information and definitions to facilitate a
better understanding of the research is provided. First, a brief
introduction to previous related studies of lane recognition
and the characteristics of image processing will be described.

A. LANE DETECTION
Improving road safety through advanced computing and
sensor technology has attracted much attention from the
automotive industry. Therefore, Advanced Driver Assistance
Systems (ADAS) are gaining huge popularity as they help
drivers properly manage different driving conditions and

VOLUME 12, 2024 4341

H. Yun, D. Park: Low-Power Lane Detection Unit With Sliding-Based Parallel Segment Detection Accelerator

provide warnings if hazards have insight. Standard driver
assistance systems include lane departure warnings, traffic
sign detection [13], obstacle detection [14], and pedestrian
detection [15]. Lane Departure Warning (LDW) and Forward
Collision Warning (FCW) are designed to prevent accidents
caused by not seeing a car pull into the next lane or being too
close to the car in front. These systems are based on a lane
detection algorithm.

Currently, with the development of deep learning, there
are various ways to recognize lanes. After the CNN-based
structure was created, a method to extract lanes using
CNN was developed [16]. Additionally, a technique has
been established for enhancing data processing effectiveness
in the image capture and processing procedure, utilizing
an edge cloud computing supplied distributed computing
structure [17]. Lane recognition model that directly estimates
the lane location using CNN and camera images was
created [18].
Algorithms to detect lanes using image segmentation

have also been created. Mask-RCNN [19] was trained
for lane detection and the Kalman filter was used for
lane tracking [20]. In addition, detecting traffic lanes by
implementing segmentation as a filter through color is
possible [21]. First, a region of interest is selected to find a
threshold using a statistical method. A threshold is then used
to distinguish possible lane boundaries. It uses color-based
segmentation to find lane boundaries and approaches them
using a quadratic function.

B. EDGE DETECTION
An edge in an image means a part in the image where
the brightness value of a pixel changes rapidly. Generally,
it refers to the boundary between a background and an object
or between an object and an object. An edge indicates the
boundary of an object in an image and contains various
information such as shape and direction detection. Edge
detection is the process of finding a pixel corresponding to
an edge.

The detection of the rate of contrast and brightness change,
or slope, is crucial. This can be accomplished using the first
derivative, as the digital image operates on the difference
between neighboring pixels. The Roberts operator [22] is
the oldest edge detector and utilizes the two masks below to
locate an edge using an approximate first derivative value.
The Roberts mask has a faster computational speed than the
Sobel/Prewitt mask and reliably extracts edges. However,
it produces thinner edges and is more sensitive to noise than
the Sobel/Prewitt mask.

Second, there is the Prewitt operator [23]. Its filter simply
uses the average value of the pixel. The convolution result
with the Prewit mask is like the Sobel mask, and the response
time is relatively fast. However, compared to the Sobel mask,
the edge is less prominent because the weight is slightly
less for the change in brightness. Also, it responds more
sensitively to vertical and horizontal edges than diagonal
edges.

Log (Laplacian of Gaussian) [24] uses a second derivative
algorithm and as it contains the formula for the derivative
twice. The point at which the second derivative judges the
edge is provided, and delicate edge detection is possible.
All directions of an edge can also be detected. Since the
Laplacian mask extracts edges using the difference value
from the surrounding brightness, it is weak against noise and
reacts more strongly to thin lines or isolated points in the
image than to edges.

IV. IMPLEMENTATION
This section provides certain information and definitions
to facilitate to better understanding of our research. First,
the operation of the image process of the edge detection
algorithm and lane recognition will be explained, followed
by parallel processing of the algorithm.

A. CANNY EDGE DETECTION
Canny Edge Detection is currently the most basic and
widely used method [25]. Canny Edge Detection has an
advantage in that the position of the edge point is accurately
measured with a lower error rate than other algorithms.
Also, with a single edge point response, the detector returns
only one point for each edge point. Figure 3 shows the
algorithm of Canny Edge Detection. It performs in 5 stages,
grayscale conversion, Gaussian smoothing, Sobel operator,
non-maximum suppression, and hysteresis. Figure 4 each
stage’s original and the result images. The following sections
describe each stage of the algorithm.

1) GRAYSCALE CONVERSION
To obtain a binary image of edges, it is necessary to convert
RGB-based input image data to grayscale. This process
transforms the input 24-bit RGB pixel data, with eight bits to
each for red, green, and blue, to an eight-bit grayscale image.
Each pixel’s grayscale value is computed as the average of
the original RGB-based image’s three eight-bit color values.
Figure 4 (b) illustrates the grayscale conversion of the original
image (a).

2) GAUSSIAN SMOOTHING
The noise of the image can make it challenging to find the
edge properly. In this stage, a 5 × 5 Gaussian filter is used
to remove noise. As the input image is two-dimensional,
the formula (1) isotropic Gaussian is used. Applying the
Gaussian function using convolution can be used as a
point-spread method. As the pixel values of an image are
discrete, the Gaussian function must also be approximated
discretely. The operation of the convolution kernel, which
approximates the Gaussian function with standard deviation
σ = 1.0 and mean µ = 0 is shown as a formula (2).
The ∗ operator indicates convolution, A is the original image
data, and B is the resulting filtered image. Each dot-product
result is divided by 273, which is the sum of all the
values in the filter so that the intensity of the image does
not change. Figure 4 (c) shows the result of the Gaussian

4342 VOLUME 12, 2024

H. Yun, D. Park: Low-Power Lane Detection Unit With Sliding-Based Parallel Segment Detection Accelerator

FIGURE 3. The Canny edge detection algorithm.

FIGURE 4. The resulting image of each stage of canny edge detection
(a) Original image (b) Grayscale conversion result (c) Gaussian smoothing
result (d-1) Sobel operator in x-axis (d-2) Sobel operator in y-axis (d-3)
Sobel operator result (e) Non-maximum suppression result (f) Hysteresis
result.

smoothing image.

