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ABSTRACT Recently, various text-to-image generativemodels have been released, demonstrating their abil-
ity to generate high-quality synthesized images from text prompts. Despite these advancements, determining
the appropriate text prompts to obtain desired images remains challenging. The quality of the synthesized
images heavily depends on the user input, making it difficult to achieve consistent and satisfactory results.
This limitation has sparked the need for an effective prompt optimization method to generate optimized text
prompts automatically for text-to-image generative models. Thus, this study proposes a prompt optimization
method that uses in-context few-shot learning in a pretrained languagemodel. The proposed approach aims to
generate optimized text prompts to guide the image synthesis process by leveraging the available contextual
information in a few text examples. The results revealed that synthesized images using the proposed prompt
optimization method achieved a higher performance, at 18% on average, based on an evaluation metric that
measures the similarity between the generated images and prompts for generation. The significance of this
research lies in its potential to provide a more efficient and automated approach to obtaining high-quality
synthesized images. The findings indicate that prompt optimization may offer a promising pathway for text-
to-image generative models.

INDEX TERMS In-context few-shot learning, pretrained language model, prompt optimization, text-to-
image generation.

I. INTRODUCTION
Recently, there has been a surge in research on multimodal
models that simultaneously handle multiple data types, such
as sound, images, and biological signals [1]. This surge is
attributed to the developing of many high-performance deep-
learning models in these domains [2], [3], [4], [5]. One of
the most intriguing multimodal models is the text-to-image
generative model, which generates images based on text
prompts [6]. The quality of synthesized images from text-
to-image generative models has significantly improved, and
such models can now produce high-quality images compara-
ble to those created by human painters [7], [8]. However, the
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quality of the generated images heavily relies on the input
text provided by the user. If an inappropriate text prompt is
used for a text-to-image generative model, the quality of the
generated images may be poor and fail to reflect the users’
intended results.

Various text prompts are generally tested multiple times
to determine the best one based on the generated images.
Numerous studies have been conducted to enhance the qual-
ity of the generated output by manipulating text prompts,
a field commonly called prompt tuning. Prompt tuning has
recently gained significant attention because existing genera-
tive models are trained on extremely large datasets, resulting
in an unexplained high-dimensional latent space [9]. Further-
more, modifying themodel structure or conducting additional
training with new data can be costly and time-consuming.
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Consequently, a significant amount of research has been
aimed at enhancing the performance of text-to-image mod-
els through pretrained language models (PLMs) and prompt
tuning [10].

This work aims to build an intelligent system that generates
appropriate text prompts for a text-to-image generative model
from a chat or conversation. To achieve this, we leveraged
in-context few-shot learning techniques using multiple text
examples reflecting a text format where users request specific
illustrations from illustrators in the real world. We fine-tuned
a large-scale PLM to understand the desired text prompt style
and convert naive prompts into an optimized text-prompt
style tailored to generative models. Instead of a rigid prompt
approach that only corresponds to predefined prompt tem-
plates, we fine-tuned the language model to understand the
format and methodology of optimized prompts and con-
vert the style of the input naive prompts into the proposed
prompt format. Additionally, we enhanced the generative
model’s ability to comprehend the user’s intent more clearly
by eliminating extraneous information from the naive prompt.
Moreover, by transforming a single sentence into a collection
of smaller sentence units or sets of words, we facilitated
the generative model’s understanding, thereby improving the
quality of the synthesized images. After fine-tuning the lan-
guage model, we evaluated its performance using text in the
form of chats or conversations. Finally, we collected image
results using optimized text prompts as inputs for text-to-
image generation models. This approach using text prompts
results in high-quality image generation, and performance
improvement compared to non-optimized text prompts based
on evaluation metrics. The contributions of this work are
summarized as follows:

• Our approach optimizes text prompts from naive
prompts using in-context few-shot learning within a
large PLM, resulting in high-quality images that accu-
rately capture users’ intentions without the need for
retraining large-scale text-to-image generative models.

• We demonstrate that the proposed prompt opti-
mization method can enhance the performance of
image-generative models in a fine-tuned text-to-
image generative model for a specific task and other
image-generative models for general tasks.

• We apply the proposed optimized prompt technique,
which can handle any text prompt input, not limited to
predefined templates. To achieve this, we fine-tune a
language model by combining the advantages of hard
and soft prompt techniques, enabling it to maximize per-
formance regardless of the input prompt. This approach
enables the image generation task to achieve a superior
performance level.

II. RELATED WORKS
A. TEXT-TO-IMAGE GENERATIVE MODELS
Recently, several pretrained large-scale text-to-image gener-
ative models have been released [6], [7], [8], [11]. Represen-
tative models are described in the following sections.

1) DALL·E
DALL·E, a variational autoencoder (VAE)-based text-to-
image generative model, has significantly contributed to
generative models. One of its key strengths is success-
fully incorporating the transformer architecture widely
used in natural language processing into computer vision.
This interdisciplinary adaptation has facilitated generating
impressive images from textual descriptions. DALL·E has
consistently outperformed existing generative adversarial
network (GAN)-based generative models regarding perfor-
mance metrics.

