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ABSTRACT To assist gas distribution companies to effectively monitor their infrastructure and locate gas
leaks, this paper considers the use of an UnmannedAerial Vehicle (UAV) carrying amethane sensor to survey
a region for gas leaks. As the UAV collects in situmeasurements, it gathers evidence regarding the presence
or absence of leaks in the region. To relate the UAV measurement to a region on the ground, we propose to
use Upwind Survey Regions (USRs). If the UAV collects a measurement of high gas concentration, the USR
represents a region that is likely to contain the leak. Likewise, if the UAV collects a measurement of low gas
concentration, the USR represents a region that is likely to be clear of gas leaks. We propose a framework
to process the measurements and produce a survey map indicating areas that can be reliably cleared of gas
leaks and areas that may contain gas leaks. Our framework is composed of two steps: 1) mapping UAV
measurements into USRs on the ground; and 2) fusing the various mapped USRs to produce the survey
map. We discuss how USRs can be estimated and we test our framework using both simulated and real UAV
flights.

INDEX TERMS Methane gas leak survey, unmanned aerial vehicle, upwind survey region.

I. INTRODUCTION
Natural gas production, transmission, and distribution sectors
continuously deal with fugitive gas emissions. Finding and
repairing the sources of these unintended emissions would
mitigate economic loss [1] and help reduce the negative
environmental impact of fugitive emissions on climate and
air quality [2].
Traditionally, gas companies search and repair gas leaks

using foot patrols [3]. Using a portable methane sensor,
technicians visit several areas of the region looking for gas
leaks and repairing them. Because foot patrols are expensive
and time-consuming [4], [5], gas operators and researchers
have been considering alternative methods to detect gas
leaks. As discussed in Section II, leaks can be detected

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

by deploying an array of stationary sensors, by carrying a
sensor while driving a vehicle or flying an Unmanned Aerial
Vehicle (UAV) or aircraft, or by analyzing satellite images.
These approaches are intended to assist gas companies in
their repair efforts, guiding the foot patrols to the most
important areas.

In this paper, we focus on one of the approaches being
considered in the literature: surveying a region using an
UAV equipped with a methane gas sensor flying inside
the gas plume. As illustrated in Fig. 1, an UAV equipped
with a GPS receiver, an anemometer, and a methane sensor
collects gas concentration measurements at various points
in the atmosphere (in situ measurements) while flying
downwind of the region being surveyed. For safety and
logistical regions, the UAV flies above the treeline, at heights
ranging from 5 to 30 meters. For this reason, this framework
is most suitable for surveying rural and suburban areas.
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FIGURE 1. Illustration of a UAV carrying a methane sensor to survey a
region for gas leaks. The UAV flies downwind of a possible emission
source following a sweeping flight pattern. The dashed lines respectively
illustrate possible trajectories of methane (red) and other molecules
(green) as they travel in the atmosphere.

Each concentration measurement is tagged and stored with
its collection time, UAV location, wind direction and wind
speed. From such information, the goal is to infer the presence
of a gas leak in the region. Many previous works [6], [7],
[8], [9], [10], [11] have proposed and studied this approach
because methane disperses in the atmosphere and is carried
by wind over long distances. This allows a UAV to sense a gas
leak hundreds of meters away, enabling the survey of large
areas.

Two important questions motivate our paper: when the
UAV methane detector measures enhancement above a back-
ground concentration level, what can be inferred regarding
the location of the leak source? Similarly, when the UAV
methane detector does not measure enhancement above
the background, which upwind regions can be declared
free of gas leaks and to what confidence? Answering
these questions is not easy because detection of high gas
concentration can be highly intermittent due to the coupling
between the filamentous nature of the gas plume and atmo-
spheric turbulence [12], [13]. A high methane concentration
measured by the UAV only indicates that the UAV has
encountered a gas filament and inferring the upwind gas leak
location from such a measurement is not trivial [9], [10], [14].

To address this challenge, we use the concept of Upwind
Survey Regions (USRs). A USR represents a region on the
ground that relates to a UAV measurement. Its key purpose
is to map a high or low concentration measurement onto
a region: if the UAV collects a measurement of high gas
concentration, the USR represents a region that is likely to
contain a leak. Likewise, if the UAV collects a measurement
of low gas concentration, the USR represents a region that
is likely to be clear of gas leaks. Based on the results from
existing literature [15], [16], we propose to use ellipsoidal
USRs and we discuss in this paper how to estimate the
USR dimensions using simulation tools. The concept of

using a USR rather than an indication point to describe the
presence or absence of leaks is an important step forward
in doing auditable surveys where surveyed regions can be
unioned together and the total region surveyed quantified.
In particular, USRs are important for UAV surveys above
the treeline where the upwind fetch for highly sensitive
instruments can be many hundreds of meters. The concept
of USRs has been used in the industry (e.g. Picarro Leak
Indication Search Area (LISA) [17]); however, industry
algorithms are often proprietary.1

The main goal of this paper is to propose a framework
to enable the survey of a region using the USR concept.
As illustrated in Fig. 2, our framework has two components:
USR mapping and USR fusion.

• Regarding USR mapping, we use the dimensions of
the USR to map each UAV concentration measure-
ment (Cmn) of high or low gas concentration (detections
or non-detections) into a region on the ground, as illus-
trated in Fig. 3. More precisely, we determine the set of
locations in the ground that are within the USR relative
to the UAV location. At the end of this process, each
location in the groundwill be covered bymultiple USRs:
some USRs will be associated with detections while
others will be associated with non-detections (see Fig. 4
for an illustration).

• Regarding USR fusion, based on the information
provided by the various USRs covering each location on
the ground, we propose a statistical fusion procedure to
classify each location as containing a gas leak or not. The
final product of our USR fusion procedure is a survey
map, where the region is partitioned in three areas: the
areas that most likely contain a leak (Rgas), the areas
that are likely free of gas leaks (Rclear ), and the areas
from which not enough information is available for a
reliable decision (Runknown). Ultimately, the survey map
can be used by gas companies for guidance in infras-
tructure maintenance efforts and serve as an auditable
instrument to document efforts to reduce fugitive gas
emissions.

It is important to highlight that the mapping of UAV
measurements into USRs on the ground is not trivial because
USR dimensions change with environmental and flight
conditions. Thus, to apply our framework, the surveyor needs
a database of USR models, one model for each set of
environmental and flight conditions. A USR model is given
by the dimensions of the ellipsoidal USR. Before starting the
survey, the surveyor assesses the current environmental and
flight conditions and selects the associated USR model from
the database.

Our vision is to formulate a framework founded on
analytical and simulation models to facilitate and guide aerial
gas leak surveys. We envision a future in which companies

1The concept of USRs was also used in the master’s thesis of one of
the authors of this paper [18], who studied machine learning algorithms to
estimate the dimensions of trapezoidal-shaped USRs.
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FIGURE 2. Overview of the proposed USR-based framework to perform survey for gas leaks. The framework has two components: USR mapping and
USR fusion. After selecting a USR from a database of USR models, we map the UAV concentration obtained at each location into a region on the
ground. We fuse USRs covering each subregion to produce the final survey map. The database of USR models may be built as described in
Appendix B.

FIGURE 3. Illustration of USR mapping. Each instantaneous UAV
concentration measurement is mapped into a region on the ground. Each
USR is associated with a high concentration (detection) or low
concentration (non-detection) measurement.

use our analytical and simulation models to deploy low-
cost, small, agile UAVs that can fly just above the ground
and reliably complete the survey of the region. As a first
step toward this vision, we focus on a single UAV and use
simulated data to test and guide our fusion framework.

II. LITERATURE REVIEW
Methane is a greenhouse gas used in industry and many
households for various energy-related purposes such as
cooking and heating. Methane is transported from production
facilities using pipes and other infrastructure that is subject to
aging and faults, causing unintended gas leaks.

Such leaks are not a rare occurrence. The current estimated
amount of methane leaked in the atmosphere is significant:
the Environment Protection Agency calculates that 140 Mmt
(millions of metric tons) escape from natural gas systems
each year [19] and some authors argue that the actual amount
can be 60% higher than this estimate.

Verifying the presence of gas leaks is essential for gas
distribution companies not only because of its safety and

environmental impact, but also because of the financial
loss incurred by gas leaks. It is estimated that the oil
and gas industry loses US$2B every year only due to gas
leaks [1]. To reduce the environmental impact and losses,
gas distribution companies periodically survey entire urban
areas [1], [6], [20], [21].

A common solution to detect gas leaks is to perform
periodic foot patrols. In such patrols, field technicians survey
a region with portable natural gas analyzers. Many sensor
technologies are available including solid-state (calorimetric,
pyroelectric, semiconducting metal oxide, electrochemi-
cal) [22], flame and photoionization detectors [5], [23],
optical gas imaging [5], [24], controlled interference polar-
ization spectroscopy (CIPS) [25], non-dispersive infrared
(NDIR) detectors, and tunable laser spectroscopy [26]. Such
sensors aim at pinpointing leaks to within a few meters [3],
[5], [24], [26]. However, foot patrols can be expensive and
time-consuming [4], [5] due to the large area that needs to be
covered.

To increase the leak surveying efficiency, additional
solutions employing moving platforms have been tested and
implemented, as we describe in the next subsections. They are
complementary approaches intended to facilitate the survey
process. Traditional methods using handheld gas sensors
are still required to pinpoint leaks [4], [5]. Likely, an ideal
solution may be a tiered approach, combining multiple
technologies to detect and repair leaks [3].

