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ABSTRACT Fault detection systems support the operator, providing insight during the decision-making
while having an (unknown) fault. Data-based models are a common option for a detection system. However,
systems that rely purely on data-based models are normally trained with a specific set of data, which cannot
necessarily prevent data drift. Thus, an anomaly or unknown condition detection mechanism is required
to handle data with new fault cases. Besides, the model’s capability to adapt to the unknown condition
is equally important to anomaly detection—in other words, its capability to update itself automatically.
Alternatively, expert-centeredmodels are powered by the knowledge of operators, which provides themodels
with production context and expert domain knowledge. The challenge lies in combining both systems and
which framework can be used to achieve this fusion. We propose a novel adaptive information fusion
methodology to define fault detection systems using evidence theory and uncertainty quantification. The
main contribution of this paper is providing a general framework for the fusion of n number of information
sources using the evidence theory. The fusion provides amore robust prediction and an associated uncertainty
that can be used to assess the prediction likeliness. Moreover, we provide a methodology for the information
fusion of two primary sources: an ensemble classifier based on machine data and an expert-centered model.
We demonstrate the information fusion approach using data from an industrial setup, which rounds up
the application part of this research. Furthermore, we address the problem of data drift by proposing a
methodology to update the data-based models using an evidence theory approach. We validate the approach
using the Benchmark Tennessee Eastman while doing an ablation study of the model update parameters.

INDEX TERMS Data drift, ensemble classification, knowledge model, model update, information fusion,
Dempster-Shafer evidence theory, fault detection system, anomaly detection.

I. INTRODUCTION
Fault detection systems accompany the operators during the
machinery operation by early identification of (unknown)
faults. Fault detection systems are a key component of
decision assistance systems because they provide insights
into the machine’s condition [1], [2], [3]. Decision assistance
systems use the results of fault detection systems in order
to provide recommendations to handle faults or improve
the machine’s performance. Due to their high performance,
data-based models are a popular choice when selecting a
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detection system with reported applications in medicine [4],
industry [1], [3], road infrastructure [5], and agriculture [2].
Usually, the data-based models are trained using a specific
dataset presenting good results. However, not all data-based
models can handle new upcoming faults in the data. Hence,
an anomaly detection system must have a mechanism to
recognize an upcoming anomaly and the capability to learn
upcoming data that differs from the original training data.
Equally important is the system’s capability to adapt or
retrain the data-based models automatically. The retraining
or automatic update of the models must consider a minimum
size of training data that assures that the models capture the
essential patterns to be learned.
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TABLE 1. List of symbols, abbreviations, and acronyms.

Systems composed by the combination or fusion of several
individual models often present better results and robustness
than individual models (e.g., bagging and boosting). Though
data-based models attain high performance, alternatively,
expert-centered knowledge-based models provide versatile
features, which are production context and expert domain
knowledge. The challenge here lies in how to combine
a data-based model and a knowledge-based model. Thus,
a common framework is required to perform a fusion of both
systems. Such a framework must provide not only a way to
combine the models’ outputs but to quantify the uncertainty.
The uncertainty provides information regarding how reliable
the combined system output is.

We propose a novel adaptive information fusion method-
ology for fault detection systems using evidence theory and
uncertainty quantification. The novelty of this paper is that
it presents a common framework that allows the fusion
of several information sources on the decision level using
evidence theory. Besides, we quantify the uncertainty of
the system output to provide a better assessment of system
output reliability. An essential contribution of this paper is
the ability of the data-based model to handle unknown fault
cases in the data, which allows themodel to update themodels
automatically.

The individual contributions of this paper are:

• A methodology for the automatic model update of
ECs, while feeding up data with unknown fault cases.
The methodology includes an uncertainty monitoring
strategy that improves the anomaly detection of the
EC, stores the data of the unknown condition, and
retrains the pool of classifiers of the EC. We present the
parameters of the automatic update module: threshold
size, window size, and detection patience. The automatic
update methodology is rounded up with experiments

using the benchmark dataset Tennessee Eastman. The
EC is tested using different fault class scenarios,
in which we test the impact of a window during anomaly
detection. Moreover, we present a detailed analysis of
the automatic update parameters regarding retrained EC
performance.

• A general framework to combine n number of infor-
mation sources on the decision level to generate a
robust system prediction. The framework uses the
Dempster-Shafer evidence theory. Besides, the frame-
work quantifies the uncertainty of the prediction, which
can be used to assess the reliability of the system
prediction.

• A methodology to combine a multiclass EC with an
expert-centered knowledge-based model, in which we
apply the general framework of the information fusion.
The system architecture shows the components of each
model, namely, the inference model and model update
module. The application of the information fusion
system is tested with the data of an industrial setup
using a small-scaled bulk good system. The performance
of the individual models (EC and knowledge-based) is
compared with the combined system.

This paper is structured as follows: Section II presents
a literature survey on the main topics of this paper. The
theoretical background is described in section III. Our
proposed approach is detailed in section IV. Section IV-C
and section IV-D present the methodology for information
fusion and model update, respectively. Section V portrays
a use case for retraining the EC using the benchmark
Tennessee Eastman. Whereas section VI presents a use
case for information fusion using the data of a bulk good
system laboratory plant. Finally, section VII summarizes the
conclusions and future work.

II. RELATED WORK
This section reviews the literature on information fusion,
updates of data-basedmodels, and fault detection systems and
decision assistance systems.

A. FAULT DETECTION AND DECISION ASSISTANCE
SYSTEMS
Assistance systems provide valuable information for the
users in the shopfloor. Assistance systems are divided into
cognitive (e.g., providing information to the operator) and
physical assistance systems (e.g., supporting the operators
through exoskeletons) [6]. Moreover, cognitive assistance
systems can be classified as decision (e.g., providing informa-
tion that eases the decision-making process) and perceptual
assistance systems (e.g., providing information for specific
tasks) [6]. Research contributions using cognitive assistance
systems are reported in manual assembly of products [7],
[8] and maintenance of wind turbines [6]. This paper
focuses on decision assistance systems, which can range from
recommendation systems [9], [10], interactive systems [11],
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and digital assistance systems [8]. Architectures of decision
assistance systems commonly contemplate the components:
data collection, a fault detection system, a knowledge base,
and an (interactive) user interface [12]. In a previous
work [13], we address these components within a knowledge
transfer framework for a decision assistance system. The
knowledge base plays a crucial role in decision assistance
systems because it provides the information that supports
the user when a (faulty) condition is active [12]. There are
different ways to build a knowledge base, namely using
ontologies [12], [14], [15], knowledge graphs [11], [16],
failure mode and effects analysis (FMEA) and engineering
knowledge [13], [17], and knowledge-based frameworks
for multi-modal and multi-structured data [18], [19], [20],
[21]. Notable examples of knowledge-based frameworks
can be found in industrial applications for (prescriptive)
maintenance [22], [23], machine condition assessment [13],
providing work instructions [24], life cycle engineering [18],
product lifecycle management [19], [25], and cyber-physical
production systems [26], [27]. The fault detection system
(FDS) is vital to identify the current state of the machinery
or process. The fault detection system is usually powered
either by a data-based model [13] or a knowledge-centered
model [12]. Industrial applications of FDS are reported
in the detection of safety equipment [1], fault diagnosis
in machines [3], [28], and prescriptive maintenance [23].
Current literature contributions propose decision assistance
system architectures that address most of the components and
even present methodologies to combine several (data-based)
FDS at the decision level [29], [30]. However, no contribution
addresses the fusion of n number of FDS within a general
framework regardless of the model type. Moreover, there
are approaches to quantify the uncertainty of data-based
models [28], [31] and knowledge-based models [13], [32],
respectively. However, no contribution addresses the uncer-
tainty quantification within a general framework regardless
of the model type. This research differentiates from the state-
of-the-art, in which we propose a general fusion framework
to combine n number of fault detection systems at the
decision level using evidence theory. Moreover, we provide
a methodology to quantify the uncertainty of the individual
fault detection systems, as well as the uncertainty of the
resulting system. For this purpose, we present an improved
architecture of the decision assistance system presented
in [13]. We provide a detailed description of the architecture
regarding components and their relationships, focusing on the
fusion of fault detection systems and the role of uncertainty.