DALL·E 2 successfully demonstrates relatively strong
generalization performance through zero-shot learning, over-
coming the limitations faced by its predecessor DALL·E in
synthesizing images of unseen objects or styles and the inabil-
ity to generate high-resolution images. Trained on a large
dataset of image-text pairs, DALL·E 2 uses a sophisticated
training process to establish a shared representation space for
images and text, akin to the contrastive language-image pre-
training (CLIP) approach. Leveraging the text encoder from
CLIP, DALL·E 2 generates text embeddings combined with
image embeddings derived from the provided text prompts.
The model employs a Gaussian diffusion model decoder
to progressively refine the generated images, synthesizing
high-level images that closely align with the given text
prompts. DALL·E 2 has gained significant attention due to its
remarkable ability to generate diverse and visually appealing
images tied to the text prompts. While the detailed code
for the model has not been publicly disclosed to mitigate
potential misuse, its contributions to the domain of generative
models remain noteworthy.

2) STABLE DIFFUSION
More recently, stable diffusion [8] was introduced, which can
synthesize high-quality images from text prompts using a
diffusion training technique that applies noise to an image
and restores it to its original state. Previous diffusion-based
text-to-image generative models have a trade-off relationship
between image quality and computational speed compared to
other generative models [12] but stable diffusion addresses
this problem by training on a subset of the large-scale
image-caption dataset LAION-5B and employing a latent
diffusion training technique that offers computational advan-
tages by training in a latent space instead of an embedding
space. Additionally, the model leverages relatively smaller
text encoders such as U-Net [13] and the frozen CLIP
vision transformer (ViT)-L/14 [14], making it more suitable
for low-performance computing environments compared to
large-scale text-to-image generative models.

Comprising three artificial neural networks (CLIP, U-Net,
and VAE-stable diffusion), the model operates as follows.
When a user enters text, the text encoder (CLIP) converts
it into tokens, a language that U-Net can understand. Then,
U-Net denoises the tokens based on generated random noise.
As denoising is repeated, a proper image is generated and
subsequently transformed into pixels by the VAE. Unlike
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previous diffusion probability-based image generation mod-
els that require exponentially increasing resources with
higher resolutions, stable diffusion incorporates an autoen-
coder before and after the process. This autoencoder inserts
or removes noise in a smaller latent space dimension rather
than the entire image, significantly reducing resource usage
even when generating relatively high-resolution images. One
notable advantage of stable diffusion over early text-to-image
generative models is that it enables fine-tuning objects or
styles not included in the training process. This flexibility
is achieved by employing such techniques as textual inver-
sion [15] or DreamBooth [16]. Furthermore, stable diffusion
is publicly available, enabling widespread utilization without
retraining.

B. PROMPT TUNING
Text-to-image generative models use user text prompts to
generate images. Even when prompts contain identical con-
tent, the resulting images can exhibit variations during this
process. This variation arises due to the inherent complexity
of the generative process and the interpretability of textual
descriptions. Prompt optimization or tuning techniques are
employed to address this challenge and enhance the genera-
tion of high-quality images aligned with the user’s intent [10],
[17].

Prompt optimization involves strategically adjusting the
prompt input to guide the generative model toward synthe-
sizing images that better align with the desired outcome.
This optimization process considers various factors, such
as the desired content, style, composition, or other spe-
cific attributes users want to convey through the generated
images [18]. By fine-tuning the prompt input, prompt tuning
aims to reduce the discrepancy between user intent and the
desired images.

A commonly used technique in prompt tuning is to provide
explicit instructions within the prompt to guide the generative
model’s understanding. For instance, framing the prompt as
‘‘A photo of ___’’ prompts the model to focus on capturing
the desired subject matter or scene depicted within the square
brackets [19]. This approach helps direct the generative
model’s attention and improves the likelihood of generating
images that align with the user’s intended vision [20]. Prompt
tuning has shown promise in generating high-quality images,
enabling the generative model to grasp the user’s intentions
more effectively [10]. By optimizing the prompt input, users
can exert greater control over the image synthesis process
and obtain the desired images. This technique enhances the
quality of generated images and enables users to express
their creativity and preferencesmore accurately. For example,
VisualChatGPT, which integrates various visual foundation
models (VFMs) into one, has recently received considerable
attention.When a user enters a text prompt, it matches it to the
VFMs that best respond to the user input. Within VisualChat-
GPT, the prompt manager adds additional information to the
user’s prompts to increase the probability of matching appro-
priate VFMs or requests additional information from the user

if necessary. While this approach improves performance, the
authors manually created prompt templates for every VFM,
resulting in heavy prompt tuning and slower computation
speed. By relying on human execution, this approach poses
reliability concerns. Additionally, it relies on the performance
of ChatGPT itself, requiring considerable time to determine
the most appropriate VFM. This approach is time-consuming
and may not be suitable for building a naturally intelligent
system.