A. ARRAY OF STATIONARY SENSORS
One possible solution to detect gas leaks is to deploy an
array of stationary methane sensors at strategic locations. The
sensors can be integrated into a networked system to monitor
a facility or a region [21], [27], [28], [29], [30], [31], [32],
[33], [34].

Stationary sensors offer continuous monitoring and low
operational costs [27]. However, monitoring the entire
production, transmission, and/or distribution system with
stationary sensors requires a large quantity of sensors.
Furthermore, sensors close to the ground may fail to detect
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leaks when heat and wind disperse the gas to higher altitudes,
being out of reach of sensors [14], [35]. For such reasons,
stationary sensor solutions are typically deployed close to gas
production facilities or high risk areas [5], [28].

B. VEHICLE APPROACHES
Another approach is to place highly sensitive (parts per
billion) sensors on vehicles [17], [36], [37], [38], [39] to
more rapidly cover large areas, such as urban and suburban
distribution systems. Several operators have been exploring
this approach to complement their surveys [40], [41]. Tests
of vehicle approaches demonstrate detection of leak rates
below 100 g/hr [4]; however, these technologies often
observe the same leak multiple times during a transit,
leading to false positives, and may miss leaks that are
far from a road [5], [42]. For instance, the authors of [37]
reported difficulties in detecting leaks more than 20m
away from the vehicle. Because of this, the coverage of
vehicular-based approaches is typically limited to areas close
to roads [4], [17]. The logistics of wind transport of the
natural gas coupled with roadways fromwhich to sample also
imposes difficulty in consistent surveying methodology.

C. SATELLITE-BASED APPROACHES
Remote sensing from satellites is becoming more common
to detect larger gas leaks from orbit [43], [44], [45], [46].
The hyperspectral imagers implemented on satellites receive
sunlight reflected by the Earth. Because methane absorbs
certain wavelengths measured by these imagers, the satellite
instrument can infer the presence of a leak within the region.

Satellites allow wide coverage and are effective in
detecting large gas leaks (e.g. around 117 kg/hr [47]), making
them ideal to detect super-emitters at regional or global
scales [4], [45]. On the other hand, satellite solutions suffer
from cloud and snow cover and can detect only large leaks [5].
Recent experiments have reported the ability to detect leaks
as low as 100 kg/hr [44], [48]; however, gas operators are
interested in detecting leaks as low as 36 g/hr [11].

D. AIRBONE-BASED APPROACHES
To improve detection of leaks, researchers have explored the
option of performing sensing using aircraft or UAVs. The
immediate benefit is that aircraft and UAVs fly at lower
altitudes than a satellite, being able to sense gas leaks from
a closer distance at much lower emission rates. There are two
types of sensing in this category: detecting gas leaks while
flying above the gas plume (remote sensing) and detecting
gas leaks while flying inside the gas plume (in situ sensing).

1) REMOTE AIRBORNE SENSING
In this approach, the aircraft or UAV carries either a
shortwave infrared (SWIR) passive imaging spectrometer
measuring reflected sunlight [48], [49], [50], [51], a mid-IR
infrared camera [52], or an active laser-based sensor [31],
[53], [54], [55], [56], [57], [58], [59]. Based on the amount

of energy reflected, the sensor estimates the integrated gas
concentration in the vertical column of air between the ground
and the sensor. To enable detection, the aircraft or UAV needs
to fly above the target so that the gas plume is within the field
of view of the sensor [57].

Several authors have reported experiments in which this
technology was able to detect leaks on the order of 1 kg/hr
when flying aircraft at 200m altitude [56], [57] and leaks
of 155 kg/hr when flying at 5km altitude [49]. In the
Stanford/EDF Methane Challenge, an aircraft flying at 850m
altitude using a LIDAR sensor was able to reliably detect
leaks above 9 kg/hr [4].

Drawbacks of using aircraft are high flying cost, lack of
maneuverability [12], need for skilled pilots to fly the aircraft
above targets [57], and reduced detection performance when
flying at required high altitudes [5].

UAVs allow lower flying altitudes (e.g. Class G airspace
not available to manned aircraft [14]) and authors have
reported the ability to detect with LIDAR sensors leak rates as
low as 5 kg/hr when flying the UAV at altitudes ranging from
3m to 15m above the leak [53] and 13 kg/hr when flying at
an altitude of 50m [31].
While reduced altitudes improve detection of small leaks,

it also reduces the area within the field of view of the sensor,
requiring the UAV to fly right above the gas plume for reliable
detection [51].

2) IN SITU AIRBORNE SENSING
An alternative approach, which we follow in this paper,
is to fly the aircraft or UAV inside the gas plume [6], [7],
[8], [9], [10], [11], [12], [42]. In this approach, the aircraft
or UAV carries a sensor that measure in situ concentration
at the aircraft/UAV location as it flies downwind from the
leak. Open or closed path laser absorption spectroscopy
are often used to measure the concentration level, enabling
detections of concentration at the part-per-billion (ppb)
level [8], [11], [60].
Many authors have performed experiments highlighting

the potential of this approach. The authors in [11] reported
the ability to detecting leak rates as low as 1 kg/hr from a
distance of 280m downwind of a leak source. The authors
in [9] reported the ability to sense enhancement as low as
20 ppb above the background methane concentration up to
4km downwind of known landfills and flare stacks. Other
authors [6] reported being able to measure the plume as far
as 10km downwind of known landfills. In the Stanford/EDF
Methane Challenge, UAVs using in situ measurements were
able to reliably detect leaks above 40 g/hr while flying at an
altitude of 1-3m near a test facility [4].

The ability to detect gas at low leak rates, from a distance,
and at low altitudes are some of the advantages of flying
inside the gas plume, making it a viable solution to quickly
screen a region for gas leaks.

As in other approaches, there are also some challenges
in implementing this solution. The authors in [8] and [42]
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reported that in situ measurements are highly intermittent,
requiring multiple passes to collect additional data to confirm
the existence of a plume. The authors in [7] reported
difficulties in detecting the plume: in a controlled experiment
with a single gas leak source and considering the UAV flying
at 40-50m, the authors evaluated the probability of detecting
the gas plume when flying 750m to 2000m downwind from
the source. Even with a leak rate of 1 ton/hr, the authors
reported detection probabilities as low as 0.21, highlighting
the complexity of plume detection.

When deploying this solution in UAVs, the propellers may
dilute the gas before it reaches the sensor [10]. To mitigate
this signal reduction problem, one can place the sensor in
front of a UAV with a wide enough frame [12], [35]. The
authors in [35] further claimed that the UAV needs to fly into
the plume with a speed of at least 2m/s to make the UAV
propellers’ influence in the concentration negligible.

Given the turbulent and intermittent nature of concentra-
tion measurements, elaborate techniques were proposed to
detect and localize the leak [14]. The authors in [6], [9],
and [10] used the in situ measurements together with wind
information and environmental characteristics in a sequential
Bayesian Markov Chain Monte Carlo method to estimate the
number, strength, and location of leaks. In [6] and [9], the
measurements are used in the Metropolis-Hasting algorithm
to update the posterior distribution for these variables.
In [10], the posterior distribution is updated with particle
filters.

There has also been research work on search algorithms
to guide the UAV towards the gas source [61], [62]. The
authors in [62] propose that the UAV choose the direction
that provides the highest expected gain in information. The
authors in [61] propose that the UAV follow a three-phase
approach: plume acquisition, plume tracking, and source
declaration, after which the search task is complete. Each
phase involves a different flight pattern and a different
way of processing the UAV measurements to determine the
next UAV position. The authors in [63] proposed a UAV
path-planning algorithm to cover a region and build a map
of the gas concentration in the region. Their random-tree
based algorithm aims at directing the UAV towards the
points of highest concentration, focusing on the scenario
without wind.

E. OUR CONTRIBUTIONS
In this paper, we focus on how to perform surveys using
UAVs flying inside the gas plume. Although this concept
is not new, our paper adds to the existing body of
knowledge by providing a formal framework to process the
UAV measurements. More precisely, three important aspects
differentiate our paper from the existing literature:

1) Our framework is not restricted to locating a gas leak
among a small set of candidate leak locations; instead,
our method can determine regions with possible gas
leaks wherever they occur in the region.

2) Instead of attempting to estimate the leak location as
quickly as possible, our framework aims at guiding gas
distribution companies by producing a survey map.
Such a map would not only indicate the areas that are
likely to contain a gas leak, but also indicate areas
that can be reliably cleared of gas leaks. With the
survey map, the gas company can concentrate its foot
patrols or other surveying methods in a smaller region
to pinpoint the exact location of the leak. Furthermore,
approaches that attempt to estimate the leak location
typically assume that the number of leaks is known.
By producing a survey map, our approach can identify
multiple regions that contain possible leaks.

3) We consider a new statistical procedure to fuse the
USRs covering each location in the ground in order to
determinewhether it can be reliably cleared of gas leaks
or not.

We conclude this section by highlighting that our approach
is not intended to replace foot patrols or other technologies.
Instead, our approach should be seen as complementary to
other technologies. Themain goal of our approach is to screen
areas both for the presence of leaks as well as the absence
(to a certain confidence level) of leaks and facilitate the work
of foot patrols by guiding them to the area most likely to
contain gas leaks.