B. INFORMATION FUSION
Information fusion is a popular approach to combining
several sources of information because the combined system
often yields better performance and robustness. Information
fusion on the decision level is a common practice using
data-based models (e.g., supervised classifiers in the case of
bagging) [33]. The use of information fusion and data-based

models is reported in [29] and [30], in which evidence theory
combines models at the decision level. Information fusion
using evidence theory provides an additional feature: the
uncertainty quantification [13]. The uncertainty serves to
assess the output reliability of the combined system [34].
Alternatively, knowledge-based models are expert-centered
approaches containing valuable expert domain and envi-
ronment context [35]. In the case of knowledge-based
approaches, information fusion has been applied in the
combination of expert knowledge at the decision level [36],
[37], [38], and quantifying the uncertainty of expert knowl-
edge [13], [32]. Though combining the strength of data-based
and knowledge-based models might be considered a logical
step to follow, finding a common framework to perform
the fusion is challenging. Besides, knowledge-based models
often have a low number of input features in comparison
with data-based models. The last aspect requires special
attention while performing an inference of the primary
systems before performing an information fusion. Current
research methodologies cover the information fusion of data-
based models [29], [30]. However, existing literature does not
report the fusion of data-based and knowledge-based models,
though the heterogeneity of the sources could improve the
overall result. We propose a methodology for the information
fusion of a data-based model with an expert-centered model,
in which we use the Dempster-Shafer evidence theory as
a general framework for the fusion. Besides, we test the
feasibility of the methodology using data from an industrial
setup.

C. UPDATE OF DATA-BASED MODELS
The ability of data-based models to handle data with
unknown fault cases has grown interest in the research
community [39], [40]. A primary step is identifying the
unknown fault case or anomaly from the upcoming data.
There are different approaches reported in the literature
to detect anomalies, which propose the use of evidence
theory [28] and unsupervised learning [41], [42]. After
identifying the anomaly from the data, the next step is
updating the model. In this sense, some methodologies are
focus on concept drift detection [43], [44], incremental
learning [45], [46], emerging classes or labels [47], [48]
[49], and incremental class [48]. Thus, detecting an anomaly
is followed by an update or retraining of the data-based
model. However, there are challenges associated with the
retraining or updating of models: the size of the training
data sufficient to capture the essence of the upcoming fault.
An essential factor to consider is the performance evaluation
of the retrained models. A careful study of the parameters
is required because only some upcoming faults might be
handled with the same set of retraining parameters. Existing
literature addresses the anomaly detection [28], [41], [42],
and even the identification of emerging classes (or unknown
conditions) [47], [48], [49]. However, the model update using
uncertainty remains unexplored. To this end, we propose a
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methodology for updating data-based models using DSET,
in which we monitor the uncertainty of the fusion to trigger
a model update. We focus on the model update of data-
based models, specifically for ensemble classification using
evidence theory. Besides, we perform an ablation study of
the retraining parameters while showing their impact on the
model performance. We demonstrate the robustness of the
model update using the benchmark Tennessee Eastman.

III. THEORETICAL BACKGROUND
This section presents the basic theory for performing infor-
mation fusion and the transformation of model predictions
using an evidential treatment. The equations of this section
are applied during the development of the sections IV-C
and IV-D.

A. EVIDENCE THEORY
Dempster-Shafer [50] defined a frame of discernment 2 =

{A,B} for the focal elements A and B. The power set 22

is defined by 22
= {φ, {A}, {B}, 2}}. The definition of a

basic probability assignment (BPA) is given by: m: 22
→

[0, 1], in which the BPA must comply with m(φ) = 0,
and

∑
A⊆2 m(A) = 1. The last equation represents the sum

of BPAs. The focal elements of 2 are mutually exclusive:
A ∩ B = φ.
TheDempster-Shafer rule of combination (DSRC) defines

how to perform the fusion of twomass functions (e.g., sources
of information) using the equation:

mDS (A) = (m1 ⊕ m2)(A)

=

∑
B∩C=A̸=φ m1(B)m2(C)

1−
∑

B∩C=φ m1(B)m2(C)
(1)

where mDS (A) is the fusion of the mass functions m1 and m2.
The conflicting evidence bk is defined by:

bk =
∑

B∩C=φ

m1(B)m2(C) (2)

It is important to remark that, while using DSRC, the
conflicting evidence is distributed by each focal element.

Yager [51] defined an alternative rule of combination,
which in contrast to DSRC, assigns the conflicting evidence
to the focal element2. The Yager rule of combination (YRC)
is defined by the equation:

mY (A) =
∑

B∩C ̸=φ

m1(B)m2(C) (3)

where mY (A) is the fusion of the mass functions m1(B) and
m1(C). The focal element 2 of the mass function mY (A) is
defined by: mY (θ ) = q(θ ) + q(φ), where q(φ) represents
the conflicting evidence. Likewise DSRC, the conflicting
evidence q(φ) is represented by:

q(φ) =
∑

B
⋂
C=φ

m1(B)m2(C)

(4)

In the case of multiple fusion operations, the mass
functions are combined using the following equation:

m(A) =
((
m1 ⊕ m2

)
. . .⊕ mN

)
(A) (5)

where m(A) is the fusion of the nmass functions, and N ∈ N.

B. EVIDENTIAL TREATMENT OF MODEL PREDICTIONS
We consider models with a common frame of discernment
2 = {L1,L2, . . . ,LN }, where N represents the number of
labels or classes,, and N ∈ N. The power set is represented
by 22

= {φ, {L1}, {L2}, {L1,L2}. The last term represents
the overall uncertainty U . Each model (e.g., classifier or a
rule-based system) provides a prediction in the form of a
unique label p = L1 or as an array, p = [L1,L2, . . . ,Ln].
In section III-A, the sum of BPAs is defined as

∑
A⊆2 m(A) =

1. In [13], we proposed a strategy to transform a prediction
into a mass function. This operation plays an essential role in
the fusion of different information sources. We presented a
sum of BPA that considers the weights of each focal element
wm, and the quantification of the overall uncertainty U :
Swbpa =

∑N
j=1mj · wmj + U = 1, where n ∈ N and wm

is the weight of the evidence m. The following conditions
must be fulfilled: ∀mj. mj > 0 and wmj → [0, 1]. The
overall uncertainty is defined as U = 1 −

∑N
j=1 mj · wmj ,

in which a high value of U represents a high uncertainty on
the body of evidence (e.g., lack of evidence).We consider that
the focal elements are mutually exclusive, which means that
only one label is active at the time, which transforms Swbpa
into Swbpa = mRj · wmRj + U = 1. However, we adapted

the sensitivity to zero approach of Cheng et al. [52], using the
equation [36]: k = 1 − 10−F , where k ∈ R, F ∈ N, and
F ≫ 1. Thus, we transform Swbpa into:

Sawbpa =
N∑
j=1

m′pj · wmpj + U = 1

(6)

where m′pj represents the jth focal element, and is defined
using:

m′pj =

 k if pj = True
1− k
N − 1

otherwise
(7)

where k is the approximation factor, N is the number of focal
elements of 2, and N ∈ N. The active prediction p can be
transformed into a mass function m using: m = m′p.wp. The
mass function can be represented as a row vector using the
following equation:

m = [m′p1 · wp1 . . . m′pN · wpN U ] (8)

and the uncertainty U is defined as:

U = 1−
N∑
j=1

m′pj · wmpj U ] (9)
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IV. INFUSION: ADAPTIVE INFORMATION FUSION USING
EVIDENCE THEORY AND UNCERTAINTY QUANTIFICATION
This research proposes an adaptive INformation FUsion
approach using evidence theory and uncertainty quantifica-
tion (INFUSION). This section covers the topics: theoretical
background, prediction systems, information fusion, model
update of the prediction system, and the decision assistance
system.