Overall, prompt tuning is vital in improving the per-
formance and user experience of text-to-image generative
models and empowers users to achieve their desired visual
outcomes with greater precision and satisfaction by tailoring
the prompt input to align with users’ specific requirements
and creative objectives.

C. TECHNIQUES FOR PROMPT TUNING
1) DISCRETE AND CONTINUOUS PROMPTS
Effective prompt tuning requires a sophisticated approach
to modifying the input text. Two methods commonly con-
sidered for this purpose are the discrete and continuous
prompts. The discrete prompt method uses predefined fixed
sentences or questions to constrain the range of possible
responses generated by a natural language processing model.
While this method limits the range of answers, its use of
fixed-length words or sentences enables fast text processing
by themodel [21]. However, it may require additional training
to manage new tasks. In contrast, the continuous prompt tech-
nique generates responses to questions without modifying or
structuring the input text. This approach offers greater flexi-
bility because it can manage various tasks without additional
training. However, it is more dependent on the capabilities of
natural language processing models and may be slower for
models with numerous parameters [18].

2) SOFT AND HARD PROMPTS
Hard prompt and soft prompt are techniques related to the
template of user input text. In the case of a hard prompt,
only correspondence to a fixed template is allowed, and
exact text matching is required. To explain better, we pro-
vide the following example applied to a generative model:
‘‘I want a picture of ___ style with ___ and ___.’’ The
user can only input text into the blanks, and other parts
cannot be modified. Therefore, the model produces better
results through the user’s accurate input, but the flexibility
is limited because we must define the template [10]. The
soft prompt technique offers greater flexibility in respond-
ing to input text templates by allowing users to input
text prompts freely without predetermined templates. This
flexibility is a considerable advantage for a generative
model handling various tasks. However, the soft prompt
technique tends to have lower performance than the hard
prompt technique due to the model’s difficulty in finding
accurate information as a result of the flexibility in the
input [23].
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FIGURE 1. Overall pipeline of text-to-image generation using in-context few-shot learning. We used GPT-J as a language model for in-context few-shot
learning and evaluated generation using three different generative models (DALL:E 2, vanilla stable diffusion, and fine-tuned stable diffusion). Three
evaluation metrics are used (CLIP score, FID, and quality loss).

D. IN-CONTEXT FEW-SHOT LEARNING
In recent years, research has focused on applying few-shot
learning to large-scale PLMs to achieve better performance
on language-related tasks with limited data. The genera-
tive pretrained transformer 3 (GPT-3) [24] has demonstrated
competitive performance in natural language understanding
using few-shot learning, where properly designed prompts
enable effective utilization of limited data without extensive
fine-tuning on large datasets. The success of this approach
emphasizes the importance of prompt tuning in determining
the performance of PLMs in few-shot learning [25]. Manual
prompting has been primarily employed to enhance the ability
of PLMs to learn desired text styles more effectively [17].
Manual prompt-based few-shot learning enables PLMs to
perform text style transfer tasks and generate text in specific
desired styles [26]. While several studies have improved the
performance of multimodal tasks through prompt-based few-
shot learning with PLMs [27], more sophisticated prompt
optimization techniques that do not require human effort are
needed.

The core concept of in-context few-shot learning involves
fine-tuning large-scale PLMs to suit specific tasks. This
allows language models to comprehend language in a manner
better aligned with the data and objectives of the given task.
Our approach effectively operates by providing contextual
information when training, using pairs of data, including
prompts with noise and data transformed into a format
that enhances the performance of the generative model.
This applies to both prompts containing noise and data
that has been modified to improve the performance of the
generative model. Furthermore, in-context few-shot learn-
ing finds applications across a spectrum of natural language
processing tasks, including machine translation, question-
answering, text classification, and text generation. It has been
instrumental in driving groundbreaking advancements within
the field of natural language processing. In this manner,
in-context few-shot learning stands as a pivotal strategy,

shaping the cutting-edge technology and research landscape
in the domain of natural language processing, by adeptly
customizing PLMs for specific tasks, thereby achieving
remarkable performance.

E. PRETRAINED LANGUAGE MODELS
Similar to its predecessors, GPT-3 [24] and GPT-2 [28],
GPT-J [29] is a publicly available large-scale pretrained
model for natural language processing. It operates as an
autoregressive model, focusing solely on the decoder compo-
nent of the standard transformer model. As a causal language
model, GPT-J generates predictions based solely on the pre-
ceding words and context without relying on context from
both directions, as observed in masked language models.
The autoregressive nature of GPT-J allows it to use previous
predictions as input for subsequent predictions, resulting in
more coherent and contextually relevant output. Additionally,
GPT-J offers computational efficiency and cost-effectiveness
compared to GPT-3, owing to its smaller size. Therefore,
we used GPT-J to fine-tune user input prompts in the desired
direction.