G(x|µ, σ 2) =
1

2πσ 2 e
−(x−µ)2

2σ2 (1)

B =
1

273


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

 ∗ A (2)

3) SOBEL OPERATOR
If the noise has been removed through filtering, the edge in
the image could be found. An edge in an image is a part
where the image intensity changes rapidly, so a differentiated
operation is needed to detect it. In this stage, changes in
image intensity along the horizontal and vertical directions
are detected using the Sobel operator. If B, which has passed
through the Gaussian filter earlier, is regarded as f (x, y), the
differential expression of the function should be calculated.
For calculating the horizontal direction of the image, the
partial derivative ∂f

∂x should be found. Identically, the changes
in the vertical direction can be deduced with the partial
derivative ∂f

∂y .
Based on the calculation, the Sobel stage uses two

3× 3 kernels for convolution. The kernels and convolution
operations are shown in formula (3). These kernels represent
the derivative filter used in a two-dimensional surface. The
derivative depends on three rows for each pixel, where
two coefficients weight pixels in the same row. Similarly,
(∂f /∂y)i,j for each pixel can be found. Figure 4 (d-1) is
the result of the Sobel operator in the x-axis, and (d-2) is the
result of the y-axis filter. Figure 4 (d-3) is the result of the
total Sobel filter image; the x and y results are combined.

∂f
∂x
=

−1 0 1
−2 0 2
−1 0 1

 ∗ B
∂f
∂y
=

−1 −2 −1
0 0 0
1 2 1

 ∗ B (3)

If this outcome is presented as a vector, the partial
derivatives obtained in the x and y directions can be
interpreted as the gradient of intensity. Formula (4) expresses
the vector form of the partial derivatives. By calculating the
norm, the magnitude of the vector can determine if the pixel
is on the edge, while the angle can be obtained to determine
the direction of the edge. Formula (5) calculates the norm
of the intensity gradient using the Pythagorean theorem. The
vector’s angle can be found using the formula (6). The angle
θ reflects the direction of maximum elevation at the pixel.

h
f = [

∂f
∂x

,
∂f
∂y

] (4)

|G| =
√
Gx2 + Gy2 (Gx =

∂f
∂x

,Gy =
∂f
∂y

) (5)

θ = tan−1(
∂f /∂y
∂f /∂x

) = tan−1(
|Gy|
|Gx |

) (6)

4) NON-MAXIMUM SUPPRESSION
It is essential to confirm that the edges extracted in the
previous step are genuine edges and do not overlap. In this

VOLUME 12, 2024 4343

H. Yun, D. Park: Low-Power Lane Detection Unit With Sliding-Based Parallel Segment Detection Accelerator

FIGURE 5. Expression of image space and hough space. (a) image space
(b) hough space.

phase, only pixels with a local maximum gradient size are
designated as edge pixels to remove the occurrence of several
pixels signifying one edge. Hence, all values except the local
maxima are eliminated to restore unclear edges. It analyzes
each image pixel on the edge and contrasts the pixel with its
neighboring pixels that might belong to the same edge. If a
pixel is brighter than its neighboring pixels, its intensity is
maintained. Otherwise, it is set to zero. Figure 4 (e) is the
result of non maximum suppression of the image.

5) HYSTERESIS
Weak edges are eliminated by removing pixels that fail
to meet predetermined thresholds. A hysteresis algorithm
examines each pixel to determine if it surpasses the threshold.
This approach enhances the present problem by exploiting
the reality that edge detection conditions can vary depending
on the environment. Figure 4 (f) depicts the outcome of
hysteresis and complete Canny Edge Detection.

B. LANE EXTRACTION
Previously, the image edges were extracted and straight lines
were extracted using the Hough transform, a mathematical
shape-searching technique. Hough transform is a popular
algorithm in various libraries due to its linear processing and
fast real-time algorithm. Lane extraction follows a series of
processes after straight line extraction.

1) HOUGH TRANSFORM
Hesse’s normal form is used for expressing the lines. This
form uses two parameters, (ρ, θ). The parameter ρ in the
distance from the origin to the closest point on the line and
θ is the angle between the x-axis and the line connecting
the origin to the closest point of the line. Equation (7) is
used to map pixels in the (x, y) coordinate space to the (r, θ)
parameter space.

xcosθ + ysinθ = r (7)

Figure 5 (a) explains the image space line, while (b)
displays the same line in the Hough space. Each line that
passes through a point is given by a single sin curve in the
ρ and θ planes. The intersection of these sin curves implies
the existence of the same straight line passing through the two
points. Thus, if n sin curves converge at a point, n points lie
on a straight line.

Algorithm 1 Local Maxima Algorithm
Input: Accum[theta][rho]
Output: Local maximum value of matrix Accum

1 Function Local_Maximum(Accum[theta][rho]):
2 middle_row← Accum.theta/2
3 middle_column← Accum.rho/2
4 max_cell ←

Max(Max_in_Row(middle_row),Max_in_Column
5 (middle_column))
6 next_cell ← Next_Cell(max_cell)
7 if next_cell = max_cell then
8 return max_cell

9 else
10 if next_cell.row > middle_row then
11 if next_cell.column > middle_column

then
12 return Local_Maximum(Top−

LeftSub−Matrix)

13 else
14 return Local_Maximum(Top−

RightSub−Matrix)

15 else
16 if next_cell.column > middle_column

then
17 return Local_Maximum(Bottom−

LeftSub−Matrix)

18 else
19 return Local_Maximum(Bottom−

RightSub−Matrix)

The straight line expressed in this way is stored in a two-
dimensional array, accumulator, consisting of rho and theta.
Each element is the number of edge pixels corresponding to
the straight line (rho, theta) in the input image. The most
prominent line in the input image can be inferred by finding
the straight line with the highest value in the accumulator.
Each edge pixel encountered by the algorithm contributes+1
to the accumulator value of every line on which that pixel lies.

2) LOCAL MAXIMA OF THE LANE
The line is extracted from the local maximum of the
accumulator instead of the global maximum to eliminate
false redundancy. Only the highest accumulator value is
considered when several high accumulator values are nearby,
and adjacent values are removed. However, there is a risk of
removing lines that are close together in the input image, but
for lane detection, it can be assumed that the lane markings
are far enough apart that this is not a problem.

Algorithm 1 outlines this process. The input is an accum
matrix derived through the Hough transform. First, the
cell value of middle_row and middle_column are declared.

4344 VOLUME 12, 2024

H. Yun, D. Park: Low-Power Lane Detection Unit With Sliding-Based Parallel Segment Detection Accelerator

FIGURE 6. The result images of hough transform and lane extraction.

After that, a maximum cell representing the cell with the
most significant value among all the cells in the middle
rows is stated. To do this, the functions Max_in_Rows and
Max_in_column, which return the maximum value in a
particular row or column, are used. The following cell of
the maximum cell is set to find out which submatrix local
maximum is located. For the next_cell, if the row value
is greater than the middle_row value, it means the local
maximum is either in the upper left or upper right submatrix.
If the next_cell column is greater than the middle_column,
it means that the top-left sub-matrix has a local maximum.
Otherwise, it is displayed in the top-right sub-matrix. Finally,
if the next_cell exists, and its row is greater than or equal to
the middle_row, it means that the local maximum is in the
bottom-left or bottom-right sub-matrix.