As a first insight into this theme, we present a general
system overview as seen in Fig. 1.

The general system is conformed by n systems used
as information sources. The motivation behind this is the
creation of a more robust system. The general system
overview is composed of the blocks:

• The batch data is the numerical representation of the
physical behavior of a machine. The data is split in three
categories: training data DTr , validation data DVa, and
testing dataDTe. The data is used during the training and
inference processes of the models.

• The modules form the decision assessment system:
– n Systems, in which each system has a model and a
model update module. For instance, model 1 has two
outputs: the model prediction ŷSys1 and its associated
uncertainty USys1 .

– The fusion module, which combines the predictions
ŷSys1 ..ŷSysn of the information sources model 1..model
n into the ensemble prediction ŷESys.

– The model update module is triggered either by each
system uncertainty (e.g., USys1 ) or by the ensemble
uncertainty UE

Sys.
– The assessment module matches each ensemble
prediction with its corresponding assessment.

– The knowledge base has the assessment for each
ensemble prediction.

• The assessment is presented to the user (operator)
through a user interface.

A primary motivation of this paper is the integration
of data-based and knowledge-based models because the
combined outcome profits from the strengths of both models.
Therefore, the n systems of Fig. 1 are transformed into
two major systems: an ensemble classifier (EC) that groups
different data-based models and a knowledge-based model.
Section IV-A details both systems.

A. PREDICTION SYSTEMS
As presented in Fig. 1, a (prediction) system is conformed
by an inference model and an update module. The trained
model represents the physical system and is used to predict
the system’s answer while feeding data to it. The inference
model can be data-based (e.g., a supervised classifier),
an ensemble classifier (EC) formed by several models,
a model built on equations representing the physical system,
an ontology, or a knowledge-based model. The model update
module adapts the system when the initial conditions have

changed (or unknown events occur). The update is performed
automatically or manually, depending on the module strategy.
A model Mi is trained using a training dataset DTr (in

the case of data-based models), or is modeled using the
relationships between the process variables and thresholds
(in the case of a knowledge-based model). A training dataset
DTr contains NoTr number of observations, NfTr number of
features, and NcTr number of classes. A frame of discernment
2 is formed by all the labels (or classes) that the model can
predict: 2 = {C1, . . . ,CN }, where N ∈ N.
Thus, a model Mi outputs the prediction ŷi while feeding

the testing data DTe:

ŷi = Mi(DTe) (10)

where ŷi ∈ 2. The prediction ŷi is transformed into the mass
function mi using equations (6)-(9):

mi = fm(ŷi,wMi ) (11)

where wMi represents the (confidence) weights for each class
predicted by the modelMi.
We focus this research on a prediction system using

EC and rule-based knowledge models. Previous research
deepened in these two topics separately [13], [28]. Fig. 2
details the INFUSION system, where the prediction systems
are adjusted to a data-based and knowledge-based model.
Thus, the data-based model is represented by the EC using
the ensemble classification and evidence theory (ECET)
approach [28], and the knowledge-based model is built
using the knowledge transfer framework and evidence theory
(KLAFATE) methodology [13]. It is important to remark that
each system has an inference model and a model update
module. It is important to note that ECET is an EC formed
by n systems, specifically the n supervised classifiers. ECET
presents a similar structure from Fig. 1 for the system’s
prediction, except for the model update module.
The model update module of KLAFATE is manual because

it relies on the expertise of the team expert. The methodology
is explained in detail in [13]. The automatic model update
module of ECET is introduced in this research and is explored
in detail in section IV-D. The main blocks of this module are:

• The pool of classifiers and the list of hyperparameters
reported in [28].

• The (re)-training pool of classifiers module, which is
formed by the blocks:
– train model using either the prior training data DTr ,

or using the re-training data DTr
′

.
– model validation either the prior validation data DVa,

or the new validation data DVa
′

.
– uncertainty quantification

• The anomaly detection module which monitors the
ensemble uncertainty UE and the anomaly prediction
ŷAN of ECET, and the system uncertainty USys and the
system prediction ŷSys.
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FIGURE 1. General system overview.

FIGURE 2. INFUSION overview.

1) ECET PREDICTION SYSTEM
In [28], we presented an approach of ensemble classification
using evidence theory (ECET), in which we propose the use
of information fusion to combine the predictions ofN number
of classifiers. In this paper, we extend the contribution
of [28] by formalizing the approach theoretically. This
theoretical formalization plays a crucial role in section IV-C

and section IV-D, which correspond to the methodologies
of information fusion and model update, respectively. Thus,
given a n number of classifiers, each classifier produces an
output ŷi using equation (10), where ŷi ∈ 2. The output
is subsequently transformed into a mass function mi using
equations (6)-(8). The ensemble classifier (EC) is obtained by
combining all the classifiers, specifically using the DSRC on
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the mass function of each classifier prediction. As described
in equation (5), the DSRC can be used for multiple fusion
operations. However, the fusion is performed in pairs. For
instance, in the case of three classifiers, the fusion of m1
(corresponding to the output ŷ1 of model C1) and m2 is
performed first, the result of this fusion m1 ⊕ m2 is then
combined with m3. The fusion of the pair of mass functions
mi and mDi−1 is represented using:

FDi =

{
mi ⊕ mDi−1 if i > 1
0 otherwise

(12)

where i ∈ N, mi is the mass function of the current classifier,
and mDi−1 is the fusion of the previous mass functions. After
obtaining the resulting fusion FDi , the previous mass function
mDi−1 is updated:

mDi−1 =

{
FDi if i > 1
mi otherwise

(13)

where i ∈ N. The last element of the fusion FDi , which is a
row vector, corresponds to the uncertainty UDi :

UDi =

{
FDi [N ] if i > 1
0 otherwise

(14)

, where N is the cardinality of the frame of discernment 2,
and N ∈ N. After performing the last fusion, the system
prediction ŷEN is calculated using:

ŷEC = argmax
2

FDi (15)

where ŷEC ∈ 2. The system uncertainty is calculated using:
UD = UDi . A similar procedure is performed when using the
YRC to calculate the fusion FYi , the previous mass function
mDi−1 , and the uncertainty UYi . It is important to remark that
the current mass function mi is used for DSRC and YRC.

2) KLAFATE PREDICTION SYSTEM
In [13] we presented a knowledge-based model using
the knowledge transfer framework using evidence theory
(KLAFATE) [13]. The knowledge was extracted from a
failure mode and effects analysis (FMEA) and modeled in
rules. Thus, a knowledge rule Ri is defined as the function:
Ri = f (V1, . . . ,VNV ,T1, . . . ,TNT ), where V1 represents a
process variable, T1 is a threshold or limit value of the process
value, NV is the number of process variables, NT is the
number of thresholds, NV and NT ∈ N. The knowledge rules
are mutually exclusive: Ri∩Ri+1 = φ. The knowledge model
is represented as a set of rules [13]:

LTR =


LTR1 if R1
. . .

LTRm if Rm
LTRm+1 otherwise

(16)

where LTRi represents the approximated rule Ri, m is the
number of knowledge rules, m ∈ N, and LTR , Ri ∈ 2. The
active rule is obtained using equations (6)-(9):

LTRi =

 k if Ri = True
1− k
N − 1

otherwise

where k is the approximation factor,N is the cardinality of2,
k ∈ R, and N ∈ N. Thus, the mass function is defined using
equation (8):

m = [LTR1 · wR1 . . . LTRN · wRN U ] (17)

where wR1 is the (confidence) weight of the rule R1, and U is
the overall uncertainty. The uncertainty U is calculated using
the equation (9):

U = 1−
N∑
j=1

LTRj · wRj (18)

The (confidence) weight wRj is defined using the equa-
tion [13]:

wRj =
1
NR

NR∑
i=1

wRCi (V ,T )

The mass function mRi is transformed into the prediction
ŷKE using:

ŷKE = argmax
2

mRj (19)

where ŷKE ∈ 2.