F. TEXT STYLE TRANSFER
Text style transfer (TST) is a technique that leverages lan-
guage models to transform the style of text. This technology
enables the transformation of given text into different styles,
including modifications to writing style, tone, and language
style. It utilizes language models such as GPT to comprehend
the context and style of the text, aiding in the reconfiguration
of input text into the desired style. One notable feature of
this technology is its compatibility with few-shot learning
techniques. In our approach, we trained the GPT-J model
with a limited amount of training data to generate text in the
desired style. Since we used a small amount of training data,
high-quality data was crucial. To address this, we created
a dataset by referencing text requesting illustrations from
illustrators, ensuring the dataset closely resembled the task
at hand.
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III. METHODS
A. IN-CONTEXT FEW-SHOT LEARNING
1) DENOISING TEXT PROMPT
We considered a conversational-style text, resembling infor-
mal conversation and chat, to have potential noise when
used as text prompts for text-to-image generative models.
For instance, when a user requests ‘‘Hello! Can you create
a ___ picture for me ___?’’ the conversational elements,
such as ‘‘Hello!’’ and ‘‘Can you create a ___’’ can intro-
duce noise that hampers the model’s understanding of the
user’s intentions. To address this challenge, we employed
the TST task to guide the language model in transforming the
conversational text into a more appropriate prompt format.
The proposed approach used a language model with few-shot
learning capabilities and established an experimental setup
comprising a limited number of data pairs in the desired style
to facilitate the desired TST.

2) PROMPT STYLE TRANSFER
The task aims to convert conversation-style text to a prompt
for a text-to-image generative model to generate images that
accurately reflect users’ intentions. This task poses unique
challenges due to its nonuniversal nature and the scarcity
of available datasets. Training such models requires care-
ful consideration of various constraints. Previous studies
indicated the effectiveness of prompt-based learning, high-
lighting its flexibility [30]. To address this task, we adopted
a prompt-based learning approach. We manually generated
a few text examples and incorporated them into the prompts,
facilitating the PLM to learn TST using a simple yet effective,
manually crafted prompting method. By leveraging prompt-
based learning, we empowered the PLM to better understand
and capture the desired style, enabling the generation of
high-quality images that align with user preferences.

3) PRETRAINED LANGUAGE MODELS
Generation-based TST is commonly implemented using
sequence-to-sequence architectures in PLMs. Employing
prompt-based few-shot learning during training makes it
feasible to perform style transfer using only few-shot data
through the decoder of PLMs. For this study, we consid-
ered several PLMs for candidates, including GPT-J [29], T5
[31], and GPT-2 [28]. After careful evaluation, we selected
GPT-J as the target PLM due to its ample model param-
eters that facilitate effective few-shot learning. Therefore,
we employed GPT-J to fine-tune user input prompts in the
desired direction.

B. TEXT-TO-IMAGE GENERATIVE MODELS
As part of the evaluation process, we usedDALL·E 2 to assess
the generalization performance of the proposed approach.
By leveraging the strengths of this state-of-the-art model,
we aimed to ascertain the effectiveness and robustness of the
prompt optimization technique.

To compare the performance of the proposed method with
conventional text prompt input, we used vanilla and fine-
tuned stable diffusion models. To assess the effectiveness
of the prompt optimization approach for a specific task
in a text-to-image generative model, we performed fine-
tuning on stable diffusion using a fairy-tale image dataset.
We gathered approximately 2,100 fairy-tale book copies from
publicly available sources on the web and applied a set of
refinement rules. Within the dataset, we excluded images
containing text, real-life photographs in fairy-tale books,
illustrations deemed unsuitable for children, and illustra-
tions with unclear styles. After applying these refinement
rules, we obtained approximately 700 images, further catego-
rized into three distinct fairy-tale styles: 260 traditional-style
images, 155 cartoon-style images, and 250 illustration-style
images. To ensure style consistency across the categories,
we conducted a thorough review, determining that illus-
trations used for fairy-tale book covers exhibited the most
consistent style and best aligned with the objective. There-
fore, we proceeded with fine-tuning the model using the
illustration style. We employed the textual inversion tech-
nique during the fine-tuning process using a limited number
of images to learn novel concepts not addressed by stable
diffusion. This technique involves the embedding of text
prompts into an encoder, where it is tokenized, and then
proceeds to discover new embeddings that represent specific
visual concepts provided by the user. These embeddings are
subsequently associated with pseudo-words and can be inte-
grated into new sentences like any other words. This process
can be described as finding an appropriate latent space within
the frozen model’s text-embedding space. Through this tech-
nique, we fine-tuned the stable diffusion model, enabling it to
consistently generate images in the style of a children’s book.

C. PROMPT TUNING
1) CONTINUOUS PROMPTS
Considering the limitations of the discrete prompt in pro-
ducing the desired results and the need for adaptability in
scenarios with unknown user input, we determined that the
continuous prompt approach, with its flexibility and creativ-
ity, while minimizing human intervention, is a more suitable
method. Additionally, we selected GPT-J as a languagemodel
that balances performance and cost trade-offs and further
fine-tuned it using in-context few-shot learning.