If the matrix accum has a length of N , it must iterate
over 2N cells to derive min_cell from the first cell. In the
second call, it must iterate over 2N/N cells. As this process is
repeated, it will decrease by 1/2. Therefore the total iteration
will be

∑i=1
N

2N
i ≈ 4N , and the complexity is O(N).

3) OPTIMIZATION
In addition, it goes through a double optimization process to
achieve better results. The first optimization aims to avoid
detecting lines of objects far from the horizon (e.g. objects
detected from hills or clouds). When implementing the
Hough transform, only the bottom half of the edge detection
image will be passed when incrementing the accumulator, for
removing the horizontal lines. This optimization will reduce
the runtime of the Hough transform by skipping more than

Algorithm 2 Part 1 - Main Function of the Algorithm
Input: Image data
Output: Edge Data

1 Function Gray_scale(Image Pixel):
2 foreach w ≤ Image_Width do
3 foreach h < Image_Height do
4 Pixel[gray] =

(Pixel[r]+ Pixel[g]+ Pixel[b])/3

5 return Pixel[gray]

6 Function Parallel_process(Image Pixel):
7 T ← Number of Threads
8 H ← Image height/T
9 W ← Image width
10 Gray← Gray_scale(Pixel[r][g][b])
11 Phi ← Gray[0 : Image_Width][Ti−1 ∗ H : Ti ∗ H]
12 On each Thread Ti with slices of pixels

Ph0 , . . . ,PhT do in parallel
13 Edge_detection[Phi]

14 return Edge data

half of the input pixels and, as well as avoiding potentially
false lines.

A second optimization eliminates horizontal lines being
extracted from the accumulator. This optimization is based
on the knowledge that lane boundaries tend to point outward
from the camera’s point of view, meaning that vertical and
sloping lines are likely to correspond to lane lines. This can
be implemented in the line extraction step by ignoring lines
in the regenerator where θ represents a horizontal line (80 <

θ < 100). Figure 6 shows the result of lane detection using the
Hough transform. Figure 6 shows the Hough transforms and
lane extraction result images. The image’s lanes overlapped
in 2 red lines on the original images.

C. PARALLEL PROGRAMMING
As explained earlier, this image-processing algorithm
requires many program loops. A parallel process was used
in Canny Edge Detection because the Hough transform
algorithm needed to be performed on the entire image data.
Figure 7 describes a more detailed explanation of parallelism.
First the image data was copied into memory as the height n
and width m of the image. After that, converting the image
to grayscale is sequentially processed with all the image
data. The grayscaled image data is divided according to the
number of threads, t , for a Gaussian smoothing operation.
Since Gaussian smoothing uses a 5 × 5 filter, each thread is
divided into rows by five or more pixels. Currently, if the
number of threads is t , the number of divided pixels will
be n/t .
After applying a Gaussian filter to remove noise, the image

data from each thread is segmented into columns of three
pixels, corresponding to the 3×3 Sobel filter. The sub-threads

VOLUME 12, 2024 4345

H. Yun, D. Park: Low-Power Lane Detection Unit With Sliding-Based Parallel Segment Detection Accelerator

FIGURE 7. Structure of parallel processing.

operate in parallel with overlapping boundary data, resulting
in a total of n/t − 2 sub-threads. Once sub-parallelization
is complete, the image data passes through the Sobel
filter again before undergoing non-maximal suppression and
hysteresis. Non-maximum suppression and hysteresis are
executed sequentially within a thread. The lane is extracted
from the image data, which is used to extract the edges
through the transform method.

Algorithm 2 and 3 show the pseudo algorithm of the
throughout process. To make it easier to understand, the
functions that are parallelized and the functions that are not
are divided into two parts. First, part1 2, which describes the
main function that is not parallelized, receives image pixels
as input. The number of threads is predetermined by the user,
which is T . By T , the image height can be divided to T ,
which isH . Parallelization proceeds through the height of the
image, so the width does not change. Grayscale conversion
is applied to every pixel without parallelization. A function
called gray_scale is called, and this function derives the
average of the r, g, b values of each pixel with a nested loop.
Edges of pixels are detected using parallelization. At this
time, a function called edge detection is processed in parallel
according to the divided threads.

Algorithm 3 describes edge detection functions. First
gaussian smoothing is performed by convoluting gaussian
filter and pixels. After applying the Gaussian filter, the sobel
filter should be applied. Since the sobel filter is 3 × 3,
parallelization can be performed using threads at this time as
well. A greater effect can be obtained by parallelizing with
double threading. Partial derivatives and image gradients can
be computed through sobel filter. Using these, it can calculate
the angle and direction of the edges and find the strongest
edge by comparing it to the surrounding pixels. At this time,
the intensity of the edge can be adjusted according to the
angle previously defined by the user, such as 45, 90, or
180 degrees. In addition, by using a pre-set threshold, pixel
values below this threshold are set to 0 to detect clear lines.

Like this, there is no process for image segmentation by
implementing it in a hardware language using Canny edge
detection with parallel computation. Additionally, if it is
lightweight and parallelized, it can be utilized on multiple
FPGA boards.

V. EXPERIMENTAL SETUP AND EVALUATION
This section describes experiments of our parallel lane
detection algorithm program and evaluates the performance
with test images in C language and VHDL (VHSICHardware
Description Language) on the FPGA(Field Programmable
Gate Array) board.

A. EXPERIMENTAL ENVIRONMENT
In this study, parallel lane detection algorithms are conducted
on the DE1-SoC board and simulated in Windows 10 PC.
DE1-SoC board is a processor made by Intel company.
DE1-SoC is divided into FPGA and HPS (Hard Processor
System) blocks. The FPGA block is equipped with Cyclone
V SoC 5CSEMA5F31C6 device and 64MB SDRAM (16-bit
data bus). The HPS block has an 800MHz Dual-core ARM
Cortex-A9 MPCore processor with 1GB DDR3 (Double
Data Rate) SDRAM (Synchronous Dynamic RandomAccess
Memory) (32-bit data bus). It can bemanaged by input/output
and communication through Ethernet, usb ports and serial
ports. Also as an Intel board, it was programmed using
Quartus Prime 18.1 and simulated in Modelsim, DC (Design
Compiler).