B. DECISION ASSISTANCE SYSTEM
The decision assistance system provides an interactive source
of assessment for the user while receiving the process
data. It provides the current status of the system (e.g.,
system prediction and uncertainty), the assessment (e.g.,
troubleshooting through the FMEA knowledge base) in the
case of a fault case, and notifies in case of an unknown
condition for the consequent model update.

The knowledge of the FMEA is stored as a knowledge tuple
TUi [13]:

TUi = (P, SP,FM ,C,E,RE,R,wR) (20)

where FM represents a failure mode, P is a process, SP a
subprocess, C a set of causes, E a set of effects, RE a set
of recommendations, and i ∈ N. A set of recommendation is
also represented as: RE = [RE1, . . . ,RENRE ], where NRE ∈
N. The latest representation applies to the sets of effects and
causes.

In the assessment context, the rule R corresponds to the
system prediction ŷSys, and the confidence weight wR to the
system weight wŷSys , where R, ŷSys ∈ 2Sys, and wSys = 1. It is
important to remark, that each system prediction ŷSys is linked
to a knowledge tuple TUi, a failure mode FM , and to a weight
wSys: ŷSys ⇐⇒ TUi, ŷSys ⇐⇒ FM , and ŷSys ⇐⇒ wŷSys .
In contrast, a system prediction ŷSys can be associated to a
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set of causes C, effects E, and recommendations RE. The
assessment module is modeled through a matching function
that associates a system prediction ŷSys to the rest of the
knowledge of the tuple TUi:

P, SP,FM ,C,E,RE = fMa(ŷSys,TU ) (21)

where i ∈ N. The matching function fMa provides the assess-
ment while feeding the system prediction ŷSys, specifically
returning the troubleshooting information associated with the
failure mode: the process P, the subprocess SP, the set of
causesC, the set of effectsE, and the set of recommendations
RE. The decision assistance systemwas described in detail in
a previous work [13].

C. INFORMATION FUSION
Information fusion has a growing research interest because
it improves robustness while combining different models.
To this end, we propose a novel framework for combining
n number of models using DSET. Moreover, this framework
is used for the fusion of a data-based model and a knowledge-
based model.

Thus, as presented in Fig. 1, the system is formed by
n number of subsystems. The system mass function mSys
is obtained after applying the information fusion to all
subsystems:

mSys(A) =
((
mSys1 ⊕ mSys2

)
. . .⊕ mSysn

)
(A) (22)

where n ∈ N, and mSys(A) ∈ 2Sys. The system mass function
mSys is also referred as FSys. It is important to remark that
all the systems share the same frame of discernment: 2KE =

2EC = 2Sys, and

2Sys = {C1, . . . ,CNSys} (23)

where C1 represents the first class (or fault case), NSys is the
number of classes (or fault cases), and NSys ∈ N.
The equation (22) can also be represented as:

mSys(A) =


(
NSys⊕
i

mSysi )(A) if i > 1

0 otherwise

(24)

where i,NSys ∈ N.
This paper adapts the system to two main subsystems: a

data-based modelMEC and a knowledge-based modelMKE .
As a first step we obtain the outputs ˆyEC and ˆyEC by feeding

data to the modelsMKE andMEC :

ˆyEC = MEC (DTe) (25)

and

ˆyKE = MKE (DTe) (26)

where DTe is the testing data.
The predictions ˆyEC and ˆyKE are transformed into the mass

functionsmEC andmKE respectively, using equations (6)-(9):

mEC = fm( ˆyEC ,wMi ) (27)

and

mKE = fm( ˆyKE ,wMi ) (28)

where wMi = 1 ∀i, and i ∈ N.
The next step is to obtain the system fusion FSys by

applying either DSRC or YRC.
Thus, the system fusion FDSys is calculated using DSRC

and applying the equations (1), (2), (22), (24):

FDSys (A) = (
NSys⊕
i

mSysi )(A)

= (mSys1 ⊕ mSys2 )(A)

= (mEC ⊕ mKE )(A) (29)

Likewise, the system fusion FYSys is calculated using YRC
and applying the equations (3), (4), (22), (24):

FYSys = (mEC ⊕ mKE )(A) (30)

. The system uncertaintyUD is calculated using the last DSRC
fusion FDi : ŷSys using:

UDi = FDi [|2Sys|] (31)

where FDi [|2Sys|] corresponds to the overall uncertainty of
the system fusion FDi . Likewise, the system uncertainty UY
is calculated using the last YRC fusion FYi :

UYi = FYi [|2Sys|] (32)

where FYi [|2Sys|] corresponds to the overall uncertainty of
the system fusion FYi .
The last step is the calculation of the system mass function

mSys and the system uncertainties using DSRC UD and YRC
UY . The system mass function mSys is obtained from the last
DSRC system fusion FDSys : mSys = FDi . The mass function
mSys, then, is transformed into the prediction ŷSys using:

ŷSys = argmax
2

mSys (33)

where ŷSys ∈ 2Sys. Algorithm 1 describes the steps for
the information fusion of NSys number of subsystems while
feeding the testing data DTe, where NSys ∈ N. Algorithm 1 is
an updated version of the algorithm presented in [28].

D. MODEL UPDATE
The anomaly detection functionality is crucial in the model
update because it identifies when an unknown condition is
present. We present an (automatic) model update for ECET
based on uncertainty monitoring. The (manual) model update
of KLAFATE was proposed in [13]. The model update is
a sequence of five steps: anomaly detection, collection of
unknown data, data isolation using a window, retraining, and
inference.
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Algorithm 1 Information Fusion of NSys Systems [28]
1: procedure Information Fusion
2: for j = 1 to NSys do ▷ NSys Subsystems
3: for i = 1 to NDTe do ▷ NDTe Samples
4: ŷi← Mj(Si) ▷ by Eq. (25)
5: mi← fm(ŷi,w

Mj
i ) ▷ by Eq.(6)-(9), (27)

6: if i = 1 then
7: FDi−1 = FYi−1 = 0
8: mDi−1 = mYi−1 = mi
9: UDi−1 = UYi−1 = 0

10: else
11: FDi = mi ⊕ mDi−1 ▷ by Eq. (29)
12: FYi = mi ⊕ mYi−1 ▷ by Eq.(30)
13: mDi−1 = FDi
14: mYi−1 = FYi
15: UDi = FDi [|2Sys|] ▷ by Eq.(31)
16: UYi = FYi [|2Sys|] ▷ by Eq.(32)

17: mSys = FDi
18: ŷSys = argmax2 mSys ▷ by Eq.(33)
19: UD← UDi
20: UY ← UYi
21: return ˆySys, UD, UY

1) MODEL UPDATE FOR ECET
Performing ECs are usually the result of a suitable dataset
that fits the patterns of the existing data. However, the
occurrence of new unknown fault cases might undermine the
performance of the ECs, leading to a retraining procedure
of the models. To this end, our methodology provides the
theoretical basis for updating the data-based models using
DSET, in which we monitor the uncertainty of the fusion
to trigger a model update. The model update of ECET is
performed automatically using an anomaly detection strategy,
in which the uncertainty is monitored. However, The model
update can be set as semi-automatic (e.g., the user receives a
notification from executing the model update module) in case
the unknown condition needs to be analyzed in detail first.
Algorithm 2 describes the sequence of the model update.