III. MODEL DESCRIPTION AND METHODOLOGY
OVERVIEW
Consider a region R to be surveyed for gas leaks. For
convenience, we assumeR is the plane (x, y, 0) within a three-
dimensional space.

If K ≥ 0 gas leaks are present in R, we assume that they
release unpressured gas that propagates in the atmosphere
over time, producing an instantaneous gas concentration
field C(p, t) at each location p := (px , py, pz) and
time t .

To surveyR for gas leaks, we propose to use anUAV.Along
with a GPS, anemometer, and communication equipment,
the UAV carries an open path laser spectrometer (OPLS)
sensor. As the UAV flies over R, the OPLS collects multiple
in situ measurements of the instantaneous gas concentration
field tagged with 3D location and time; i.e., when the UAV
is at position p at a time t , the OPLS obtains the value
of C(p, t). As discussed in [12] and [35], it is possible to
mount the OPLS sensor in the front of a UAV with a wide
enough frame such that the UAV propellers’ influence in
C(p, t) is negligible when then UAV flies into the plume
with a speed of at least 2m/s. We assume such conditions in
this paper.

At each measurement, the OPLS sensor compares each
C(p, t) against a threshold Cmin. If C(p, t) > Cmin,
we say that a detection occurred; otherwise, we say that
a non-detection occurred. We note that Cmin should be set
high enough to detect enhancement above the background
concentration level.
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The end goal of our method is to use the sequence of
detections and non-detections at various UAV positions to
partition R in three subsets:

• Rclear : set of points that are likely to be clear of leaks;
• Rgas: set of points that may contain a leak; and
• Runknown: set of points for which no decision is made.
The principle is to use each measurement of instantaneous

gas concentration to gather evidence about the absence or
presence of a leak in each part of the region R; and the
first issue to address is: how to map each detection and
non-detection into a subset of R? In other words, a detection
at UAV position p represents an evidence that there is a leak
somewhere upwind of p, but where? Likewise, which parts of
R can be cleared of leaks when a non-detection occurs?
Mapping detections and non-detections into subsets of R

that are likely to contain a leak and subsets that can be cleared
is not trivial because the UAV measurements are collected
downwind of the region being surveyed. For this, we need a
practical way to map UAV measurements into subsets of R.
This is the motivation for the concept of Upwind Survey
Regions.

A. THE UPWIND SURVEY REGION (USR)
To define the USR, we use concepts from the theory of
footprint modeling [16]. Meteorologists are often interested
in studying gas exchanges close to the surface. For this,
various sensors are placed in the top of towers looking
over a forest or a region. Since the sensor measurements
represent the concentrations at the sensor location, meteorol-
ogists are interested in estimating the relative measurement
contribution coming from the sources distributed in the
underlying region. For this, they define the concept of
footprint function:2 The footprint function fp(x, y) represents
the transfer function between a source at location (x, y, 0)
and a sensor located at p [65]. The footprint function fp
can vary not only with the sensor height (pz), but also with
various meteorological parameters, such as wind speed and
the inverse Monin-Obukhov (MO) parameter [66, Chp. 4].

Letting Qss(x, y) be the distribution of source strength, the
long-term average concentrationmeasured at p is obtained
from

Cavg(p) =

∫
R
Qss(x, y)fp(x, y)dxdy. (1)

It is important to highlight that Cavg(p) does not represent
the instantaneous concentrationC(p, t) collected by the UAV.
Rather, it is the long-term average concentration over a
period of about 10 minutes [66, Chp. 4]. The instantaneous
concentrationC(p, t) collected by the UAVvaries because the
gas disperses in filaments with random paths [12], [13].

Considering that gas leaks are point sources, Qss(x, y) can
be modeled with impulses. For instance, if a leak of strength s

2In most of the literature, the measurement considered is the flux;
however, the footprint function can also be defined with respect to
concentration measurements [64]. Since the UAV collects concentration
measurements, we apply the concept of footprint concentration function.

is present at (x∗, y∗), then Qss(x, y) = sδ((x, y) − (x∗, y∗)),
where δ(x, y) is the Dirac function,3 and

Cavg(p) = s · fp(x∗, y∗). (2)

We use the concept of footprint function to define the
USR for a location p. Assuming that the surveyor needs to
detect leaks with strength smin or higher, the Upwind Survey
Region (USR) for a location p is defined as

USR(p) := {(x, y) : smin · fp(x, y) > Cmin}. (3)

Intuitively, the USR(p) is used to make inferences regard-
ing the presence or absence of leaks within the region covered
by the USR(p). If the footprint function fp were known
and the UAV’s OPLS sensor collected a long-term average
measurement Cavg(p) ≤ Cmin, then the surveyor could infer
that the region covered by the USR(p) does not contain a gas
leak of strength smin or higher. On the other hand, if the UAV
collected a long-term average measurement Cavg(p) > Cmin,
then the surveyor could infer that a gas leak with strength
smin or higher may be present inside the region covered by
USR(p).

Defining the USR in terms of the footprint function fp is
useful because results from the footprint modeling literature
provide guidance regarding its shape. More precisely, pre-
vious results suggest an ellipsoidal shape for USR(p) when
p is above the roughness sublayer [15], [16]. Also, when
R is homogeneous enough, fp does not depend on px or
py [15], [16].

Unfortunately, analytical forms for the footprint function fp
are difficult to obtain, making it difficult to analytically
estimate the dimensions of the ellipsoidal USR; however,
it is possible use simulation tools to derive models for the
footprint function [15]. In our work, we use the Quick Urban
and Industrial Complex (QUIC) simulation software [67]
from Los Alamos National Laboratory to estimate the
dimensions of the USR under various environmental and
flight conditions. For each set of conditions, we estimate
and store a USR model consisting of the fetch start (dstart ),
fetch end (dend ), and width (w) for the ellipsoidal USR,
as illustrated in Fig. 3. We provide details about the QUIC
simulator in Appendix A and we describe a procedure to
estimate the USR dimensions and build a database of USR
models in Appendix B. We note that the procedure to build
the database of USR models is done only once: after the
database is built, USR models can be applied indefinitely
when performing surveys in similar environmental and flight
conditions.

Even with the database of USR models, using the USR
to perform surveys is not trivial because the UAV does not
collect samples of the long-term average Cavg(p); instead,
it collects samples of the instantaneous concentrationC(p, t);
however, our methodology addresses this issue to enable the
production of survey maps from UAV measurements.

3The Dirac function is a generalized function that satisfies δ(x, y) = 0 for
(x, y) ̸= (0, 0) and

∫ ∫
δ(x, y)dxdy = 1.
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B. METHODOLOGY OVERVIEW
Our framework is illustrated in Fig. 2 and consists of two
components: USR mapping, and USR fusion.

• USR mapping: This is the component that maps
high concentration measurements (detections) or low
concentration measurements (non-detections) collected
by the UAV into the USR region. Each measurement
has an associated GPS location for the UAV and the
USR region is defined with respect to the GPS location.
Multiple USRs are mapped into the ground; and, for
each subregion, the procedure tracks how many USR
associated with detections and non-detections cover the
subregion. Details are given in Section IV.

• USR fusion: Because gas disperses in filaments with
random paths [13], UAV measurements are random
and USRmapping may provide conflicting information;
i.e., a ground subregion may be covered by both USRs
associated with detections and USRs associated with
non-detections. The USR fusion procedure statistically
combines the various information to decide whether a
ground location should be included into Rgas, Rclear ,
or Runknown. Details are given in Section V.

IV. USR MAPPING
The first step in translating UAV measurements into a survey
map is USR mapping; i.e., each UAV measurement collected
at a location p is mapped into the region given by the USR(p).
As USRs are mapped on the ground, we track which USRs
covered each subregion being surveyed.

Start by dividing R with a uniform grid with any desired
granularity, producing the set of subregions {{rij}Ii=1}

J
j=1.

Assume the UAV flying at a constant altitude pz in a
sweeping flight pattern: as illustrated in Fig. 1, the UAV
flies in a direction perpendicular to the wind direction
while periodically changing its direction by 180◦ and
periodically moving upwind. Assume that the UAV changes
direction when it reaches the boundary of the space being
surveyed. After performing a number of flights in the same
perpendicular line, the UAV moves dupwind meters parallel
to and against the wind direction and performs a new set
of perpendicular flights. This process is repeated as many
times as desired. We shall refer to each of these perpendicular
flights as a crossflight.
Let M be the total number of crossflights. For each

crossflight m, assume that N instantaneous gas concen-
tration measurements are collected. Let p

mn
, Cmn, and

tmn respectively represent the UAV position, the instanta-
neous gas concentration, and time the measurement was
collected at the nth measurement in the mth crossflight;
i.e., Cmn := C(p

mn
, tmn).