Images were manually annotated for lane detection and
compared with the algorithm described above. Each of the
30 images displays the lanes from the viewpoint of the inside
of the car. The results of the lane detection using HPS and
FPGA are presented in Figure 6. To evaluate this algorithm,
we first manually marked the lanes contained in 30 images
by humans. The results of human evaluation were compared
with the results output by this algorithm. To ensure accuracy,
it was confirmed that the coordinates output by both HPS and
FPGA were within the range set by humans.

The experiments proceeded after verifying that the coor-
dinates of 30 images fell within the 5% error range set.
Section D.Experimental Results: Time Measurement and
section F.Experimental Results: Power Consumption were
based on the analysis of these 30 images.

B. C LANGUAGE PERFORMED IN HPS BLOCK
The program was programmed using C language in both
floating-point and fixed-point data, utilizing theHPS segment
of the DE1-SoC board. For an exact comparison between C

4346 VOLUME 12, 2024

H. Yun, D. Park: Low-Power Lane Detection Unit With Sliding-Based Parallel Segment Detection Accelerator

Algorithm 3 Part 2 - Parallel Canny Edge Detection
Input: Gray pixel data
Output: Edge Data

1 Function Edge_detection(gray):
2 /* Gaussian smoothing */
3 foreach y < 5 do
4 foreach x < 5 do
5 Pix_gau[x][y] =

Pix[x][y] ∗ gaussian_filter[x][y]

6 /* Sobel filter */
7 S_T ← H − 2
8 On each Thread S_T do in parallel
9 foreach y < 3 do
10 foreach x < 3 do
11 Pix_sob_X [x][y] =

Pix_gau[x][y] ∗ sobel_filter_X [x][y]
12 Pix_sob_Y [x][y] =

Pix_gau[x][y] ∗ sobel_filter_Y [x][y]

13 /*Non-maxima suppression*/
14 foreach y < P_W do
15 foreach x < P_H do
16 theta = atan((Pix_sob_X [x][y]+

Pix_sob_Y [x][y])/2)
17 if theta == −45, 45 then
18 if Pix_sob[x][y] < Pix_sob[x][y− 1]

then
19 Pix_nonMax[x][y] = 0

20 if Pix_sob[x][y] < Pix_sob[x][y+ 1]
then

21 Pix_nonMax[x][y] = 0

22 Continue iterating at a pre-determined
theta value

23 /* Hysteresis */
24 foreach y < P_W do
25 foreach x < P_H do
26 if Pix_nonMax[x][y] < Th then
27 Pix_Hys[x][y] = 0

and hardware languages, the conversion of data to floating
point was also implemented in C. Figure 8 illustrates the
HPS development design flow, which begins by writing
the aforementioned program in C and compiling it. Then,
the executable file is launched on a bootable Linux card on the
board. Because global memory access is slow, it is necessary
to cache pixels in local memory. We implemented two forms
of parallel programming: POSIX (Portable Operating System
Interface for Unix) threads [27] and OpenMP (Open Multi-
Processing) [28].

In addition, the resulting image obtained using HPS is
monitored using FPGA bridges. Figure 9 shows output

FIGURE 8. Design flow of HPS block [26].

display of the images. To look at the resulting images of each
step, the original image, edge detection image, and lane image
were displayed. After each stage of operation is completed,
the image data is stored in the SDRAMbuffer. The data stored
in this buffer is transferred to the videoDMA (DirectMemory
Access) using a DMA controller. By using the board, each
result can be immediately shown at runtime. Real-time lane
recognition is also possible.

The display screen can be viewed by directly connecting
with DMA but using a standard library, it can output the
image using a file pointer since it is written in C code.
Comparison becomes easy as the coordinates used when
drawing the line can be output. The resulting image files can
be shown in figure 6.
The POSIX library known as PThread (POSIX Thread)

is a low-level implementation and OpenMP is a high-
level implementation. Both PThread and OpenMP can
be seen as standards for shared memory techniques, but
PThread focuses on task parallelism, and execution code
must be written in detail to fit the PThread type. OpenMP
considers both task parallelism and data parallelism, and
it has the difference that it can be easily converted into
code using parallel programming without making significant
modifications to the program.

C. VHDL PERFORMED IN FPGA BLOCK
To implement the algorithm in the FPGA block of the board,
VHDL language is used. As the hardware language and
FPGA of the board cannot embrace the jpg format in one
place, the input image must be converted to a text-based
file. Figure 10 illustrates the design flow of the algorithm
implemented in the FPGA block. As it must be executed in
the intel-based board, the input image data is converted into
MIF (Memory initialization file) file format. MIF is an ASCII
(American Standard Code for Information Interchange) text
file that specifies the content of the memory block such as
RAM and ROM (Read Only Memory). MATLAB is used to
convert jpg and bmp files to mif file format.

VOLUME 12, 2024 4347

H. Yun, D. Park: Low-Power Lane Detection Unit With Sliding-Based Parallel Segment Detection Accelerator

FIGURE 9. Result of HPS output.

FIGURE 10. Algorithm of lane detection in FPGA block.

FIGURE 11. The block diagram of sobel operation in FPGA block.

The above mathematical operations require transformation
because they can only be implemented as a hardware
language in fixed-points. First, the floating-point operation of
grayscale conversion can be expressed as Y = 0.299 × R +
0.587 × G + 0.114 × B. The equation can be approximated
for a fixed-point design using equation 8. A factor of 16 to the
floating-point argument gives the factor it takes for a fixed-
point implementation. Therefore, the fixed-point equation
can be approximated as Y = 5R + 9G + 2B. One pixel of
an RGB-based image consists of 24 bits, 8 bits each of RGB.
After converting 24 bits per pixel to grayscale, it was reduced
to 12 bits.

0.299× 16 = 4.78 ≈ 5

0.587× 16 = 9.39 ≈ 9

0.114× 16 = 4.78 ≈ 2 (8)

Figure 11 shows the block diagram of the Sobel filter
operation in the FPGA block. To operate a 3× 3 filter, 3 line
memories for top, middle, and bottom are required. Each line
of memory stores the row pixel data of the image data divided
by threads. Then the pixel memories store the left, center, and
right pixels of each line memory. In this way, nine memories
are created, and the Sobel operation is performed on these

FIGURE 12. The block diagram of sobel filter operation arithmetic
calculation.

memories. With nine data stores, two arithmetic units are
used, horizontal and vertical filtering. After the operation, the
results are combined and square-rooted.