We proposed an anomaly detection strategy using ECET
in [28], in which an unknown condition AK was detected:

ŷA =

{
AK if CA = True
ŷEC otherwise

(34)

where ŷA is a parallel prediction to the EC prediction ŷEC ,
AK ∈ Z, and K ∈ N. The condition for anomalies CA is
defined as:

CA = (UD > TrDMx ) and (UY > TrYMx ) (35)

where UD = bk , UY = q(φ), TrDMx represents the maximum
threshold for UD, TrYMx is the maximum threshold for UY .
The terms bk and q(φ) are calculated using the equations (1)-
(2), and (3)-(4), respectively.
In this paper, we propose the monitoring of the EC

uncertainties UDEC and YDEC , as well as the system uncer-

Algorithm 2Model Update of ECET
1: procedureModel Update
2: ˆyEC ← MEC (Sj)
3: mEC ← fm( ˆyEC ,wEC ) ▷ by Eq.(6)-(9)
4: if CA = True then ▷ by Eq. (36)
5: ŷA = AK
6: DTempj ← collect_data(XA, ŷA)
7: iA← iA + 1
8: if CS = True then ▷ by Eq. (39)
9: DA← DTemp
10: D′TrA ,DVaA ,DTeA ← split_data(DA)
11: D′Tr ← D′TrOld ∪ D

′Tr
A ▷ by Eq. (43)

12: DVa← D′TrOld ∪ D
Va
A ▷ by Eq. (44)

13: M̂Tr ← retrain(M ,D′Tr )
14: MTr ← M̂Tr ▷ Replace old models
15: else
16: ŷA = argmax2 mEC ▷ by Eq.(33)
17: iA← 0
18: returnMTr

tainties UDSys and YDSys . The condition for anomalies from
equation (35) is transformed into:

CA = CAEC or CASys (36)

where CAEC and CASys represent the condition for anomalies
of EC and system, respectively. Thus, the anomaly detection
of the system is defined as:

ŷASys =

{
AK if CA = True
ŷSys otherwise

(37)

The data collection of (unknown) conditions needs to
satisfy the condition CD:

CD = CA and CS (38)

where CS is the condition that satisfies a minimum number
of consecutive data samples. The condition CS is defined as:

CS = iA > SMn (39)

where iA is the number of consecutive data samples, SMn is the
minimum number of consecutive data samples, and iA, SMn ∈
N.

The collected data of the unknown condition DA has the
same features fTr of the (old) original dataD, such as fA = fTr .
In contrast, the number of observations oA might differ from
that of the original data oTr . Thus, the data DA is represented
by a number of observations NoA , in which each observation
is composed by the features XA = fA and the associated label
(or class) ŷA.
The data DA is represented as:

XASMn×NfA
× YASMn×1 (40)

where SMn is the minimum number of consecutive samples
of the unknown condition, NfA is the number of features,
SMn,NfA ∈ N, XA ∈ R, and YA ∈ Z.
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FIGURE 3. EC using a window.

The data DA is split into training DTrA and testing data DTeA :

DA =

{
DTrA ∪ D

Te
A if CD = True

0 otherwise
(41)

The training data is split DTrA into training data D′TrA and
validation data DVaA :

DTrA = D′TrA ∪ D
Va
A (42)

The next step is to integrate the existing data D with the
collected data DA using the following equations:

D′Tr = D′TrOld ∪ D
′Tr
A (43)

DVa = DVaOld ∪ D
Va
A (44)

DTeA = DTeOld ∪ D
Te
A (45)

The EC prediction ˆyEC usually has not a constant steady
value because of the diversity of the classifier’s predictions.
For this reason, we propose a window on the EC prediction
ˆyEC that can ease the data isolation of the unknown condition.

The window smoothes the EC output because it considers a
window of Nw number of the last samples for the calculation
of the windowed EC output ˆyEC :

ŷwECi =
1

Nw + 1

i∑
k=i−Nw

ŷECk (46)

where ˆyECi
w
∈ 2Sys.

A graphical representation of the window procedure is
exemplified in Fig. 3.

Having the data and the frame of discernment updated,
we can proceed with the retraining of the pool of classifiers.
The retraining is performed using the training methodology
presented in [28].
The last step is to test the EC using the testing dataDTe. For

this purpose, we first update the frame of discernment 2Sys:

2Sys = 2SysOld ∪ AK (47)

where 2SysOld is the old frame of discernment, AK is the new
focal element, and N ,K ∈ N.

Thus, the updated 2Sys is transformed into:

2Sys = {F1, . . . ,FN ,AK } (48)

2) MODEL UPDATE FOR KLAFATE
Though knowledge-based models contain valuable expert-
domain knowledge, the modeling process is time-consuming
and requires frequent updates to avoid knowledge obsolete-
ness. To this end, our methodology provides the theoretical
framework for uncertainty monitoring using DSET, which
can be used to trigger the update of the knowledge model
by the team of experts. The model update of KLAFATE is
triggered by an uncertainty rise, either on the system or
the knowledge model. Thus, the expert team is gathered
to analyze the possibility of an unknown condition. Con-
sequently, the expert team recommends adding information
sources by including signals, process variables, or hardware
to capture new physical signals. The latest purpose is to
ease the identification of unknown conditions to create new
knowledge rules in the FMEA. Once the expert team analyzes
the acquired knowledge, the knowledge rules are validated
using key performance indicators (KPI) in the short and long
term. The process to create a rule-based system is described
in [13].

V. USE CASE: MODEL UPDATE FOR ENSEMBLE
CLASSIFICATION USING TENNESSEE EASTMAN DATASET
As described in section IV-D, the approach’s novelty
is a methodology for updating data-based models while
injecting unknown fault cases in the data. The method-
ology uses primarily an uncertainty monitoring approach
based on DSET. This section presents the results of the
improved anomaly detection approach and the model update
methodology. The robustness of the approaches is tested
using the benchmark Tennessee Eastman. We present a
description of the dataset. We describe the experiment
design explaining the defined scenarios and the performance
metrics. The subsection results provide the performance of
the experiments. A discussion subsection closes this section
by presenting the findings and limitations of the approach.
The model update for the data-based model (ECET) and
knowledge-based model (KLAFATE) are green highlighted
in Fig. 2.

A. DESCRIPTION OF THE TENNESSEE EASTMAN DATASET
The benchmark Tennesse Eastman (TE)was created byDown
and Vogel with the motivation to provide an industrial-like
dataset based on the Tennesse Eastman chemical plant [53].
The TE chemical plant have five principal process compo-
nents: condenser, reactor, compressor, separator, and stripper.
The dataset is amply used in literature to compare the
performance of data-based models. The dataset models a
chemical process considering 21 fault cases and a normal
operation case. The dataset is divided into training sets and
testing sets. The training set consists of 480 rows of data
containing 52 features for each fault. In contrast, the training
set of the normal condition contains 500 rows of data. The
testing set consists of 960 rows of data, in which the first
160 rows belong to the normal condition and the rest 800 rows
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belong to the fault case. Given the prediction difficulty, the
fault cases are usually grouped into three categories: easy
cases (1, 2, 4, 5, 6, 7, 12, 14, 18), medium cases (8, 10, 11, 13,
16, 17, 19, 20) and hard cases (3, 9, 15 and 21) [54]. A detailed
dataset description can be found in [53] and [28].

B. EXPERIMENT DESIGN
We followed the procedure proposed in [28], in which we
used the benchmark TE to test the performance of the
proposed approaches. Besides, we considered a pool of
ten classifiers (e.g., five NN-based models and five non-
NN-based models) as the basis of the ECs. We consid-
ered only experiments using ML-based ECs, and Hybrid
ECs (a combination of non-NN-based classifiers and NN-
based classifiers). The procedure is documented in detail
in [28]. We trained the classifiers of the ECs using the
fault cases (0,1,2,6,12) as the basis of the experiments.
We defined two experiment scenarios: data isolation using
a window and an update of ECs. We develop the approach
using the IDE Anaconda and the libraries Scikit-learn and
PyTorch [55], [56], [57]. We perform the experiments on
a Ubuntu 20.04.3 LTS environment using a CPU i7-7700
@3.60GHz x 8, 32GB RAM, and a GPU NVIDIA GeForce
GTX 1660 SUPER.

1) DATA ISOLATION USING A WINDOW
We selected the MC ECs M3 and H5-2 from the pre-
vious work [28] with the best performance criteria. The
EC M3 consists of non-NN classifiers, whereas the
EC H5-2 is hybrid. We compared the results obtained
by performing a variation on the window size. The
base classifiers’ and ECs’ hyperparameters are detailed
in [28].