2) SOFT PROMPTS
We used the soft prompt technique to enable flexi-
ble responses to user inputs, increasing model flexibility.
It allowed the model to manage a wide range of user inputs.
Further, we performed additional fine-tuning to enhance
model performance, resulting in significant improvements.
We were able to generate better results through these efforts.

D. IMAGE STYLE TRANSFER
1) OBJECT IMAGE STYLE TRANSFER
One of the major tasks in text-to-image generative models is
image style transfer, which translates source images to target
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images based on text prompts. To translate from an object
in an image to another object (object image style transfer)
using text prompts, we constructed the following pipeline:
object detection, binary masking, and inpainting. We adopted
GroundingDINO [32] for object detection based on bounding
boxes and the detected bounding boxes were binarized to 0
(black) or 255 (white) for inpainting. After that, we used
text prompts to translate the detected object to another using
stable diffusion.

2) BACKGROUND IMAGE STYLE TRANSFER
Image style transfer for an object is relatively straightfor-
ward since detecting an object (object detection) is a widely
used task. Another task is translating the background to
another and this taskmay bemore difficult since sophisticated
object segmentation is needed. To translate the background
in an image, we constructed the following pipeline: object
segmentation, binary masking, inversion, and inpainting.
We adopted the Grounded-SAM [32], [33] for object seg-
mentation and performed binary masking and inversion to
capture the background. Then, we performed inpainting to
translate the background to another with text prompts using
stable diffusion.

3) WHOLE IMAGE STYLE TRANSFER
To translate the whole image into another, we adopted Con-
trolNet [34]. Based on the canny edge detection, we captured
the whole image structure and performed inpainting using
stable diffusion.

E. CLIP SCORE
The CLIP [19] pretrained multimodal model achieves joint
representation between text and images using a contrastive
methodology. It was trained on 400 million image-text pairs
on the web and evaluated similarity in the joint embedding
space between the image and text for use in various multi-
modal tasks in a zero-shot manner. The CLIP score [35] uses
CLIP to compute the cosine similarity score between images
and text in the joint embedding space to evaluate the ability
of text-to-image models to generate images close to the input
prompt. The computation process of the CLIP score involves
the following steps:

• Text embedding: The textual description provided is
encoded using the CLIP model, resulting in the gen-
eration of a high-dimensional vector known as a ‘text
embedding’. This vector captures the underlying seman-
tic meaning of the text description.

• Image embedding: CLIP also possesses the capability to
encode images into embeddings. These image embed-
dings represent the images as high-dimensional vectors.

• Mutual computation: To calculate the CLIP score,
a measurement of similarity is performed between the
text embedding and the image embedding. This similar-
ity assessment often involves mathematical operations
such as dot products or other similarity metrics. The

outcome of this computation quantifies the degree of
compatibility between the given text and image.

• Comparison and ranking: Subsequently, CLIP employs
the computed CLIP Score to conduct a comparison and
ranking of multiple images relative to the provided text.
Images with higher CLIP scores are considered to be
more closely aligned with the text description.

We used the CLIP score as the evaluation metric for how
much the proposed model improves compared to the original
naive (noisy) text prompt:

CLIP score(p, i) = ω∗max( cos (p, i) ,0) (1)

where p and i are the embeddings for text prompts and
generated images, respectively. We set ω as 2.5.

F. FRECHET INCEPTION DISTANCE
The Frechet inception distance (FID) [36] serves as a pivotal
metric for assessing image quality in the context of image
generation models. It accomplishes this task by quantifying
the disparity between the distribution of generated images
and that of real images, capitalizing on the hidden feature
layer embedded within the Inception-v3 [37]. FID holds a
prominent role in the evaluation of image generation models,
with particular emphasis on its utility in appraising GANs
and other deep learning-based generative models. One of
FID’s key strengths lies in its ability to furnish an objective
and precise performance measure, extending its value as a
guiding compass for refining and optimizing model develop-
ment processes. Furthermore, FID’s multi-faceted approach
involves the examination of a hidden feature layer, assess-
ing image quality, computing the Frechet distance between
feature vector distributions of generated and real images, and
interpreting the resulting scores. Lower FID scores signify
enhanced visual and semantic congruence between generated
and real images, while elevated scores denote a greater divide,
suggesting diminished quality in the generated image set.
We utilized the FID as an evaluation metric for assessing the
quality of images generated by the DALL·E 2, vanilla stable
diffusion, and finetuned stable diffusion models under both
naive prompts and prompts optimized through our proposed
technique. The calculation of FID is as follows:

FID = ∥µX − µY∥
2
−Tr(

∑
X

+

∑
Y

−2(
∑

X

∑
Y
)1/2)

(2)

The symbols µX and µY denote the mean feature vectors
for the sets of images generated from naïve and optimized
prompts, respectively. The covariance matrices for these sets
of images are represented by

∑
X and

∑
Y , again corre-

sponding to the naïve and optimized prompt sets. Lastly, the
symbol Tr indicates the trace of a matrix, which is the sum
of the diagonal elements.