For every position p
mn

of the UAV, the USR mapping
process determines the USR(p

mn
) by considering the wind

direction and meteorological conditions. More precisely,
based on the UAV height, the inverse MO length, and the
wind speed, we first interpolate the USR’s fetch start dstart ,

FIGURE 4. Illustration of five USR(pmn) mapped from five UAV
measurements collected at positions {pm1, . . . , pm5} during crossflight m.
USRs encircled with red and green lines respectively represent USRs
associated with detections and non-detections. Note that USRs overlap
and a subregion rij may be covered by multiple USRs. If during the
crossflight m any of the USRs covering a subregion rij is associated with a

detection, then e(m)
ij = 1.

fetch end dend , and minor axis widthw from the existing USR
models in the database. Let (ux , uy, uz) be the unitary wind
direction vector, and use this vector to determine USR(p

mn
)

as the ellipsoidal region in the ground plane with major axis
starting at (pmn,x − ux · dstart , pmn,y − uy · dstart ) and ending
at (pmn,x − ux · dend , pmn,y − uy · dend ); and minor axis
perpendicular to (ux , uy) and with width w. When the inverse
MO length, the wind speed, the wind direction, and the UAV
height are constant, the mapped USR(p

mn
) have the same

ellipsoidal dimensions and same orientation but shifted in
space by the UAV location, as illustrated in Fig. 4.

It should be noted that the USR mapping process can
also be used when meteorological conditions change during
the survey. For instance, if the wind speed changes in
between UAV measurements, then USRs with different
dimensions would be mapped into the ground. Likewise,
if the wind direction changes in between UAVmeasurements,
then the mapped USRs’ orientation would also change
accordingly.

The USR mapping process associates each USR(p
mn
)

with its instantaneous concentration measurement Cmn; and
compares them against the threshold Cmin to determine
detections (Cmn > Cmin) and non-detections (Cmn ≤ Cmin).
Each detection represents evidence for a gas leak at subre-
gions rij within the USR(p

mn
). Likewise, each non-detection

represents evidence that subregions rij within the USR(p
mn
)

are clear of gas leaks.
We note that, given that each USR provides information

about subregions located in between dstart and dend from the
crossflight line, each crossflight must be spaced by no more
than dend − dstart to ensure that all desired subregions rij are
surveyed; i.e., whenever the UAV moves dupwind parallel and
against the wind direction to start a new crossflight, it must
move dupwind < dend − dstart .

1392 VOLUME 12, 2024



Witenberg S. R. Souza et al.: Framework to Survey a Region for Gas Leaks Using an UAV

We further note that, if the surveyor knew the strength s
of the emitter and if s were greater than the smallest leak
strength smin used to define USR(p) in (3), then a larger USR
could be used to map measurements on the ground, enabling
the survey of larger areas; however, the emitter strength is
generally unknown and the conservative option is to use
USR(p) corresponding to smin. Using such a USR(p) to map
measurements on the ground limits the number of subregions
for which the USR provides evidence for or against the
presence of gas leaks; however, it results in more conservative
survey maps.

After all measurements are collected and all USRs are
mapped, we determine if each subregion rij should be placed
into Rclear , Rgas, or Runknown by fusing the evidence provided
by detections and non-detections from all USRs covering rij.
The fusion process that we propose is discussed precisely in
the next section.

V. USR FUSION
If all USRs that cover a subregion rij correspond to detections,
then it would be reasonable to place rij in Rgas. Likewise,
it would be reasonable to place rij in Rclear if all USR that
cover rij correspond to non-detections.
The challenge is that USRs may provide conflicting

information; i.e., it is often the case that one or more
USRs corresponding to detections cover rij while other
USRs corresponding to non-detections cover the same rij,
as illustrated in Fig. 4. To understand this, recall from
Section III that the concept of USR is defined based
on long-term average gas concentrations; however, UAVs
collect measurements of instantaneous gas concentration.
Instantaneous values of concentration are random and can be
significantly different from long-term averages because of the
random filament nature of gas dispersion [13]. As a result,
it may happen that a UAV at p

mn
is inside the gas plume

produced by a leak in (x∗, y∗); i.e., the long-term average
concentration gas plume is such that Cavg(pmn) > Cmin, but
the instantaneous concentration collected by the UAVmay be
weak; i.e.,Cmn < Cmin. In this case,Cmn would correspond to
a non-detection, providing incorrect evidence that USR(p

mn
)

does not contain a leak. Likewise, it may also happen that
a UAV at p

mn
is outside the gas plume produced by a leak

in (x∗, y∗) but still collects an instantaneous measurement
Cmn > Cmin due to a gas filament moving out of the average
gas plume. In this case, Cmn would correspond to a detection,
providing incorrect evidence that USR(p

mn
) contains a leak.

These phenomena are illustrated in Fig. 5.
Due to the randomness in Cmn, we propose to fuse the

evidence provided by the various USRs containing rij to
decide whether to place rij in Rgas or Rclear using a statistical
decision framework.

A first motivation for the statistical decision framework is
that it has mechanisms to control the different types of error.
In our context, there are two types of decision errors when
surveying each point rij in R:

FIGURE 5. Illustration of instantaneous UAV measurements providing
incorrect evidence regarding the presence or absence of leaks. Due to the
random path taken by gas filaments, an instantaneous UAV detection
at pm1 may provide incorrect evidence that the region covered
by USR(pm1) contains a leak. Likewise, although pm2 is inside the
average gas plume of a leak, it might happen that the instantaneous UAV
measurement is below Cmin, causing a non-detection and providing
incorrect evidence that the region covered by USR(pm2) is free of leaks.

• False Negative: placing rij in Rclear when rij should be
placed in Rgas; i.e., declaring rij to be clear of leaks when
a gas leak exists in rij; or

• False Positive: placing rij in Rgas when rij should be
placed in Rclear ; i.e., declaring a gas leak is present in
rij when rij is clear of leaks;

and we argue that, among these two types of errors, any
survey should aim to keep the probability of any false negative
below a small value α (e.g., α = 0.05); i.e., we propose that
the survey method clears a subregion rij of gas leaks only
under strong evidence.

A second motivation for the statistical decision framework
is that it combines random evidence. In our context, if the
USR includes rij and is associated with a detection, then
the surveyor has evidence for placing rij in Rgas; but if the
USR includes rij and is associated with non-detection, then
the surveyor has evidence for placing rij in Rclear . When
multiple USRs include rij, some with high and some with
low concentration measurements, a statistical framework
provides guidance in how to conciliate the contradictory
evidence.

To decide if each rij should be placed in Rgas or Rclear ,
let Mij be the number of crossflights with at least one USR
covering rij. More precisely, letting 1{condition} = 1 when
the condition is true and 1{condition} = 0 when the condition
is false,

Mij :=

M∑
m=1

N∑
n=1

1{rij ∈ USR(p
mn
)}.

Let e(m)ij = 1 if at least one of the USR(p
mn
) of the crossflight

m that covers rij is associated with a detection (see Fig. 4 for
an illustration); otherwise, e(m)ij = 0:

e(m)ij = 1 ⇔

N∑
n=1

1
{
rij ∈ USR(p

mn
)

and Cmn > Cmin

}
> 0;
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i.e., e(m)ij = 1 represents evidence that rij should be placed

in Rgas; and fuse all e(m)ij with

sij :=

Mij∑
m=1

e(m)ij . (4)

Because of the randomness in Cmn, we have that Mij, e
(m)
ij

and, therefore, sij are all random outcomes. Let Sij represent
the random variable whose outcomes is sij and define

Pij := P[Sij ≤ sij|Mij crossflights, gas leak located in rij],

(5)

which is the ‘p-value’ for the outcome sij. P-values are
typically used by statisticians to indicate the level of evidence
against a hypothesis [68]. Lower values for a p-value
indicates that an outcome is unlikely to occur when the
hypothesis is true. In here, Pij indicates the level of evidence
that rij contains a leak and a very low value for Pij provides
strong evidence to place rij in Rclear .4 We discuss how to
compute Pij in the next section.

From Mij and Pij, we test each rij individually by
comparing its p-value Pij against a threshold αind:

Mij < Mmin ⇒ rij ∈ Runknown;

Mij ≥ Mmin, Pij < αind ⇒ rij ∈ Rclear ;

Mij ≥ Mmin, Pij ≥ αind ⇒ rij ∈ Rgas; (6)

where Mmin defines the minimum number of crossflights
below which we refrain to make a decision given the low
amount of information. We highlight that, because of the
multiplicity of tests [69], αind needs to be adjusted to keep
the probability of placing any rij with a leak in Rclear below α.
We discuss how to adjust αind in Section V-C.
After testing each subregion, the surveyor builds the survey

map, indicating Rgas, Rleak , and Runknown areas.

A. COMPUTING P-VALUES
To compute Pij, we consider that each e(m)ij is the realization

of a Bernoulli random variable E (m)
ij . Let

q := P[E (m)
ij = 1|Mij crossflights, gas leak located in rij];

(7)

i.e., q is the probability that the UAV collects at least one
measurement Cmn > Cmin while crossing the gas plume
produced by a leak at rij in any of the crossflights. We assume
that the region is homogeneous such that q does not depend
on rij. This is a simplified model because q does not take into
account the distance between the crossflight and rij; however,
we adopt this model for this initial study. In this model,

4We note that p-values are often defined as the upper tail of a distribution;
however, since we want to generate conservative maps and reject the
hypothesis that rij contains a leak only under strong evidence, we compute
the p-values using the lower tail of the Sij distribution because, when rij
contains a gas leak, Sij tends to be higher than when rij does not have a gas
leak.

q represents the average probability of E (m)
ij = 1 among all

crossflights that cover any rij.
We assume that {E (m)

ij }
Mij
m=1 are statistically independent

random variables conditioned on the Mij crossflights both
when a leak is present at rij and when a leak is absent
at rij. This assumption is reasonable when a UAV performs
the sweeping flight pattern because the configuration of gas
particles in the flight path changes from one crossflight to
the next.