2) UPDATE OF ECS
We selected the ML-based ECs M3, M4, and M5 to perform
the experiments and comparisons. Given the constraint of
limited retraining data, we discard NN-based and Hybrid
ECs. The procedure consists of two data batches for each
experiment. The first batch contains the known fault cases
(0,1,2,6,12) and one anomaly case (e.g., fault case 7). The
EC identifies the anomaly through uncertainty monitoring,
collects the anomalous data, and retrains the EC if the data
is sufficient. We assign the anomaly data with the arbitrary
label 30. The second batch contains testing data of the fault
cases (0,1,2,6,12) and the anomaly (e.g., fault case 7). For
comparison purposes, the original label 7 is changed by the
new label 30. We defined three main experiments, namely,
the retraining of the ECs using all the fault cases (1,. . . ,21),
the study of the retraining parameters (e.g., threshold size,
window size, and detection patience) using the fault cases
(7,8,15), and the fine-tuned retrained ECs using all the faults
(1,. . . ,21). We selected the fault cases (7,8,15) as anomalies
to have a case for each primary data group (easy, medium,
and hard).

3) PERFORMANCE METRICS
We use the performance metrics F1-score (F1) and fault
detection rate (FDR, also known as recall). F1 and FDR are
detailed in [58].

C. RESULTS
This subsection presents the experiment results of the model
update approach. For this purpose, the experiments are
divided into two parts: data isolation using a window and a
model update of EC.

1) DATA ISOLATION USING A WINDOW
We perform experiments using different window sizes to
study their impact on the EC performance. We compare the
effects of using no-window (w = 0) and a window (w = 20,
w = 50).
Table 2 presents the F1-scores of the BIN EC M5 and

MC EC H5-2. The hyperparameters of the base classifiers
and ECs were reported in detail in [28]. The BIN EC M5
presents comparable results while varying the window size
with average F1-scores of 0.6%, 0.64%, and 0.65% for the
window sizes (0, 20, 50), respectively. In contrast, the MC
EC H5-2 presented higher results using a window (20,50)
compared to no-window w = 0. The MC EC H5-2 presented
average F1-scores of 0.63%, 0.81%, and 0.88% for the
window sizes (0,20,50), respectively.

Fig. 4 presents the plots of the MC EC H5-2 trained with
fault cases (0,1,2,6,12) and using the anomaly fault case (7)
while doing a variation on the window size (0, 20, 50).
Figures 4a, 4b and 4c show the confusion matrices for the
window sizes w = 0, w = 20, and w = 50, respectively.
The confusion matrices for the window sizes w = 20 and
w = 50 present better results than the confusion matrix with
window sizew = 0. The predictions plots of figures 4e, and 4f
confirm the results of the confusion matrices, in which the
predictions (blue) are closer to the ground truth (red) for EC
using the window sizes w = 20 and w = 50. The anomaly
case (7) is represented as the label (−1) in the predictions
plot. It is important to remark that the approach using a
window smooths the EC predictions. Figures 4g, 4h and 4i
show the precision-recall curves for the MC EC H5-2 for the
window sizes w = 0, w = 20, and w = 50, respectively.
The MC EC H5-2 using a window size w = 50 presents
the highest performance for the known fault cases and the
unknown condition.

2) MODEL UPDATE OF EC
We perform three different experiments in this subsubsection:
the model update of the EC (retraining), the study of the
variation of the retraining parameters, and finally, selecting
a fine-tuned retrained EC.

We test the model update of the EC using all the fault
cases of the TE dataset. For this purpose, we selected the
MC ECs M3, M4, and M5. The hyperparameters of the base
classifiers and ECs were reported in detail in [28]. Table 3
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FIGURE 4. Anomaly detection using different window sizes for the MC EC H5-2 trained with the known cases 0,1,2,6,12, and using the fault case (7) as
an anomaly. The confusion matrices of H5-2 are displayed in (a)-(c), the predictions in (d)-(f), and the precision-recall curves in (g)-(i).

presents the F1-scores of the MC ECs M3, M4, and M5
trained with the fault cases (0,1,2,6,12). The MC ECs M3,
M4, and M5 present comparable results with an average F1-
score of 0.39, 0.36, and 0.37, respectively. The EC MC M3
detected the anomalies (7,17) with F1-scores higher or equal
to 0.43 and the anomalies (13,14) with F1-scores higher or
equal to 0.33 and less than 0.43. The EC MC M4 detected
the anomalies (8,14,17) with F1-scores higher or equal to
0.67 and the anomalies (7,10,11,15) with F1-scores higher
or equal to 0.38 and less than 0.54. Alternatively, the EC M5
detected the anomalies (14,18,20) with F1-scores higher or
equal to 0.54 and the anomalies (8,17) with F1-scores higher
or equal to 0.43 and less than 0.54.

Fig. 5 presents the plots of the MC ECs M3, M4, and M5
trained with fault cases (0,1,2,6,12) and using the anomaly
fault 7. Figures 5a, 5b and 5c show the confusion matrices for
the ECs M3, M4, and M5, respectively. The confusion matrix
of the MC EC M3 presents better results than the confusion
matrices of the other ECs. Alternatively, the prediction plots

of figures 5d, 5e and 5f present mixed results, in which M3
identifies the anomaly better, but the case (12) is confused
with the anomaly. In addition, M5 presents a better prediction
of the known fault cases but has a lower anomaly detection.
The uncertainty quantification (UQ) using DSET is presented
in figures 5g, 5h and 5i for the MC ECs M3, M4, and M5,
respectively. TheMCECM5 presents steadier values than the
MC ECs M3 and M4, which confirms the prediction pattern.
The latest can be enunciated as the lower the uncertainty, the
better the classification performance (likeliness). Figures 5j,
5k and 5l show the precision-recall curves for the ECs M3,
M4, and M5, respectively. The MC EC M3 presents the
highest anomaly detection and generally the highest results
for the known cases. In contrast, the MC ECs M4 and M5
present mixed results with lower performance in comparison
to the EC MC M3.

The next step is the study of the retraining parameters.
For this purpose, we test the effects of the threshold size,
window size, and detection patience. We chose the MC EC
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TABLE 2. Anomaly detection results of selected ensemble multiclass
classifiers using all the fault cases, and F1-score.

TABLE 3. Classification results of the ECs after retraining using all the
fault cases, and F1-score. The retraining parameters are threshold size
th = 100, window size ws = 20, and detection patience pt = 15.

M3 to perform the experiments and selected the threshold
sizes (150,250,350) and anomalies (7,8,15).

a: EFFECTS OF THE THRESHOLD SIZE
Table 4 presents the F1-scores of the MC ECs M3, M4, and
M5 trained with the fault cases (0,1,2,6,12). The retraining
parameters window size and detection patience are fixed with
values of ws = 20 and pt = 15, respectively. The MC
EC M3 presented higher results using a threshold size th =
150 with an average F1-score of 0.81 for the anomaly (7),
compared with the values of 0.57 and 0.50, corresponding
to the threshold sizes (250, 250). The MC EC M3 presents

comparable results for the anomaly (8) with average F1-
scores of 0.81, 0.82, and 0.82 for the threshold sizes (150,
250, 350), respectively. In contrast, the MC ECM3 presented
higher results using a threshold size th = 350 with an average
F1-score of 0.74 for the anomaly 15, in comparison with the
values of 0.54 and 0.55, which correspond to the threshold
sizes (150, 250), respectively.

Fig. 6 displays the ECM3 performance for each class while
effectuating variations on the threshold size (150,250,350)
for the anomalies (7,8,15). The best performance corresponds
to the anomaly (8), in which the EC M3 detects the
fault cases (0,1,2,6,12) often correctly, and it has limited
anomaly detection. In contrast, the EC M3 presents a lower
performance while applying the anomalies (7,15).

b: EFFECTS OF THE WINDOW SIZE
Table 5 presents the F1-scores of the MC ECs M3, M4, and
M5 trained with the fault cases (0,1,2,6,12). The retraining
parameters threshold size and detection patience are fixed,
with values of th = 250 and pt = 15, respectively. The MC
EC M3 presented average F1-scores higher than 0.84 using
window size (10,50) for the anomaly (7). Alternatively, the
MC ECM3 presented average F1-scores higher than 0.72 for
the anomaly (8) using the window size (20,50). In contrast,
the MC EC M3 presented higher results using a window
size ws = 50 with an average F1-score of 0.74 for the
anomaly (15), in comparison with the values of 0.50 and
0.55, which correspond to the window sizes (150, 250),
respectively.