G. QUALITY LOSS
We propose a novel evaluation metric (quality loss), which
serves as a form of human evaluation. Text-to-image
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generation models are heavily influenced by the prompts
provided by users. Particularly, in the case of sentences con-
taining significant noise, it has been observed that generated
images may include characters or text elements. To address
this, we conducted a manual count of instances where char-
acters or text were present in the generated images, dividing
this count by the total number of generated images to cal-
culate the probability of characters or text being present in
generated images (PC in equation (3)). Subsequently, wemul-
tiplied this value by the CLIP score, resulting in the final
evaluation conducted through the quality loss. This metric
assesses how similar the output image is to the prompt,
and whether characters or text are present in the generated
image.

Quality Loss = CLIP score(p, i) ∗ PC (3)

where p and i are the embeddings for text prompts and
generated images, respectively. We set ω as 2.5.

IV. EXPERIMENTS
We conducted a series of experiments to evaluate the effec-
tiveness of prompt optimization based on in-context few-shot
learning in improving the quality and performance of text-to-
image generative models.

A. IN-CONTEXT FEW-SHOT LEARNING
We used GPT-J as the baseline model for the task. To tailor
few-shot learning to our specific objectives, we defined the
number of sentences used in in-context learning as K and
trained the GPT model to align with our objectives using
K sentences. Thus, we performed few-shot learning with
K = 2 and K = 4. The objective was to reduce the noise
in the input text prompts; thus, we added noise in the text for
training.

1) PROMPT TEMPLATE
To enhance the performance of prompt optimization,
we applied training data with a consistent format: [Noise] +

[Request to draw a picture]+ [Noise]+ [Description of back-
ground] + [Description of specific objects or situations] +

[Noise].

2) TASKS
We designed three distinct tasks to determine optimal
prompts. The first task, [WIDE], consists of sentences that
encompass a wide range of contexts. The second task, [NAR-
ROW], involves selecting one or two words with a narrower
scope. The last task, [DENOISING], removes noise from
given sentences. We conducted experiments using these three
tasks. The following task examples were used.

Input:
‘‘Hello. This is my first request, so it may be difficult. It’s

soon New Year’s Day and the background is a full moon.
And. . . and there’s a black rabbit wearing a traditional Korean
hanbok standing there. Could you please draw this for me as
soon as possible?’’

Output:
[WIDE]NewYear’s Day, background is a full moon, black

rabbit wearing a traditional Korean hanbok standing there.
[NARROW] New Year’s Day, full moon, background,

black rabbit, traditional Korean hanbok, standing.
[DENOISING]
The background is a full moon and draw a black rabbit

wearing a traditional Korean hanbok, standing on NewYear’s
Day.

3) IN-CONTEXT LEARNING TEXT TEMPLATE
We replicated the text template used in a prior successful
research study on in-context few-shot learning. The text
template is ‘‘Here is some text: {naive text prompt}. Here
is a rewrite of the text, which is simpler: {optimized text
prompt}.’’ This approach was employed to leverage the
GPT-J model for TST.

4) PARAMETERS
For the experiment, we trained the GPT-J model for TST
using in-context few-shot learning, and the parameters used
during that time are as follows. First, the parameter ‘Tem-
perature’, which regulates the probability distribution of the
language model, is typically set to a positive value of less
than 1. When it approaches to 0, the probability distribution
becomes sharper, encouraging the selection of tokens with
higher probabilities and resulting in sentences with consistent
features. When it approaches to 1, the probability distribution
flattens, increasing randomness and yielding more diverse
and creative sentences. To receive soft prompts and achieve
more human-like results, we set this parameter to 0.8 during
training. Additionally, we set the ‘do_sample’ value to ‘True’,
indicating that the model should sample tokens probabilisti-
cally, in contrast to the ‘False’ setting where it always selects
the token with the highest probability. This choice increases
diversity in generated outputs.

B. EVALUATION
To assess the robustness of the proposed approach, we con-
ducted experiments using different prompt templates.
We tested four complete sentences divided into three cases:
1) [NORMAL], representing a sentence with an appropriate
length and moderate noise; 2) [LONG], representing a longer
sentence with higher noise; and 3) [SHORT], representing a
shorter sentence with lower noise. We calculated the average
CLIP score for each case and determined the optimalK value.
The following sentences provide examples of the evaluation:
[NORMAL]
‘‘I’m not sure if it’s okay to ask this, but I had a dream last

night. Two rabbits were fighting with laser swords in a space
background on a spaceship. And the black rabbit won. Can
you draw a picture of this scene for me?’’
[LONG]
‘‘Hello, nice to meet you. I want to make an illustration for

a webcomic cover, can you draw it for me? Well, about the
webcomic, it’s about secrets involving treasure in a dungeon,
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TABLE 1. Clip score in DALL·E 2, fine-tuned and vanilla stable diffusion.