The Sobel filter mentioned above is composed of
1,2,1,−1,−2 and −1. The vertical Sobel matrix calculation
process and overall calculation are expressed in figure 12.
The median value was multiplied by 2 to express the elements
of 2 and −2. The adder adds the six values; the top three
are positive values, and the bottom three are negative. Then
the result of the filter matrix (Gx) is squared. The results
of vertical and horizontal filter operations are summed and
square rooted. As the image data has a limit of 0 to 255, the
result value must be divided by two and subtracted from 255.

After each thread’s edge detection operation, the resultant
pixels are collected, and the Hough transform is per-
formed. However, trigonometric operations and multipliers
are required for the Hough transform, which is problematic
from a hardware point of view. The CORDIC (COordinate
Rotation DIgital Computer) algorithm [29] is used to apply
for hardware operation.

If a vector V in xy coordinates has elements of x and y

and has an angle of φ, it can be expressed as: V ′ =
[
x ′

y′

]
=[

xcos(φ)− ysin(φ)
xsin(φ)+ ycos(φ)

]
. These equations can be rearranged by

using trigonometric functions: x ′ = cos(φ)(x−ytan(φ)), y′ =
cos(φ)(xtan(φ) + y). The multiplication term of tangent can
be approximated using φ0 = atan2−i ≈ 2−i, (i > 3), where
i is the iteration index. This iteration of the operation can be
expressed as equation 9. Ki = cos(φ) is the gain and di is the
direction of the angle.

xi+1 = Ki[xi − yi · di · 2−i]

yi+1 = Ki[xi + yi · di · 2−i] (9)

This equation can be applied to the Hough transformation
equation 7. It can be expressed as: R1x = (x +
ytan(φ))cos(φ), 0 < φ < π

2 , π < φ < 3π
2)R1y =

(y−xtan(φ))cos(φ), π
2 < φ+ π

2 < 3π
2 , 3π

2 < φ+ π
2 < 2π).

4348 VOLUME 12, 2024

H. Yun, D. Park: Low-Power Lane Detection Unit With Sliding-Based Parallel Segment Detection Accelerator

FIGURE 13. The block diagram of hough cordic operation register
calculation.

By iterating φ by units and changing it from 0 to π , all lines
can be extracted from the (x, y) coordinates. SinceR at a given
pixel location at a constant angle is needed to be calculated,
the direction is constant and a constant angle increments the
angle.

Figure 13 shows the block diagram of the CORDIC
Hough transform. When step iteration of φ = 1.79◦,
tan(φ) = 0.031 = 2−5, therefore 5 bits should be
shifted. The output will be R1x and R1y. Starting to φ =

0, φ will iterate in a unit of 1.79 each time to π .
By calculating each φ, R will be calculated and fetched to
the accumulator array. A counter and single-state machine
were added with the Hough transform block to make it
repeatable.

As described above, the data of the two lanes can
be extracted from the converted values through the local
maxima. In the local maxima algorithm, the accumulator
array used single RAM same as canny edge detection.
Image post-processing in VHDL is complex and hardware
disadvantageous, so this task was executed with MATLAB.
After converting the two extracted lane data from the Hough
plane to the image plane, two lines were drawn on the original
image.

This process was also tested using 30 image files.
In the process of implementation in the FPGA block,
the pre-processing process of converting the image file
to mif and the post-processing process of drawing the
resulting coordinates on the image are parts that must be
done manually by humans. Because there are parts that
must be done manually, it is impossible to compare with
massive datasets such as nuScene [30] and CULane [31],
which are widely used datasets in ADAS. When the image
processing is done manually in this way, the resulting image
is output with a line drawn on the image, as shown in
Figure 6.

D. EXPERIMENTAL RESULTS: TIME MEASUREMENT
Figure 14 (a) displays the time-measured algorithm results
for serial and parallel processing on the board. The program
utilized VHDL and C languages with three threads and

FIGURE 14. (a) Time measurement of lane detection algorithm (b) Time
slack measurement of FPGA block.

applied a 1028 × 720 size test image. For the identical
experimental conditions, both the HPS block and FPGA
block were calculated using fixed-point arithmetic. When
executed on the HPS block of the board, the C language
program recorded 255.83 ms, 67920671 cycles for the
entire process, and 187.53 ms, 49786813 cycles for edge
detection. In contrast, edge detection using POSIX thread
processing required only 131.52 ms, 34916820 cycles and
62.95 ms, 16712392 cycles. For OpenMP, the detection
of edges took 60.41 ms and 16,038,055 cycles. Parallel
processing can significantly decrease processing time by
two-thirds.

Programmed in FPGA block of the board using VHDL,
cost 993618 clock cycle in serial processing of edge detection
and 922599 clock cycle in Hough transform. The cycle is
10ns per clock, so it can be converted to 9.93 ms and
9.22 ms. The exact structure of the Hough transform has been
used. Therefore the clock cycle took the same in serial and
parallel processing. In parallel programming, edge detection
took 331217 cycles, which is 3.31 ms. The clock cycle has
decreased by one-third. However, the proportion of the time
required for the Hough transform designed in VHDL is quite
large, so the total time differs by 1 ms. Also the worst-case
time slacks were measured and expressed in figure 14 (b).
In Canny Edge Detection, the worst-case setup slack took
−2.813, and hold slack took 0.151. Hough transform
took worst-case setup slack as −2.573, and hold slack
took 0.665.

VOLUME 12, 2024 4349

H. Yun, D. Park: Low-Power Lane Detection Unit With Sliding-Based Parallel Segment Detection Accelerator

FIGURE 15. Time measurement of lane detection algorithm.

The result of the performance between HPS and FPGA
implementation of the board can be different as the algorithms
perform the same operation on the same board. When using
the HPS block, about 13 times more time and 36 times more
clock cycles are used than when using the FPGA block.
Using an HPS block can take a lot of time and cycle because
the clock speed of the board is 265.4MHz, which is slow.
Also the C code of the algorithm consists of a lot of for
loops, and if-conditional code, which requires more cycles.
For easy comparison, comparing two blocks at the same clock
frequency, 100MHz: Canny Edge Detection in HPS block
with serial process will take 497.86ms, PThread will take
167.12ms, OpenMP will take 160.38ms. Hough transform
will take 181.32ms. These are more than 50 times larger than
the FPGA clock cycle.

The correlation between the number of threads and the
clock cycle according to the resolution of the image is
graphed in figure 15. At a fixed resolution, clock cycles
according to threads progressed in inverse proportion. How-
ever, the change in clock cycle according to the resolution
was not proportional. Therefore if the clock cycle is c1 for
thread 1, which is serial processing, the expression is y =
c1 1x , y is clock cycle and x is a number of threads. If the
image resolution cannot be reduced, it is derived that it is
better to use threads five or higher. However, if the resolution
of the image is low and the clock cycle is low enough, it can
be optimized with a small number of threads considering the
trade-off relationship.