Fig. 7 displays the ECM3 performance for each class while
effectuating variations on the memory size (10,20,50) for the
anomalies (7,8,15). The best performance corresponds to the
anomaly (8) using a window size ws = 20, in which the EC
M3 detects the fault cases (0,1,2,6,12) mostly correct, and
it has a limited anomaly detection. In contrast, the EC M3
presents a lower performance while applying the anomalies
(7,15).

c: EFFECTS OF THE DETECTION PATIENCE
Table 6 presents the F1-scores of the MC ECs M3, M4, and
M5 trained with the fault cases (0,1,2,6,12). The retraining
parameters threshold size and window size are fixed with
values of th = 250 and ws = 20, respectively. The MC EC
M3 presented an average F1-scores of 0.84 using detection
patience of pt = 5 and pt = 30, respectively, compared
to the average F1-score of 0.57 for pt = 15. In the case of
anomaly (8), the MC EC M3 presented higher results using
detection patience pt = 15 with an average F1-score of
0.82, in comparison with the values of 0.78 and 0.58, which
correspond to the detection patience (5,30), respectively. The
MC ECM3 presented average F1-scores higher than 0.73 for
the detection patience (5,30), while the average F1-score of
0.55 is obtained with the detection patience pt = 15.

Fig. 8 displays the ECM3 performance for each class while
effectuating variations on the detection patience (5,15,30) for
the anomalies (7,8,15). The best performance corresponds to
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FIGURE 5. Anomaly Detection and UQ results for MC ECs M3, M4 and M5 trained with the fault cases (0,1,2,6,12): Confusion matrices (a)-(c),
classification results (d)-(f), DSET UQ (g)-(i), and precision-recall curves (j)-(l) while injecting anomaly 7.

the anomaly (8) using detection patience pt = 15, in which
the EC M3 detects the fault cases (0,1,2,6,12) mostly correct
and has a limited anomaly detection. In contrast, the EC M3
presents a lower performance while applying the anomalies
(7,15).

Finally, we present the performance of the ECs with
the tuned retraining parameters. Table 7 presents the F1-
scores of the MC ECs M3, M4, and M5 retrained with the
fault cases (0,1,2,6,12) and the respective anomaly. In this

case, the anomalies cases are all fault cases except for the
original training cases. The retraining dataset contains the
original fault cases and the detected data from the anomaly
(unknown fault case from the data). The retraining parameters
are threshold size th = 250, window size ws = 20,
and detection patience pt = 15. The MC ECs M3, M4
and M5 present comparable results with an average F1-
score of 0.39, 0.42, and 0.42, respectively. The MC EC M3
detected the anomalies (7,11) with F1-scores higher or equal
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TABLE 4. Anomaly detection results of MC EC M3 using the fault cases (0,1,2,6,12), the anomalies (7,8,15), thresholds variations (150,250,350), window
size (20), patience (15), and F1-score.

FIGURE 6. F1-score results after retraining for the ECs BIN M4, MC M3, and MC M5: (a)-(c) Bar plots for the known cases (0,1,2,6,12) and the new case
(30, corresponding to the injected anomaly 7). The plots represent the ECs results using memory size 20 and patience 15, while varying the threshold
(150,250,350).

TABLE 5. Anomaly detection results of MC EC M3 using the fault cases (0,1,2,6,12), the anomalies (7,8,15), window size variations (10,20,50), threshold
(250), patience (15), and F1-score.

FIGURE 7. F1-score results after retraining for the ECs BIN M4, MC M3, and MC M5: (a)-(c) Bar plots for the known cases (0,1,2,6,12) and the new case
(30, corresponding to the injected anomaly 7). The plots represent the ECs results using threshold 250 and patience 15, while varying the memory size
(10,20,50).
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TABLE 6. Anomaly detection results of MC EC M3 using the fault cases (0,1,2,6,12), the anomalies (7,8,15), patience variations (5,15,30), threshold (250),
memory size (20), and F1-score.

FIGURE 8. F1-score results after retraining for the ECs BIN M4, MC M3, and MC M5: (a)-(c) Bar plots for the known cases (0,1,2,6,12) and the
new case (30, corresponding to the injected anomaly 7). The plots represent the ECs results using threshold th = 250 and window size me = 20,
while varying the patience (5,15,30).

to 0.55 and the anomalies (9,13,17) with F1-scores higher or
equal to 0.34 and less than 0.42. The MC EC M4 detected
the anomalies (8,14,17) with F1-scores higher or equal to
0.67 and the anomalies (7,10,11,15) with F1-scores higher
or equal to 0.38 and less than 0.54. Alternatively, the EC M5
detected the anomalies (14,18) with F1-scores higher or equal
to 0.68 and the anomalies (7,11,15,17,20) with F1-scores
higher or equal to 0.31 and less than 0.54.

D. COMPARISON WITH LITERATURE
Though the current approach can automatically update the
models while detecting unknown fault cases from the data,
the stored data to retrain the models might be insufficient
for some fault cases. Thus, the stored data for some fault
cases might not capture the essential patterns to identify the
condition. In contrast, the contributions of literature presented
in the comparison consider all the extent of the testing data.

Table 8 compares the anomaly detection results between
the proposed approach and the literature. The multiclass
ECs M3, M4, and M5 are originally trained using the fault
cases (0,1,2,6,12). The testing data consists of the fault cases
(3,9,15,21), which represent unknown conditions to the ECs.
For this purpose, each EC is retrained with one fault case at a
time.We use the F1-score as a performancemetric to compare
the proposed approachwith other literature contributions. It is
essential to mention that the MC EC H5-2 from a previous
work [28] uses the full extent of testing data, as well in
the case of Top-K DCCA [41]. The results of the ECs M3,

M4, and M5 present lower results with average F1-scores of
20.36%, 3.50%, and 2.59%, respectively. The results of H5-
2 and Top-K DCCA present general scores of 63.69% and
50.04%, respectively. OnlyM3 presents a score of 31.07% for
the fault case 21, which still lies under the better performance
results of H5-2 and Top-K DCCA with scores of 63.1% and
50.05%, respectively.

Table 9 compares the anomaly detection results between
our approach and the literature. We use the FDR to compare
our results with the literature results. The retrained MC
ECs M3, M4, and M5 present lower results with average
FDR scores of 53.02%, 41.68%, and 35.04%, respectively.
The MC ECs M3 and H3-4 present FDR scores of 87.97%
and 73.76%, respectively. The approaches DPCA-DR, AAE,
and MOD-PLS have FDR scores of 83.51%, 78.55%, and
83.83%, respectively.

E. DISCUSSION
The ECs improved the anomaly detection capability after
implementing the window size. In the case of the MC EC
M5, the general F1-score improved from 0.6 to 0.65 using a
window ofw = 50 for the latest score. In the case of H5-2, the
results are remarkable, in which the general F1-score score
improved from 0.63 to 0.88 using a window of w = 50 for
the latest score. However, a side effect of the window is a
delay effect on the ensemble prediction, which is reflected
while comparing Fig. 4d and Fig. 4f.
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TABLE 7. Classification results of the RT ECs after retraining using all the
fault cases, and F1-score. The retraining parameters are threshold size
th = 250, window size ws = 20, and detection patience pt = 15.