It then follows that, when conditioned on Mij crossflights,
Sij =

∑Mij
m=1 E

(m)
ij has a Binomial distribution with parameters

Mij and q [68]; and Pij used in the decision rule (6) is
obtained from the cumulative distribution function of the
Binomial(Mij, q) distribution computed at sij.

B. ESTIMATING q
Given the difficulty in estimating q analytically, we propose
two possible ways to estimate q.

One way to estimate q is to use UAV flight measurements
collected when the leak location is known. For instance, the
surveyor would place a gas canister in a region rij, fly a
large number Mij of UAV crossflights covering rij. From
the e(m)ij obtained, estimate q with q̂ = (1/Mij)

∑
m e

(m)
ij .

Such a q would be included in a georeferenced database and
used in future UAV measurements to survey the same region
for actual leaks in unknown locations.

Another way to estimate q is to consider it to be a nuisance
parameter in the detection problem [70]. In this approach, one
estimates q using the same UAV flight measurements used
to perform the survey. Since the leak location is unknown,
we propose that the surveyor first estimate q as if the leak
were present in each subregion rij. Letting q̂ij represent such
estimate, we propose to use q̂ij = (1/Mij)

∑
m e

(m)
ij , where

Mij is the number of USRs covering rij. Since the subregion
containing a leak will have q̂ij among the highest values,
we propose to adopt q̂ = maxij q̂ij for the fusion procedure.
Such a procedure should provide low-variance estimates
when Mij is high.

C. ADJUSTING αIND

To understand how to adjust αind in the decision rule (6) to
keep the probability of placing any rij with a leak in Rclear
below α, it is important to discuss how our survey procedure
relates to the multiple hypotheses testing problem [69].

Consider testing G hypotheses {Hg}Gg=1 using G inde-
pendent tests. The multiple hypotheses testing problem
refers to the probability of rejecting any Hg when Hg
is true. Assume that each of the G tests is performed
such that P[reject Hg|Hg is true] = α. It then follows
that P[reject any true Hg|G0 hypotheses Hg are true] = 1−
(1−α)G0 , which grows to 1 as the numberG0 of true hypothe-
ses Hg grows [69]. To avoid this problem, one can apply
the Bonferroni correction [71]: assuming the number of true
hypotheses Hg can be as large as G, perform each individual
test such that P[reject Hg|Hg is true] = α/G. Although the
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Bonferroni correction ensures that the probability of rejecting
any true Hg is below α, it reduces the probability of rejecting
Hg when Hg is false.

The multiple hypothesis testing problem is also present
when performing surveys because the surveyor is testing
whether each one of I · J subregions rij contains a leak
or not. More precisely, letting Hij refer to the hypothesis
that rij contains a leak, to keep P[reject any true Hij|I ·

J hypotheses Hij are true] ≤ α, one would need to set
αind = α/(I · J ). However, it is not necessary to use such a
small αind because it is known that the number of leaks (K ) is
supposed to be much lower than I ·J . This makes the multiple
hypothesis testing problem much less severe in our survey
problem.

If the surveyor knows that no more than Kmax leaks exist
in the region; i.e., K ≤ Kmax , then adopting αind = α/Kmax
ensures that

P[any rij with a leak placed in Rclear |K leaks in R] ≤ α.

(8)

To see this, follow the same proof for the Bon-
ferroni correction [71, pg. 350]: let K be the set
of subregion indexes (i, j) that contain a gas leak
and P[any rij with a leak placed in Rclear |K leaks in R] ≤∑

(i,j)∈K P[Pij < αind] ≤
∑

(i,j)∈K αind = Kα/Kmax ≤ α.
If the surveyor cannot assume a value for Kmax , then

Kmax = I · J could be used to define αind; however, αind
would be too small and the survey would likely generate a
very large Rgas region.
Given that the final purpose of the survey map is to

provide guidance, we suggest that the surveyor adopt any
reasonable value for Kmax (even Kmax = 1) and accept that
the probability of placing any rij with a leak in Rclear may
be greater than α when the actual number of leaks is greater
than Kmax .

VI. EVALUATING SURVEY PERFORMANCE
Since the survey map will guide maintenance decisions,
it is important that gas leaks be present in Rgas so that
maintenance crews do not miss any leak. This motivates our
first performance metric: the probability of placing any rij
with a leak in Rclear . As explained in the previous section,
this probability depends on the maximum number of leaks
assumed in the region. Therefore, we evaluate our surveywith

P[any rij with a leak placed in Rclear |K leaks in R] (9)

for any desired value for K . We propose to estimate (9)
by producing survey maps in various test flights with leaks
placed in various random locations. In each test, we fly the
UAV, collect measurements Cmn, and execute the procedure
to produce the surveymap. Based on the various surveymaps,
we estimate (9) with the ratio of the number of survey maps
containing any leak in Rclear to the total number of survey
maps.

However, it is important to highlight that (9) is not
sufficient to evaluate the quality of the survey. To see this,

consider an extremely conservative framework that places
all subregions in Rgas. In this case, the probability that
any rij with a leak is placed in Rclear is 0; however, such
a survey map does not provide valuable information to a
surveyor.

Therefore, to increase the efficiency of maintenance crews,
it is important that Rgas be as small as possible. For this
reason, we also evaluate the quality of the survey map
through the size of the Rgas region. More precisely, letting
| · | represent the number of subregions within a set, we also
compute |Rgas|/|R|.
We note that |Rgas|/|R| is closely related to the accu-

racy (Acc) of the survey map. Recall that Acc = (TP +

TN )/(TP + TN + FP + FN ), where TP, TN , FP and FN
respectively represent ‘true positives’, ‘true negatives’, ‘false
positives’, or ‘false negatives’. In our context, a TP is a
subregion that contains a leak and was placed into Rgas;
a TN is a subregion that does not contain a leak and was
placed into Rclear ; a FP is a subregion that does not contain
a leak and was placed into Rgas; and a FN is a subregion that
contains a leak and was placed into Rclear . Since TP ≪ TN ,
Acc ≈ TN/(TP + TN + FP + FN ) = 1 − (TP + FN +

FP)/(TP + TN + FP + FN ). And since FN ≪ TN , Acc ≈

1 − (TP + FP)/(TP + TN + FP + FN ). Lastly, since |Rgas|
represents the number of regions placed in Rgas, which equals
TP+ FP, Acc ≈ 1 − |Rgas|/|R|.
Ideally, it is desirable that survey methods have both

the probability of placing any rij with a leak in Rclear and
|Rgas|/|R| close to 0.

VII. RESULTS
In this section, we provide examples showing how our
framework can be used to produce gas leak survey maps.
We evaluate our framework using both simulated data and
real data.

A. TESTING SURVEY FRAMEWORK USING QUIC
SIMULATED DATA
For these tests, we configured QUIC to simulate gas
fields spreading in an open field of 200m of width
(x-dimension), 1000m of depth (y-dimension), and 20m of
height (z-dimension). One, two, or three gas leaks releasing
unpressured gas at a constant rate of 100 g/hr were placed
at ground locations with a southbound wind spreading the
gas particles in the 3D region. The wind speed during
simulations was 4m/s and the inverse-MO was −0.11/m.
In each simulation, we configured QUIC to produce gas
fields with 6 million particles, producing gas fields that
approximate the long-term average concentration at each
point in the space. Before collecting UAV measurements,
we ran the simulation for 800 seconds to ensure that it reached
the steady-state condition.

We simulated the UAV flying at a constant height of
z = 5m in various lines perpendicular to the wind, with each
line at a different distance to the leak. From the average
gas concentration produced by QUIC, we simulated the
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FIGURE 6. Number of crossflights with high concentration USRs (
∑Mij

m=1 e(m)
ij ) and the resulting p-value Pij for each subregion rij . The

actual leak location (not known by the procedure) is indicated with a circle. The wind direction is from top to bottom. The UAV flight
path is indicated with cyan lines.

instantaneous concentration measurements C(p, t) collected
by the UAV using a Poisson model, in a manner similar
to [62], [72], [73], and [74]. More details can be found in
Appendix C. Each instantaneous measurement C(p, t) was
compared against Cmin = 6.6 · 10−6g/m3 to determine
detections and non-detections.

Using a database of USR models estimated as described in
Appendix B-A and shown in Tables 1 and 2 of this appendix,
the ellipsoidal USR model interpolated for the conditions
above had 1.75m of fetch start, 106.78m of fetch end and
35.00m of minor axis. This USR model was used to map
the USR(p

mn
) for the detections and non-detections obtained

at the various UAV locations in all the test simulations that
follow.

1) EXAMPLES WITH 1 LEAK
For this first example, we executed our procedure (USR
mapping and USR fusion) to produce a survey map while
considering a single gas leak placed at (x∗

= 70, y∗ =

706, z∗ = 0). We highlight that our procedure produced the
survey map without knowledge of such a leak location.

We simulated the UAV flying in the 3D gas field at a
constant height of z = 5m in lines perpendicular to the wind.
Starting at the location p

0
= (20, 20, 5), the simulated UAV

collected 160 measurements, one per meter, as it moved
to the location (180, 20, 5), completing a crossflight. After
10 crossflights at a fixed y, the simulated UAVmoved upwind
by 100m before doing a new set of 10 crossflights, until it
completed the last crossflight at y = 920m.
To produce the final survey map, the 200m-by-1000m

ground surface was partitioned using a regular grid, produc-
ing 7m-by-7m subregions rij.