E. EXPERIMENTAL RESULTS: AREA, MEMORY
Figure 16 shows the serial lane parallel processing shows
memory measurements. The total amount of virtual memory
on the board allocated to the C program in HPS was
measured. The sequential program used 3712 KB of memory
and each parallelized program used 12276 KB and 10835 KB
of memory. Parallelized programs use twice as muchmemory
as serial programs. We concluded that OpenMP takes less

FIGURE 16. Memory measurement of lane detection algorithm in HPS
block.

FIGURE 17. The result of logic utilization in design compiler.

time than the POSIX thread. Because in the lightweight
process model, repetitive tasks are not complex, and do not
require massive memory.

The programs were simulated using the Design compiler
and Quartus. Figure 17 shows the result of Design Compiler
simulation. The design compiler was compiled using the
SAED32 library to check the approximate area and gate
count before uploading to the board. RAM area was excluded
because the area could be different for each process, therefore
only the logic gate wasmeasured. Canny EdgeDetection took
a total of 630.338 design area and Hough transform took up
898.308 design areas. To count the number of gates used in
the program, the size of the NAND gate was measured, which
is the smallest gate used. The gate counts can be measured by
dividing the total design area into NAND gate area, which is
1.524. Therefore total gate count of Canny Edge Detection
was 413.607, and Hough Lane Detection was 589.440. RAM
size was measured by the input bytes and the depth of the
memory. In canny edge detection, two single port RAMs have
been used and they have 3bytes by 1028 depth, which can be
calculated as 7.68KB. Hough Lane Detection algorithm used
a single port RAM that has 1 byte by 45000 depth, 45KB.

By employing the parallelization method outlined above,
the RAM utilized in each thread can be reduced, resulting
in shorter processing times. However, parallelization can
increase the access time and pins required for the divided
RAM, potentially leading to a larger interface footprint with
the controller. Although serial interfaces are inherently sim-
pler and smaller than parallel interfaces, they are significantly
slower in terms of throughput.

It can be seen that the time gain obtained by parallelizing
many matrix operations executed during image processing
far exceeds these overheads. Also as the size of RAM can
grow unexpectedly depending on the resolution of the image,

4350 VOLUME 12, 2024

H. Yun, D. Park: Low-Power Lane Detection Unit With Sliding-Based Parallel Segment Detection Accelerator

FIGURE 18. Power consumption of lane detection algorithm.

parallelization can be the most efficient method for low
execution time. Therefore, it can be demonstrated that this
algorithm uses a small area of the board and puts a small load
on the board even with deep parallelization.

F. EXPERIMENTAL RESULTS: POWER CONSUMPTION
Figure 18 illustrates the power consumption of each
algorithm. The algorithm’s power in the HPS block using
C language has beenmeasured byDMM(DigitalMultimeter).
To measure current or voltage, the DMM was connected
directly to the power line of the DE1-SoC by removing
its insulating layer. The stripped power line’s positive and
negative voltage lines were connected to measure the voltage
and current flow. Additionally, 30 lane images were utilized
and averaged to determine power.

The initial power consumption during booting was mea-
sured and subtracted from the total power consumed, isolat-
ing the power utilized solely by the program. Additionally,
energy consumption was measured for further comparison
with the FPGA and HPS. Formula 10 can be utilized to
calculate power, while formula 11 can be employed for
energy calculations.

P = V × I (10)

J = W × t (11)

When programming the lane detection algorithm, Canny
EdgeDetection consumed 8.8mWand 1.65mJwhen executed
sequentially. When using Hough transform, 2.4mW and
0.163mJ were consumed. The total power consumed was
11.2mWand the energywas 1.813mJ. During the experiment,
the number of parallel program threads for both HPS and
FPGA was set to 3. A slight increase in power consumption
was observed when executing the algorithm in parallel
compared to series. When using PThread, the consumption
was 9.6mW and 0.604mJ, and when using OpenMP, 9.8mW
and 0.592mJ were consumed.

Furthermore, the HPS block consumes approximately
50 times more energy than the FPGA block. The HPS block
incurs significant energy usage during the booting process,
as well as the compilation and execution of the C program.
Conversely, the FPGA block operates with lower energy
consumption since its hardware and logic blocks are compiled
and executed as intended. This is particularly advantageous

TABLE 1. Comparison with other studies.

in terms of time since the hardware can be tailored and
employed based on the algorithm’s requirements.

Also, the relationship between the area obtained from
the board utilization experiment and the power consumption
in FPGA block can be found. If the power consumption
according to the area is calculated, it can be seen that canny
edge detection uses 0.006mW per gate and hough transform
uses 0.005mW. This means that a very small amount of power
is used for each gate, and operation is possible with low
power.

VI. COMPARISON WITH OTHER STUDIES
Although it is difficult to make an accurate comparison
of the hardware resources of lane recognition algorithms,
Table 1 shows comparison data with other studies. Three
studies that did not use the AI method in lane recognition
were compared with our study. Khongprasongsiri et al. [32]
work uses hough transform and it used overlapping pipelines
in GPU for better speed performance. Hajjouji et al. [33]
uses inverse hough transform to reduce the dimension of the
accumulator. Malmir and Shalchian [34] uses dual stage, ROI
(Region of Interest) for hough transform and stripe detection
stages.

By referring to the table, it can be said that our work has
the fastest speed, frame per second, for lane detection. Also
our work can cover large images with 1028 X 720 resolution.
In addition, it can be seen that the use of hardware resources is
overwhelmingly low. Of course, it is not accurate to compare
using different hardware boards for each study, but it is about
390 times different from the largest used numerically.

VII. CONCLUSION
This paper introduces a lane detection algorithm using
parallel processing on a lightweight embedded board using
C language and VHDL. The HPS block of the board
has been used for C language processing and the FPGA
block has been used for VHDL. In the HPS block, Canny
Edge Detection algorithm has been performed parallel
using PThread and OpenMP. The algorithm converted to a
fixed-point because hardware language is not appropriate

VOLUME 12, 2024 4351

H. Yun, D. Park: Low-Power Lane Detection Unit With Sliding-Based Parallel Segment Detection Accelerator

for operating in floating-points. CORDIC Hough transform
is used for Hough transform in fixed point. Also, as pre-
processing and post-processing of the image cannot be
expressed in VHDL, MATLAB is used for result image
processing.