FIGURE 2. Generated images in DALL·E 2 (top row), fine-tuned stable diffusion (middle row), and vanilla stable diffusion (bottom row) from naive
text prompts with noise.

and. . . you know why already, um. . . the illustration I need is
of a 15-year-old blonde girl holding a sword while passing
through a dungeon.’’

[SHORT]
‘‘Hello, please draw an illustration. Um. . . and. . . a

pink-haired girl wearing a hoodie with cat ears, around the
age of 16, in the style of Japanese animation. Please.’’

V. RESULTS
We evaluated the performance of the prompt optimization in
the three text-to-image generative models: DALL·E 2, vanilla
stable diffusion, and fine-tuned stable diffusion.

A. EVALUATION FROM NAÏVE TEXT PROMPTS
We conducted experiments using the DALL·E 2 model to
assess its performance in a general scenario. The aver-
age CLIP score for naive text prompts with noise was

31.10 (Table 1). The scores for fine-tuned and vanilla sta-
ble diffusion were 29.35 and 28.82, respectively. DALL·E
2 achieved the highest score among the naive text prompts.
The fine-tuned stable diffusion displayed a slight improve-
ment compared to the vanilla version. Examples of generated
images from naive text prompts in DALL·E 2 are presented
in Fig. 2 (top row).

B. EFFECT OF K VALUES
In in-context few-shot learning, selecting the value of K is
critical. In the experiments, we focused on two values of K
(2 and 4) to demonstrate that prompt optimization is possible
even with minimal training data. Generally, the performance
of 4-shot learning was superior to 2-shot learning across
models (Table 2). However, in the [SHORT] and [NORMAL]
cases, 2-shot learning performed better than 4-shot learning.
Thus, a smaller value of K is sufficient when dealing with
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TABLE 2. Clip score in DALL·E 2, fine-tuned and vanilla stable diffusion.

FIGURE 3. Generated images using prompt optimization based on the in-context few-shot learning technique of the following naive text: ‘‘How are
you? To be honest, I need to draw a picture for a storybook. The story is about a dragon fighting a knight. The knight is wearing gray armor and riding a
horse. Oh, and it would be great if the knight has a lance as a weapon instead of a sword. Please let me know as soon as possible.’’

low noise levels. In the [LONG] case, 4-shot learning outper-
formed 2-shot learning because more noise and the need to
extract multiple keywords necessitated more training exam-
ples for effective few-shot learning. In other words, when
sentences with higher noise levels require optimization, the
amount of noise to be removed increases, and a higher K
value becomes necessary. Examples of generated images

from prompt optimization with K = 4 in the [NARROW] task
using DALL·E 2 are illustrated in Fig. 3 (lower row).

C. EVALUATION OF THREE TASKS
We designed three tasks to identify the most effective
prompt optimization method. Upon analyzing the exper-
imental results, the [NARROW] and [DENOISING] tasks
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TABLE 3. Clip score in DALL·E 2, fine-tuned and vanilla stable diffusion. - apply ‘‘a photo of’’ form.

FIGURE 4. Generated images from (a) ‘‘a photo of [ ]’’ form, (b) [NORMAL], (c) [LONG], (d) [SHORT] when K = 4 in [DENOISING], DALL·E 2 (top row),
fine-tuned stable diffusion (middle row), and vanilla stable diffusion (bottom row).

demonstrated clear strengths across all models. However,
when K = 2, the performance of [DENOISING] was not as
strong as [NARROW]. Overall, [DENOISING] with K = 4
performed well. However, there were occasional problems
where letters appeared in the generated images, which we
speculate may be due to the input sentence leading to dia-
logue as part of the [DENOISING] process. Considering
the experimental results discussed in the previous section,
we concluded that the prompt optimization method must
perform well even in the [LONG] task, which involves long
sentences with significant noise. Thus, we determined that
[NARROW] achieved the best overall performance. Fig. 3

provides examples of generated images from prompt opti-
mization across differentK values and tasks usingDALL·E 2.

D. EFFECT OF ‘‘A PHOTO OF’’ FORM
Several studies have demonstrated that using the format ‘‘a
photo of ___’’ can improve performance. Hence, we applied
this format in these experiments (Table 3). The optimal con-
figuration was achieved with K = 4 and [DENOISING]
for the ‘‘a photo of’’ prompt. However, for the [NORMAL]
and [SHORT] cases, the best performance was observed with
K = 4 and [DENOISING] without using the ‘‘a photo of’’
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TABLE 4. Clip score in DALL·E 2, fine-tuned and vanilla stable diffusion compared with summarization.