For each measurement, we used our USR mapping proce-
dure of Section IV to map each detection and non-detection
USR into the region, tracking the number of detection and
non-detection USRs covering each subregion rij.

FIGURE 7. Final survey map. Rclear is shown in green, representing areas
for which the evidence of a gas leak is small. Rgas is shown in red,
representing areas that could not be cleared. Runknown is shown in white.
The actual leak location (not known by the procedure) is indicated with a
circle. The wind direction is from top to bottom. The UAV flight path is
indicated with cyan lines.

After completing all crossflights, we applied the fusion
procedure of Section V to place each rij in either Rgas, Rclear ,
or Runknown considering α = 0.05 for the maximum
probability of any false negative. For this, we first computed∑Mij

m=1 e
(m)
ij for each subregion rij. Using Kmax = 1 to

define the decision threshold αind in (6) and without using
the knowledge of the simulated leak location, we applied
the decision rule (6) to place each rij in either Rgas, Rclear ,
or Runknown. To compute each Pij, we estimated the fusion
parameter q using the first approach described in SectionV-B;
i.e., by using separate simulations under the same conditions
as above with the leak at a known location. Such a procedure
resulted in the estimate q̂ = 0.715.

Fig. 6 illustrates the resulting
∑Mij

m=1 e
(m)
ij and the cor-

responding p-value Pij for each subregion; and, using the
decision rule (6) with Mmin = 6, the resulting survey map
is shown in Fig. 7.
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FIGURE 8. Final survey maps for the experiments that resulted in the highest (left) and lowest (right) |Rgas|/|R|. Rclear is shown
in green, Rgas is shown in red,, and Runknown is shown in white. The actual leak location (not known by the procedure) is
indicated with a circle. The wind direction is from top to bottom. The UAV flight path is indicated with cyan lines.

Fig. 7 indicates that the procedure was able to include the
actual gas leak location into Rgas and was able to clear many
subregions rij that do not contain gas leaks. As discussed in
Section VI, we also computed |Rgas| = 7, 007 and |R| =

183, 211, resulting in |Rgas|/|R| = 0.038 for the survey map.
We performed the procedure above 60 times, placing the

leak at 60 random locations (x∗, y∗, z∗ = 0) within the
rectangle given by the vertices (30, 400) and (170, 750).
As before, the leak location during the simulation is not used
by the procedure to produce the final survey map. For each of
the 60 experiments, we inspected the survey map computing
its |Rgas|/|R| and checking if Rgas contained the leak location.

Among the 60 experiments, the final survey map had
Rclear containing the leak location in 4 of them, which
means P[any rij with a leak placed in Rclear |1 leak in R] ≈

0.067. We also computed the mean and standard deviation
of |Rgas|/|R| using Rgas and R obtained from each of the
60 experiments, resulting in |Rgas|/|R| = 0.05 ± 0.02. The
experiments resulting in the lowest and highest |Rgas|/|R|

ratios (0.015 and 0.08) are illustrated in Fig. 8.

2) EXAMPLES WITH 2 AND 3 LEAKS
We also tested our procedure when the region contains
more than 1 leak. We again used the QUIC simulation tool
to produce simulated gas leaks in the same 3D region of
(200mx1000mx20m) but now with 2 or 3 leaks.

Considering the same flight pattern and the same fusion
procedure as in the example with 1 leak but using Kmax = 2
and Kmax = 3 to define the αind of (6) for the case with 2
and 3 leaks respectively, we obtained the survey maps shown
in the top two displays of Fig. 9. In these figures, the UAV
performed 100 crossflights. As can be seen, the procedure
was able to produce a survey map with Rgas including the
leaks; however, the procedure was not able to clear many
areas that do not contain a leak. This result can also be seen
in the resulting |Rgas|/|R|: 0.176 for the 2-leak scenario and
0.292 for the 3-leak scenario.

One way to reduce |Rgas|/|R| is to gather more evidence
by performing additional crossflights. Themiddle and bottom
displays of Fig. 9 respectively show the survey maps obtained
when the UAV performs 190 and 380 crossflights. As can
be seen, the additional crossflights are able to reduce
|Rgas|/|R| significantly. For the 2-leak scenario, the |Rgas|/|R|

ratio for 190 and 380 crossflights reduces to 0.072 and
0.026 respectively; and for the 3-leak scenario, the |Rgas|/|R|

ratio for 190 and 380 crossflights reduces to 0.201 and
0.085 respectively.

B. TESTING SURVEY FRAMEWORK USING REAL DATA
1) EXPERIMENTAL METHODOLOGY
We also evaluated our framework with real UAV mea-
surements. In this experiment, 60.8 g/hr (3 standard cubic
feet per hour) of methane gas was released unpressured
from a known location in Oxnard, California, close to
the ground, in an open field with low grass vegetation.
An actual UAV manufactured by DJI, model M600 Pro, was
equippedwith anRKIOpen-Path Laser Spectrometer (OPLS)
methane-only sensor with a sensitivity of 10 ppb/s. TheOPLS
sensor was mounted away from the propellers, as indicated
in [12], and [35] and as illustrated in Fig. 10. The UAV was
also equipped with a GPS and an anemometer to measure
the wind direction and wind speed. A ground anemometer
was also used to confirm the wind direction and speed
measurements. The UAV was flown at an average height of
4.8m, performing 50-meter crossflights perpendicular to the
wind at various distances to the leak. The wind direction
pointed towards northeast and its average wind speed was
measured to be 4.7m/s. The OPLS collected measurements
at a rate of 2 measurements/second and transmitted the
measurements using wireless telemetry to a ground base
station, which stored themeasurements for posterior analysis.
Fig. 11 shows an aerial photograph of the field with the leak
location and the UAV flight path. The figure also shows the
instances of detections by the OPLS sensor.
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FIGURE 9. Final survey maps when UAV performs 100, 190, and 380 crossflights when the region has 2 or 3 leaks. Rclear is shown in green, Rgas is
shown in red, and Runknown is shown in white. The actual leak location (not known by the procedure) is indicated with a circle. The wind direction is
from top to bottom. The UAV flight path is indicated with cyan lines.

Similarly to our simulation experiments, the UAV in
these real experiments flew in a line perpendicular to the
wind direction; however, differently from our simulation
experiments, the UAV did not fly past the leak. Also, the UAV
performed a total of 10 crossflights before repeating the flight
pattern 3 times. Two crossflights were discarded for being too
short, resulting in a total of 28 crossflights.

The UAV instantaneous concentration measurements were
filtered to remove the background methane concentration as

follows: the smallest value among the 10 past measurements
was subtracted from everymeasurement.We note that this fil-
tering process allows for the removal of background concen-
tration levels that change during the survey. Using the filtered
UAV measurements, we considered Cmin = 2 · 10−7 ppb to
determine detections and non-detections.

Using the USR models estimated from QUIC simula-
tions and considering the average wind speed of 4.7m/s,
we obtained the USR model through linear interpolation,
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FIGURE 10. Photograph of UAV and OPLS sensor used in experiments.

FIGURE 11. Aerial photograph of region where experiment was
performed with a real UAV. White lines indicate the flight path of the UAV.
The X mark on the bottom left of the photograph indicates the gas leak
location. The wind direction points towards northeast (top right of the
photograph). Red lines indicate instances of detections by the OPLS
sensor.

resulting in the following USR dimensions: fetch start
of 1.4m, fetch end of 84.6m, and minor axis of 32.6m.
We estimated the inverse-MO to be −0.11/m. Given the
approximately constant wind conditions and UAV height, all
USRs mapped into the ground had the same orientation and
dimensions.

Using such a USR model, USRs were mapped from
each UAV location and we computed

∑Mij
m=1 e

(m)
ij for each

subregion rij. Without using the knowledge of the leak
location, we applied the fusion procedure of Section V
considering Kmax = 1 to place each rij in either Rgas, Rclear ,
or Runknown. For this, we estimated the fusion parameter
q using the second approach described in Section V-B;
i.e., using the 28 crossflights, we estimated q as if the leak
were present in each rij and adopted q̂ to be the highest among
all rij. Such an estimation resulted in q̂ = 0.667.We highlight
however that a better estimate could have been obtained if the
number of crossflights were higher than 28.

The resulting
∑Mij

m=1 e
(m)
ij , the corresponding p-values Pij

for each subregion and the final survey map are shown in
Figs. 12 and 13.

2) DISCUSSION OF RESULTS
From Figs. 12 and 13, we note that, although Rgas contains
the actual leak location, the ratio |Rgas|/|R| of the survey
map was very high (0.27), meaning that close to one-third
of the region was placed in Rgas. The high |Rgas|/|R| ratio is
due to the small number of crossflights and their short length
relative to the USR width. Lower |Rgas|/|R| ratios could be
obtained if the UAV were to perform additional or longer
crossflights. Furthermore, if theUAVwere to fly past the leak,
as in the flight patterns used in the QUIC experiments, then
the procedure would be able to restrict Rgas and reduce the
|Rgas|/|R| ratio. Note that, when the UAV flies past the leak,
the UAV is able to collect low concentration measurements
past the leak and, therefore, add areas past the leak into Rclear .
From Fig. 12, we can observe that the highest p-value is in

a subregion rij that does not contain the leak. This could be
justified by the low number of crossflights or by errors in the
estimation of the inverse-MO, wind speed, or wind direction.