Using parallel programming improves time efficiency
significantly. In terms of run time, HPS takes 187.53 ms
for serial, 62.95 ms for parallel, 9.93 ms for FPGA, and
3.31 for 3 threads, which takes 3 times less time. The clock
cycle also took three times less. However, when using parallel
processing on HPS, the memory increased from 3216KB to
11784KB. On the other hand, when used in FPGA, 52.68 KB
of RAM was used, and it can be seen that less than 1%
utilization of the total ALM logic of the board is used.
By using parallelization to reduce the amount of RAM used
by one thread, it was able to see the effect of reducing
processing time. Power decreased from 8.8mW to 0.604mW
in HPS and 2.8mW in FPGA. In terms of energy, HPS took
0.76mJ and FPGA took 0.036mJ.

When comparing the performance of HPS and FPGA,
it took about 18 times less time at runtime from 187.53ms to
9.93ms. In terms of clock cycle, HPS uses 49786813 cycles
and FPGA uses 993618 cycles, about 50 times less. Also,
in power, HPS uses 8.8mW and FPGA uses 3 times less,
and HPS uses 1.65mJ and FPGA uses 183 times less energy
with 0.009mJ. There are tremendous benefits when running
on an FPGA as the blocks on the board are organized more
efficiently by processing them in parallel using a hardware
language.

Throughout this study, it was found that the efficiency
of lane detection can be increased by using parallel
processing and the FPGA block of the board. However,
if the FPGA block is used, there are advantages in time,
memory, area, and energy. However it does have restrictions
because it uses hardware language. Therefore, optimizing
according to the situation is necessary by considering various
trade-offs.

Implementing operations for parallel processing of Canny
edge detection and Hough transform using a hardware
language has resulted in several efficiencies. The objective of
this study is to implement lightweight algorithms that can run
on FPGAs. The research reveals the potential for executing
this algorithm more efficiently via hardware language and
even without an API.

In the future, we plan to perform real-time lane recognition
based on parallel processing using curved Hough transform
to improve the versatility and flexibility of different lane
environments. In addition, we plan to approach this improved
process using various APIs to design on a lighter board.
Also automation of the image processing, which is currently
done manually, is planned and it could be tested on a larger
dataset.

ACKNOWLEDGMENT
The EDA tool was supported by the IC Design Education
Center (IDEC), South Korea.

REFERENCES
[1] Y. Huang, Y. Li, X. Hu, and W. Ci, ‘‘Lane detection based on inverse

perspective transformation and Kalman filter,’’ KSII Trans. Internet Inf.
Syst., vol. 12, no. 2, pp. 643–661, 2018.

[2] E. A. Sekehravani, E. Babulak, and M. Masoodi, ‘‘Implementing Canny
edge detection algorithm for noisy image,’’ Bull. Electr. Eng. Informat.,
vol. 9, no. 4, pp. 1404–1410, Aug. 2020.

[3] M. Marzougui, A. Alasiry, Y. Kortli, and J. Baili, ‘‘A lane tracking method
based on progressive probabilistic Hough transform,’’ IEEE Access, vol. 8,
pp. 84893–84905, 2020.

[4] T. Alexoudi, G. T. Kanellos, and N. Pleros, ‘‘Optical RAM and integrated
optical memories: A survey,’’ Light, Sci. Appl., vol. 9, no. 1, p. 91,
May 2020.

[5] X. Zhou, N. Tomagou, Y. Ito, and K. Nakano, ‘‘Efficient Hough transform
on the FPGA using DSP slices and block RAMs,’’ in Proc. IEEE Int. Symp.
Parallel Distrib. Process., Workshops Phd Forum, May 2013, pp. 771–778.

[6] W. He and K. Yuan, ‘‘An improved Hough transform and its realization
on FPGA,’’ in Proc. 9th World Congr. Intell. Control Autom., Jun. 2011,
pp. 13–17.

[7] R. Jeyakumar, M. Prakash, S. Sivanantham, and K. Sivasankaran, ‘‘FPGA
implementation of edge detection using Canny algorithm,’’ in Proc. Online
Int. Conf. Green Eng. Technol. (IC-GET), Nov. 2015, pp. 1–4.

[8] P. Promrit and W. Suntiamorntut, ‘‘Design and development of lane
detection based on FPGA,’’ in Proc. 14th Int. Joint Conf. Comput. Sci.
Softw. Eng. (JCSSE), Jul. 2017, pp. 1–4.

[9] M. Gopinathan, R. Soundarrakumar, A. Kalaiselvi, and A. Mohideen,
‘‘Implementation of lane detection in autonomous vehicle using FPGA,’’
in Proc. Int. Conf. Emerg. Trends Eng. Med. Sci. (ICETEMS), Nov. 2022,
pp. 141–147.

[10] K. Kamimae, S. Matsui, Y. Araki, T. Miura, K. Motoyoshi, K. Yamashita,
H. Ikehara, T. Kawazu, H. Yuwei, M. Nishimura, S. Abe, K. Okino,
Y. Hashiguchi, K. Fukuda, K. Yanagihara, T. Manabe, and Y. Shibata,
‘‘A lane detection hardware algorithm based on Helmholtz principle and
its application to unmanned mobile vehicles,’’ in Proc. Int. Conf. Field-
Program. Technol. (ICFPT), Dec. 2022, pp. 1–4.

[11] H.-K. Jeong and Y.-J. Jeong, ‘‘Design of Hough transform hardware
accelerator for lane detection,’’ in Proc. IEEE Int. Conf. IEEE Region
(TENCON), Oct. 2013, pp. 1–4.

[12] X.Wang, C. Kiwus, C.Wu, B. Hu, K. Huang, andA.Knoll, ‘‘Implementing
and parallelizing real-time lane detection on heterogeneous platforms,’’ in
Proc. IEEE 29th Int. Conf. Appl.-Specific Syst., Archit. Processors (ASAP),
Jul. 2018, pp. 1–8.

[13] A. Mulyanto, R. I. Borman, P. Prasetyawan, W. Jatmiko, P. Mursanto,
and A. Sinaga, ‘‘Indonesian traffic sign recognition for advanced driver
assistent (ADAS) using YOLOv4,’’ in Proc. 3rd Int. Seminar Res. Inf.
Technol. Intell. Syst. (ISRITI), Jakarta, Indonesia, Dec. 2020, pp. 520–524.

[14] A. Mulyanto, W. Jatmiko, P. Mursanto, P. Prasetyawan, and R. I. Borman,
‘‘A new Indonesian traffic obstacle dataset and performance evaluation
of YOLOv4 for ADAS,’’ J. ICT Res. Appl., vol. 14, no. 3, pp. 286–298,
Mar. 2021.