FIGURE 5. Generated images from sentence summarization using the T5 base model. Letters are displayed in (a) and (c). In (b), the intended prompt
was ‘‘gray armored knight fighting against a dragon’’ but ‘‘fighting against a dragon’’ was omitted. In (d), the prompt was ‘‘a girl with pink hair
wearing a hoodie and having cat ears’’ but ‘‘hoodie’’ and ‘‘cat ears’’ were not displayed. DALL·E 2 (top row), fine-tuned stable diffusion (middle row)
and vanilla stable diffusion (bottom row).

form. In the case of fine-tuned stable diffusion, the perfor-
mance was better with K = 2 and [NARROW] than with the
‘‘a photo of’’ prompt. Comparable results were observed in
vanilla stable diffusion. Furthermore, when using the prompt
‘‘a photo of + [DENOISING],’’ we encountered a problem
where letters appeared in the generated images (Fig. 4). These
findings suggest that applying this form in prompt optimiza-
tion can negatively affect image quality.

E. SENTENCE SUMMARIZATION
We compared prompt optimization and simple sentence sum-
marization using the T5 base model. The results revealed
that prompt optimization outperformed the naive text prompt

(29.76) but had a lower score (33.13) than the lowest perfor-
mance achieved with prompt optimization (34.16) in Table 4.
This outcome indicates that simple sentence summarization
fails to effectively remove noise from sentences and may
exclude important keywords, resulting in suboptimal image
generation. Examples of generated images from sentence
summarization are presented in Fig. 5.

F. PROBABILITY OF LETTERS PRINTED ON IMAGES
We calculated the probability of letters appearing in the
generated images and observed that the lowest probability
occurred when K = 4 in [NARROW] (Table 5 ). Addi-
tionally, we calculated the quality loss by multiplying the
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TABLE 5. Quality Loss in DALL·E 2, fine-tuned and vanilla stable diffusion.

TABLE 6. FID in DALL·E 2, fine-tuned and vanilla stable diffusion.

TABLE 7. FID in image style transfer for three tasks (object, background, whole).

FIGURE 6. Examples of image style transfer for three tasks (top: object, middle: background, bottom: whole image style transfer). Source
images are translated to target images by text prompts.

probability of letter appearance by the average CLIP score.
The results indicated that the case with K = 4 in [NARROW]
exhibited the lowest quality loss. This finding suggests that
four-shot learning with short words (i.e., [NARROW]) pro-
duces high-quality images using prompt optimization.

G. FID SCORE IN GENERATIVE MODELS
We compared the FID values of images generated using the
initial naive prompts provided by users with those generated
using our proposed optimized prompts. This served as a
metric to assess whether the user’s intent was well-preserved
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before and after prompt optimization. This was necessary
because the [WIDE], [NARROW], and [DENOISING] tech-
niques may alter the original sentence structure and could
potentially return sentence structures different from the user’s
intent. The experimental results (Table 6) showed that all
three models consistently exhibited low average FID values
(25.57). This demonstrated that even when breaking down a
single long sentence into smaller parts, prompt optimization
effectively captures the user’s intent, affirming our ability to
optimize prompts.

H. FID SCORE IN IMAGE STYLE TRANSFER
To investigate how the proposed method applies to image
style transfer, we calculated FID scores for three different
tasks (object, background, and whole image style transfer).
The first task was to detect objects with image style trans-
fer using the proposed method (details in Methods), object
detection, and segmentation. For image style transfer, we had
three different tasks: object image style transfer, background
image style transfer, and whole image style transfer. From
the original image datasets including ImageNet, MS-COCO,
and LAION, we performed data augmentation using image
style transfer and evaluated FID scores between the original
image datasets and style-transferred images. We found FID
scores of 6.88 for the object image style transfer, 27.35 for
the background image style transfer, and 22.47 for the whole
image style transfer. On average, we obtained an FID score of
18.90 (Table 7). Examples of image style transfer for the three
tasks are shown in Fig. 6. These findings indicate that our
proposed method can be used as a data augmentation method
for image generation.

VI. DISCUSSION AND CONCLUSION
This study proposes a prompt optimization method to
enhance the performance of text-to-image generative models
and effectively capture users’ intentions. Through the exper-
iments, encompassing various tasks and sentence lengths,
four-shot in-context learning, particularly when the text
prompts consist of a few words, yields superior results.
Compared to conventional methods, such as simple sentence
summarization, the proposed prompt optimization technique
outperforms others in terms of noise removal and inclusion
of critical keywords, resulting in more accurate and visually
appealing image generation.

The significance of the findings lies in the potential appli-
cation of prompt optimization with large PLMs in various
domains. By allowing users to fine-tune the image generation
process and achieve the desired visual output, the proposed
approach offers new possibilities for intelligent image gener-
ation systems. Whether in creative arts, advertising, or other
fields that rely on visually compelling content, the proposed
prompt optimizationmethod offers a valuable tool for users to
express their creativity and meet their specific requirements.
In conclusion, this study demonstrates the effectiveness of
prompt optimization in improving the performance of text-
to-image generative models. We believe that this research

contributes to the advancement of intelligent image genera-
tion systems and inspires further exploration in the field of
natural language processing and computer vision.
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