VIII. SUMMARY, CONCLUSION, AND FUTURE STUDIES
Focusing on the approach that uses UAVs flying inside
the gas plume to assist in the survey of a region for gas
leaks, we proposed a framework using Upwind Survey
Regions (USRs) to translate UAVmeasurements into a survey
map. Our framework has two components: USR mapping
and USR fusion. After formally defining USRs based on
long-term concentration averages, we discussed how USRs
can be used to map UAV measurements collected at each
location p into a region USR(p) on the ground. Given that
UAVs collect instantaneous concentration measurements,
we proposed a statistical procedure to fuse USRs and produce
a survey map that partitions the surveyed region in 3 areas:
Rgas (area likely to contain a gas leak), Rclear (area clear
of gas leaks), and Runknown (area from which not enough
information is available). Since the USR dimensions vary
with environmental and flight conditions, we discussed how
a database of USR models can be built using the QUIC
simulation tool. We further discussed ways to evaluate the
performance of the survey and we showed through both
simulation and real UAV measurements that the framework
is able to produce satisfactory survey maps.

We note that surveying a region for gas leaks is more
than just finding the location of the leak. Gas companies
need tools to also determine that an area is clear of leaks.
Furthermore, methods to estimate the location of a gas leak
assume that there is just one leak in the region and their
performance is unclear when multiple or no gas leaks are
present. Our framework works when the region has zero, one,
or multiple gas leaks. Our framework produces a survey map
that gas companies can use to document periodic surveys
and show to regulatory agencies that it is performing steps
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FIGURE 12. Number of crossflights with high concentration USRs (
∑Mij

m=1 e(m)
ij ) and the resulting p-value Pij for each subregion rij .

The actual leak location (not known by the procedure) is indicated with a circle. The wind direction points to the top right corner of
the figure. The UAV flight path is indicated with cyan lines.

FIGURE 13. Final survey map when considering real data collected by a
UAV. Rclear is shown in green, Rgas is shown in red, and Runknown is
shown in white. The actual leak location (not known by the procedure) is
indicated with a circle. The wind direction points to the top right corner of
the figure. The UAV flight path is indicated with cyan lines.

to reduce fugitive gas leaks, as suggested in recent regulatory
efforts [75].

A first conclusion of this paper is that surveying a
region with UAVs and USRs needs statistical tools. Gas
dispersion is a highly random process: instead of producing
a homogeneous plume, a gas leak produces gas filaments
that are subject to turbulence, producing random paths.
This means that UAVs in situ instantaneous concentration
measurements are random. Since USRs are defined based
on long-term concentration averages, a surveyor should not
infer that the USR associated with a single high concentration
measurement contains a gas leak and the surveyor should not
infer that the USR associated with a single low concentration
measurement is clear of leaks. In fact, a single location in the
ground may be covered by multiple USRs, some associated
with high concentration measurements and some associated
with low concentration measurements. The surveyor should
see each UAV concentration measurement as providing
evidence for the presence or absence of a gas leak, and should

fuse this evidence using a statistical procedure. In this paper,
we proposed and justified a possible statistical procedure for
this fusion.

A second conclusion of this paper is that QUIC is
a valuable simulation tool to design procedures for gas
leak surveys. Simulations are needed because collecting
measurements from real gas leaks is difficult, expensive, and
time-consuming. Simulations can be used to estimate the
performance of a survey procedure by testing it under various
random conditions. In addition to providing guidance to the
design of survey procedures, QUIC can also be used to build
the database of USR models.

We highlight the following as future avenues for research:
• Given that real UAV experiments are expensive and
time-consuming, we evaluated the performance of our
procedure with QUIC simulations and a single set of
real UAV measurements. We plan to perform further
real UAV measurements, with the UAV flying past
the leak, to better evaluate the performance of the
procedure.

• We evaluated our framework considering static wind
conditions; i.e., considering that the UAV height, the
wind speed, and the wind direction were constant during
the survey. As mentioned in Section IV, our approach
allows for USRs of different sizes and orientation to
be mapped onto the ground. Future studies should
evaluate the framework performance in dynamic wind
conditions.

• Our fusion procedure relies on the probability that the
UAV collects a high concentration measurement during
the crossflight (parameter q defined in Section V-A);
and the procedure that we studied in this paper assumes
an average value for q, which enables the use of the
Binomial model for reaching decisions. We plan to
study how the performance of the survey maps would
improve if we allowed for values of q that vary with the
distance between the crossflight and the subregion being
evaluated.
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• In this initial study, we considered a fixed sweeping
flight pattern that does not attempt to seek the gas
leak. This is important because collecting measure-
ments from outside the gas plume is necessary to
reliably determine Rclear ; however, it is also possible to
consider the fusion of USRs generated from multiple
sweeping flights: after the first survey map is generated
from a first sweeping flight, a second sweeping flight
can be designed and flown to refine the first survey map.
USRs mapped from the second flight would then be
fused with the first set of USRs, generating a second
survey map. This process is repeated until the final
survey map has a small enough Rgas area for further
investigation.

• We plan to continue using QUIC to evaluate our
framework in areas containing buildings and vegetation
in various configurations.

Lastly, we highlight that our framework can also be used
to detect other gases. For this, the surveyor needs to equip the
UAV with an OPLS sensor tuned to detect the target gas and
needs to generate a database of USR models specific to the
target gas.
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APPENDIX A
THE QUICK URBAN AND INDUSTRIAL COMPLEX (QUIC)
SIMULATION TOOL
QUIC was developed over many years by researchers in
the University of Utah and in the Los Alamos National
Laboratory [67]. QUIC simulates gas dispersion over time,
simulating how gas particles interact with the environment,
and producing a sequence of 3D concentration matrices
representing the evolution of the gas field over time.
Comparisons between actual gas releases and simulation pre-
dictions have shown that QUIC results match the statistical
characteristics of gas dispersion [76], [77], [78]. QUIC is also
used by other researchers studying gas leak propagation and
detection techniques [72], [79], [80], [81].

Considering simulations with a large number of particles
and for a long enough time to reach the steady state in the
region, the sequence of 3D concentration matrices converges
to the long-term average concentration Cavg(p) at each point
in the 3D space.

In this paper, we use QUIC for two purposes: (1) to simu-
late gas leak scenarios to evaluate our USR mapping/fusion
framework; and (2) to build the database of USR models (see
Appendix B).

A key motivation for using QUIC is its ability to
model the influence of buildings and vegetation in addition
to the various parameters that influence the average gas
field Cavg(p). For instance, QUIC can model wind fields at
various speeds and wind profiles and can model the influence
of parameters such as the inverse Monin-Obukhov (MO)
parameter. In this paper, we focus on the open field topology;
however, our future plans involve the extension of our
methods to topologies with buildings and vegetation, for
which QUIC is well equipped to model. Another advantage
of using QUIC is that it allows us to estimate the USR directly
from Cavg(p), without having to estimate fp, as explained in
Appendix B.

APPENDIX B
BUILDING THE DATABASE OF USR MODELS
Given the lack of analytical forms for the footprint function fp,
we build the database of USR models using the QUIC
simulation tool. The general idea is to place the leak at a
known location in the simulation and determine USR(p) by
measuring the concentration level at various points in the
3D space. The estimation of the USR dimensions is a one-
time process, done anytime prior to the survey, for various
environmental conditions. Once the database of USR models
is built, it can be repeatedly used in future surveys.

From its definition (3), the USR(p) represents the set of
points (x, y) in which a leak of strength smin would produce
Cavg(p) > Cmin at the UAV location p if the leak were located
in (x, y).

To determine USR(p) using QUIC, one could in principle
run a large number of simulations, one simulation with the
leak at each possible point (x ′, y′). For each simulation,
we would observe Cavg(p). If the final 3D concentration
field had Cavg(p) > Cmin, then (x ′, y′) ∈ USR(p). This
process is illustrated in the left display of Fig. 15 for three
possible points (x, y), but notice that many more simulations,
considering the leak at many more points, would have to be
performed to determine USR(p). Furthermore, this process
would have to be repeated at each possible UAV location p.
From this, it is possible to see that such an approach to
determine USR(p) is impractical.
It is however possible to avoid such a large number of

simulations when the surveyed region R is homogeneous;
i.e., if the average gas field Cavg(p) depends only on the
relative displacement between p and the leak location. More
precisely, we sayR is homogeneous if the following condition
is satisfied:

∀p, (x ′, y′) ∈ USR(p) ⇔ ∀1x , 1y,

(x ′
+1x , y′+1y) ∈ USR(px+1x , py+1y, pz). (10)

In this case, for any p = (px , py, pz), we can obtain
the USR(p) with a single QUIC simulation with a leak
of strength smin at (x, y) as follows: from the final 3D
concentration field produced by QUIC, find all (p′

x , p
′
y, pz)

such that Cavg(p′
x , p

′
y, pz) > Cmin, which means that
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FIGURE 14. Overview of method to build the database of USR models from QUIC simulations.