[15] R. Ayachi, Y. Said, and A. Ben Abdelaali, ‘‘Pedestrian detection
based on light-weighted separable convolution for advanced driver
assistance systems,’’ Neural Process. Lett., vol. 52, no. 3, pp. 2655–2668,
Dec. 2020.

[16] J. Tang, S. Li, and P. Liu, ‘‘A review of lane detection methods based on
deep learning,’’ Pattern Recognit., vol. 111, Mar. 2021, Art. no. 107623.

[17] W. Wang, H. Lin, and J. Wang, ‘‘CNN based lane detection with instance
segmentation in edge-cloud computing,’’ J. Cloud Comput., vol. 9, no. 1,
pp. 1–10, Dec. 2020.

[18] Q. Zou, H. Jiang, Q. Dai, Y. Yue, L. Chen, and Q. Wang, ‘‘Robust lane
detection from continuous driving scenes using deep neural networks,’’
IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 41–54, Jan. 2020.

[19] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980–2988.

[20] L. Riera, K. Ozcan, J. Merickel, M. Rizzo, S. Sarkar, and A. Sharma,
‘‘Driver behavior analysis using lane departure detection under challenging
conditions,’’ 2019, arXiv:1906.00093.

[21] R. Muthalagu, A. Bolimera, and V. Kalaichelvi, ‘‘Lane detection
technique based on perspective transformation and histogram analy-
sis for self-driving cars,’’ Comput. Electr. Eng., vol. 85, Jul. 2020,
Art. no. 106653.

4352 VOLUME 12, 2024

H. Yun, D. Park: Low-Power Lane Detection Unit With Sliding-Based Parallel Segment Detection Accelerator

[22] B. K. Shah, V. Kedia, R. Raut, S. Ansari, and A. Shroff, ‘‘Evaluation and
comparative study of edge detection techniques,’’ IOSR J. Comput. Eng.,
vol. 22, no. 5, pp. 6–15, 2020.

[23] G. N. Chaple, R. D. Daruwala, and M. S. Gofane, ‘‘Comparisions of
Robert, Prewitt, Sobel operator based edge detection methods for real time
uses on FPGA,’’ in Proc. Int. Conf. Technol. Sustain. Develop. (ICTSD),
Feb. 2015, pp. 1–4.

[24] V. Torre and T. A. Poggio, ‘‘On edge detection,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vols. PAMI-8, no. 2, pp. 147–163, 1986, doi:
10.1109/TPAMI.1986.4767769.

[25] J. Canny, ‘‘A computational approach to edge detection,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679–698, Nov. 1986.

[26] Intel. Overview of HPS Design Guidelines for SoC FPGA Design.
Accessed: Jan. 10, 2023. [Online]. Available: https://www.intel.com/
content/www/us/en/docs/programmable/683192/18-1/overview-of-hps-
design-guidelines-for.html

[27] M. Greenberg andA. J. Blatt, ‘‘Executable formal semantics for the POSIX
shell,’’ Proc. ACM Program. Lang., vol. 4, pp. 1–30, Jan. 2020.

[28] T. G. Mattson, Y. H. He, and A. E. Koniges, The OpenMP Common Core:
Making OpenMP Simple Again. Cambridge, MA, USA: MIT Press, 2019.

[29] P. A. Kumar, ‘‘FPGA implementation of the trigonometric functions using
the CORDIC algorithm,’’ in Proc. 5th Int. Conf. Adv. Comput. Commun.
Syst. (ICACCS), Mar. 2019, pp. 894–900.

[30] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan, and O. Beijbom, ‘‘NuScenes: A multimodal dataset
for autonomous driving,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 11618–11628.

[31] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, ‘‘Spatial as deep: Spatial
CNN for traffic scene understanding,’’ in Proc. AAAI Conf. Artif. Intell.,
2018, vol. 32, no. 1, pp. 7276–7283.

[32] C. Khongprasongsiri, P. Kumhom, W. Suwansantisuk, T. Chotikawanid,
S. Chumpol, and M. Ikura, ‘‘A hardware implementation for real-time lane
detection using high-level synthesis,’’ in Proc. Int. Workshop Adv. Image
Technol. (IWAIT), Jan. 2018, pp. 1–4.

[33] I. El Hajjouji, S. Mars, Z. Asrih, and A. El Mourabit, ‘‘A novel FPGA
implementation of Hough transform for straight lane detection,’’ Eng. Sci.
Technol., Int. J., vol. 23, no. 2, pp. 274–280, Apr. 2020.

[34] S. Malmir and M. Shalchian, ‘‘Design and FPGA implementation
of dual-stage lane detection, based on Hough transform and local-
ized stripe features,’’ Microprocessors Microsyst., vol. 64, pp. 12–22,
Feb. 2019.

HEUIJEE YUN received the bachelor’s degree in
electronic engineering from Kyungpook National
University, Daegu, South Korea, in 2022, where
she is currently pursuing the M.S. degree with the
School of Electronic and Electrical Engineering.
She has a lot of experience in the algorithm of
real-time object detection on lightweight embed-
ded boards. She has published several jour-
nal/conference papers. She is researching tech-
nologies to optimize deep learning-based object

detection algorithms to be applied to low-power embedded systems. Her
main research interests include lightweight object recognition programs and
simulation of autonomous driving.

DAEJIN PARK (Member, IEEE) received the B.S.
degree in electronics engineering fromKyungpook
National University, Daegu, South Korea, in 2001,
and the M.S. and Ph.D. degrees in electrical
engineering from the Korea Advanced Institute
of Science and Technology (KAIST), Daejeon,
South Korea, in 2003 and 2014, respectively.
He was a Research Engineer with SK Hynix
Semiconductor and Samsung Electronics for more
than 12 years, from 2003 to 2014, and has

worked on designing low-power embedded processors architecture and
implementing fully AI-integrated system-on-chip with intelligent embedded
software on the custom-designed hardware accelerator, especially for
hardware/software tightly coupled applications, such as smartmobile devices
and industrial electronics. He has been a full-time Processor with the School
of Electronic and Electrical Engineering and the School of Electronics
Engineering, Kyungpook National University, since 2014. He has published
more than 240 technical articles and 50 patents. He was nominated as one of
the Presidential Research Fellows 21, Republic of Korea, in 2014.

VOLUME 12, 2024 4353

http://dx.doi.org/10.1109/TPAMI.1986.4767769