FIGURE 15. Two approaches to determine USR(p): (left) using multiple simulations, each with a leak at different positions; (right) using a single
simulation with the leak at a single position, applicable when the surveyed region is homogeneous.

(x, y) ∈ USR(p′
x , p

′
y, pz). For each (p′

x , p
′
y, pz), let 1x =

px − p′
x and 1y = py − p′

y; and using (10), it follows
that (x + 1x , y + 1y) ∈ USR(px , py, pz). This process is
illustrated in Fig. 15: if the surveyed region is homogeneous
and a leak at (x, y) produces Cavg(p1) > Cmin in the
right display of Fig. 15, then we can conclude that a leak
at (x1, y1) in the left display of Fig. 15 also produces
Cavg(p) > Cmin; i.e., (x1, y1) ∈ USR(p) because the relative
displacement between p and (x1, y1) is the same as the relative
displacement between p

1
and (x, y). Thus, by observing

{Cavg(p2),Cavg(p3), . . .} for various points from a single
QUIC simulation with a leak at (x, y), we can determine
USR(p).
The homogeneous condition (10) also implies that,

maintaining all meteorological parameters constant, the
dimensions of the USR(p) remain constant for all p with a
common height pz, meaning that it is enough to estimate the
dimensions of a common USR for each height pz.
In this paper, we consider the survey of open fields;

i.e., regions without buildings or large vegetation. In this
case, the homogeneous condition applies; and the following
process is used to estimate the USR. Fig. 14 illustrates the
process.

1) Fix the meteorological conditions: wind direction,
wind speed, wind profile, and inverse MO parameter.

2) Place a leak with strength smin in a known position
(x∗, y∗, z∗ = 0).

3) Execute the QUIC simulation for a large enough time
period until it reaches steady-state.

4) From the last 3D concentration matrix A, smooth the
average concentration at each height. More precisely,

FIGURE 16. (left) Illustration of 2D concentration matrix Az obtained
from a QUIC simulation with leak at fixed location, wind direction from
north to south, wind speed of 4m/s, inverse MO −0.05/m, and height
z = 5m. (right) Illustration of 2D average concentration matrix, obtained
after convolving Az with a Gaussian kernel of standard deviation 12m.
The dashed line represents the level curve at Cmin = 6.6 · 10−6g/m3. Each
of the points inside such a curve produces a distance dk and angle θk
from the gas leak. After referring the various dk and θk to the origin,
we define the ellipsoidal USR.

for each discrete height z in the 3Dmatrix, extract from
A the slice at height z, resulting in a 2D matrix Az; and
convolve Az with a 2D Gaussian kernel. The purpose of
this step is to smooth the average concentration matrix.
Let Ĉavg(p) represent the 3D concentration field after
smoothing it at the various heights. Fig. 16 illustrates
the 2D concentration matrix Az and the 2D average
concentration matrix after convolving it with a 2D
Gaussian kernel.
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5) Estimate the common USR for each of the discrete
heights pz as follows:

a) Find all points {p
l
}
L
l=1 with height pz and

Ĉavg(p) > Cmin. In the example in Fig. 16, such
points are located inside the dashed level curve
in the right panel when considering Cmin = 6.6 ·

10−6g/m3.
b) For each p

l
, compute the distance dl :=

∥(pl,x , pl,y) − (x∗, y∗)∥ and the angle θl between
the wind direction and the line containing
(pl,x , pl,y) and (x∗, y∗). Note that dl and θl define
a point that would be inside USR(p

l
) if the

UAV were to collect a long-term measurement
at p

l
. Note that, because of the homogeneous

condition (10), the same {dl, θl}Ll=1 would be
obtained if we were to observe the concentration
at a single point p and perform multiple QUIC
simulations with leaks at various locations.

c) Considering p = (0, 0, pz), fit an ellipsoid
containing most of the points located {dl, θl}Ll=1
from the origin. More precisely, an enclosing
rectangle with major sides aligned with the
wind direction is defined around {dl, θl}Ll=1 by
considering a high percentile of points to enclose.
The ellipsoid is then defined from the start,
end, and width of the rectangle. We refer to the
distances to the start and end of the ellipsoid as
the fetch start (dstart ) and fetch end (dend ) and
we refer to the minor axis of the ellipsoid as the
width (w) of the ellipsoidal USR, as illustrated
in Fig. 14. Such an ellipsoid represents the USR
for any p with the same height pz.

6) Repeat the above procedure for various sets of meteo-
rological conditions.

At the end of the procedure, the surveyor has a database of
USR models, one for each set of meteorological conditions
and UAV heights.

A. EXAMPLE
To build the database of USR models, we configured QUIC
to simulate gas fields in an open field with 200m of width
(x-dimension), 1000m of depth (y-dimension), and 20m of
height (z-dimension). A gas leak releasing unpressured gas
at a constant rate of 100 g/hr was placed at a known location
(x∗

= 100, y∗ = 900, z∗ = 0) with a southbound wind
spreading the gas particles in the 3D region.

We ran simulations at 3 different wind speeds: 2m/s,
4m/s, and 6m/s; and 4 different inverse MO conditions:
−0.02/m, −0.05/m, −0.08/m, and −0.11/m, resulting in
12 different simulations. In each simulation, the wind speed
and direction were constant throughout the survey. In each
simulation, we configured QUIC to produce gas fields with
6 million particles, producing gas fields that approximate the
long-term average concentration at each point in the space.

TABLE 1. Database of USR models: Fetch start (dstart ), fetch end (dend ),
and width (w) of the USR ellipsoid under various open field conditions
and inverse MO −0.11/m.

Before estimating the USR model, we ran the simulation
for 800 seconds to ensure that it reached the steady-state
condition.

For each simulation, we used the procedure described in
Appendix B to obtain the ellipsoidal USR dimensions at
various UAV heights (pz ∈ {3, 4, 5, 6, 7, 8}). We note that all
QUIC simulations used the logarithmic wind profile, which
means that the wind speed varies with the height. QUIC was
configured so that the nominal wind speed is set at height
pz = 5.5m. Recall that the ellipsoidal USR is defined by its
fetch start (dstart ), fetch end (dend ), and width (w). Table 1
illustrates the USR dimensions obtained for a few of the
heights and inverse MO -0.11/m; and Table 2 illustrates the
USR dimensions obtained for the various inverse MO values
for pz = 5m.
From Table 1, it is possible to note that the USR fetch

start (dstart ) tends to increase and the USR fetch end
(dend ) and the width (w) tend to decrease with the wind
speed. Since the topology simulated in QUIC was the open
field, this behavior was expected from the Gaussian plume
model [66]. Since the wind pushes the particles before
they can gain height, a UAV at a fixed altitude will start
sensing the plume at higher fetch starts when the wind speed
increases. Also, since the plume concentration is inversely
proportional to the wind speed, higher wind speeds for a fixed
minimum concentration threshold (Cmin) mean shorter fetch
ends (dend ).
From Table 2, it is possible to note that the USR fetch start

(dstart ), the USR fetch end (dend ), and the width (w) all tend
to decrease with the inverse MO. This behavior was also
expected because lower values for inverse MO mean more
unstable conditions [66], causing particles to disperse more
easily, and therefore, reducing the concentration.
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FIGURE 17. (left) Illustration of instantaneous concentration measurements obtained in a real UAV flight. (right) Illustration of instantaneous
concentration measurements obtained in simulated QUIC flight with Poisson-distributed filament encounters. In both cases, the UAV was flying in a field
with a gas leak present. It is possible to observe that the sequence of instantaneous concentration measurements in the simulated UAV flight is sparse,
similar to the real UAV flight.

TABLE 2. Database of USR models: Fetch start (dstart ), fetch end (dend ),
and width (w) of the USR ellipsoid under various inverse MOs for UAV
height of 5m.

APPENDIX C
SIMULATING INSTANTANEOUS CONCENTRATION
MEASUREMENTS
The QUIC simulation tool is able to simulate long-term
average concentrations (Cavg(p)) for each position p in the
3D space; however, it does not simulate the coupling between
the filamentous nature of the gas plume and atmospheric
turbulence that produces the intermittent instantaneous con-
centration C(p, t) measured by the UAV.

To simulate C(p, t), we follow an approach similar to [62],
[72], [73], and [74] in that we model the number of
filaments crossing the UAV path using a Poisson process
with average proportional to Cavg(p). More precisely, after
using QUIC to produce Cavg(p) for each position p in
the 3D space, we simulate the UAV flying in the 3D
average concentration field. For each time tmn, the UAV
is at position p

mn
and we collect the long-term average

concentration value Cavg(pmn). To obtain the instantaneous
concentrationC(p

mn
, tmn), we model the number of filaments

crossing the position p
mn

at time tmn as a Poisson-distributed
random variable Fmn with parameter Cavg(pmn)/Cfilament ,
where Cfilament is the expected concentration in a filament
of the turbulent flow. For each position p

mn
, we draw a

random realization fmn of the random variable Fmn; and use
fmn to produce a sample of the instantaneous concentration
collected by the UAV: C(p

mn
, tmn) = fmn · Cfilament . In our

simulations, we considered Cfilament = 2 · 10−4g/m3.
Considering such a Cfilament and the constant emission rate
of 100 g/hr, the resulting Poisson parameters are always less
than 1, producing a sparse sequence of UAV instantaneous
concentrationmeasurements, similar to those observed in real
UAV flights, as illustrated in Fig. 17.
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