There are remarkable effects on the EC M3 performance
while doing variations on the retraining parameters, namely,
threshold size, window size, and detection patience. The
results are mixed, and the average performance depends on
the studied anomaly. However, from the results, it is possible
to identify that a threshold of Th = 150 presented the
best average results for anomaly 7. In contrast, a threshold
of Th = 350 presented the best results for anomaly 8.
Alternatively, the plots of Fig. 6 visualize the performance
of each class while doing variations on the threshold. The
MC EC M3 presents an overall good performance while
applying anomaly 8, in which the EC classifies the known
cases mostly correctly and has a limited detection of the
anomaly. In contrast, the anomaly detection feature decreases
the performance of the known fault cases for some fault
cases, which is visually represented in Fig 6a while applying
anomaly 7. Variation of the window size reported favorable
average performance results for a window of me = 50 while
considering all the anomalies (7,8,15). In contrast, the
plots of Fig. 7 show that the best results correspond to
the window size me = 20 while applying anomaly 8,
in which the EC classifies known cases properly, and it has
a limited detection of the anomaly. Likewise the threshold
experiments, a similar effect of decreasing classification
performance of the known cases is detected. Generally, a
patience of pt = 5 presented the best average results for
all the anomalies (7,8,15). In contrast, the plots of Fig. 8b
show that the best results correspond to the patience pt =
15 while applying anomaly 8, in which likewise the window
size experiment, the EC classifies the known cases mostly
correctly, and it has a limited detection of the anomaly.
Likewise the threshold and window size experiments, the
performance of the EC is affected by some faults while using
the anomaly detection approach.

The retrained MC ECs M3, M4, and M5 presented mixed
results using the same retraining parameters: threshold size
th = 250, window size me = 20, and patience pt = 15.
The average F1-score of M3,M4, andM5 presented values of
0.67, 0.44, and 0.42, respectively. For this configuration, M3
presented the best results, however, it is important to remark
that the anomalies (14)-(19) are not detected. In contrast, M4
and M5 detected the faults (14,17,18), though the average
scores are lower than M3 scores.

The performance of the retrainedMCECs presentedmixed
results. For instance, the EC M3 detected the anomaly cases
(4,5,7,11,13) with FDR scores higher than 77% and the
anomalies (10,20,21) with FDR scores higher than 53%.
However, the results of the retrained ECs presented a lower
performance than other literature contributions. The average
FDR scores of M3, M4, and M5 are 50.18%, 43.60%, and
51.44%. It is important to remark that the retrained models
only use 250 samples as training data (only 52% of the
available data), in which other fault cases might be included
as a side effect of the parameter patience.

The proposed approach presented a novel methodology for
anomaly detection and automatic update of ECs. The ablation
study provided a systematic procedure to test the parameters
that influence anomaly detection and, subsequently, the auto-
matic update capability. The current approach differentiates
from the state-of-the-art, in which uncertainty quantification
and information are utilized as the core modules for anomaly
detection and automatic update methodologies.

VI. USE CASE: INFORMATION FUSION OF ENSEMBLE
CLASSIFICATION MODEL AND KNOWLEDGE-BASED
MODEL USING INFUSION ON A BULK GOOD SYSTEM
As described in section IV-C, the approach’s novelty is a
methodology for the information fusion of data-based and
knowledge-based models. The methodology primarily uses
a novel framework for combining n number of models using
DSET.

This section presents the results of the information fusion
approach and an ablation study considering the different
system configurations. The system configurations consist
of the detection system using: the data-based model, the
knowledge model, or a hybrid model (data-based model
together with a knowledge model) using information fusion.
We test the approach using a dataset of an industrial setup,
namely, a bulk good system laboratory plant. We describe
the testbed and the dataset. We present the results and
a discussion of the findings. Fig. 2 displays the main
blocks of this section: the data-based model (ECET), the
knowledge-based model (KLAFATE), and the outer module
for the information fusion of both models.

A. DESCRIPTION OF THE BULK GOOD SYSTEM
LABORATORY PLANT AND DATASET
The bulk good system (BGS) laboratory plant is an indus-
trial setup used for testing production and fault detection
experiments. The BGS consists of four stations that represent
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TABLE 8. Classification results of the ECs after retraining using all the fault cases, and F1-score. The retraining parameters are threshold size th = 250,
window size ws = 20, and detection patience pt = 15.

TABLE 9. Classification results of the ECs after retraining using all the fault cases, and FDR. The retraining parameters are threshold size th = 250,
window size ws = 20, and detection patience pt = 15.

standard modules of a bulk good handling system on a
small scale: loading, storing, filling, and weighing stations.
A detailed description of the BGS and applications can be
found in [13] and [36]. The stations are built using state-
of-the-art hardware regarding industrial controllers, commu-
nication protocols, sensors, and actors. The BGS dataset
contains 14055 rows of data, each containing 133 features
and three classes. The features represent information about
sensors, actors, and controllers. The classes represent the
different machine conditions, namely, low quality (LQ), low
production (LP), and normal production (NP or the normal
condition). Each class is associated with a failure mode (fm),
which in this case, translates into LQ (fm1), LP (fm2), and
NP (fm3). In the case of the class NP, it does not represent
a failure mode but is represented in the same framework for
consistency purposes of the knowledge model.

B. EXPERIMENT DESIGN
This subsection presents the methodology followed for the
ECET and INFUSION experiments using the BGS dataset.
Besides, we describe the performancemetric used to compare
the experiments.

1) ECET USING THE BGS DATA
We followed the same methodology of [28] for the creation
of MC ECs using the BGS data, which includes the pool
of base classifiers, the grid of hyperparameters of each

classifier, and the grid of hyperparameters for each EC.
We used the data-based models: decision tree (DTR), K-
nearest neighbors (KNN), AdaBoost (ADB), support vector
machine (SVM), and naive Bayes (NBY). For this purpose,
we first trained the pool of classifiers using only ML models,
which implies the search for the proper hyperparameters for
eachmodel. The second step is creating the ECs, using the EC
hyperparameters. The last step presents the inference results
of the ECs while injecting the BGS data.

2) INFUSION USING THE BGS DATA
The knowledge-based model KLAFATE was presented
in [13], in which we describe the knowledge rules. We only
use the failure modes fm1, fm2, and fm3 for the INFUSION
experiments. We present a comparison table using knowl-
edge, data fusion, and knowledge and data fusionmodels. The
KLAFATE model represents the knowledge model. The data
fusion models are represented by the ECET ECs models and
a fusion of two data-based models. Lastly, the knowledge and
data fusion models are represented by the combination of the
SVM-KNN-KLAFATE models and the INFUSION models
composed of an MC EC and the KLAFATE model.

3) PERFORMANCE METRICS
We use the F1-score as the main performance metric to
compare the different experiments. Panda et al. [58] present
a detailed description of the F1-score calculation.
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TABLE 10. Grid of hyperparameters for base classifiers using theBGS
dataset and the cases (1,2,3).

C. RESULTS
This subsection presents the results using the BGS data for
the ECET and the INFUSION architectures. For this purpose,
we present the F1-score results of themodels or ECs. Besides,
we display the confusion matrix, classification predictions,
and uncertainty for the different architectures.

1) ECET USING THE BGS DATA
The first is to train the pool of base classifiers, which
we performed using the module grid search of scikit-learn.
Table 10 presents the hyperparameters of the base classifiers
trainedwith the cases (1,2,3), which corresponds to the failure
modes (fm1, fm2, fm3), respectively.

The next step is applying the ECET methodology to find
the most performing MC ECs. We obtained the ML-based
MC ECs, shown in Table 11. The hyperparameters expert
(Exp), diversity (Div), version of diversity (Ver), and pre-cut
(PC) are set to False.

Table 12 presents the F1-scores of the MC ECs M3, M4,
and M5 and the base MC classifiers DTR, KNN, and ADB.
The MC ECs M3, M4, and M5 present the same average F1-
score of 1.00, whereas the base classifiers DTR, KNN, and
ADB have values of 1.0, 1.0, and 0.96, respectively.

Fig. 9 presents the plots of MC ECs M3, M4, and M5
trained using the cases (1,2,3), which correspond to the
failure modes (fm1, fm2, fm3), respectively. Fig. 9a, 9b, 9c
show the confusion matrices for the MC ECs M3, M4, and
M5, respectively. The confusion matrices present the same
performance for the MC ECs M3, M4, and M5. Fig. 9d,
Fig. 9e, Fig. 9f display the predictions in blue color compared
with the ground truth in red color for the MC ECs M3,
M4, and M5, respectively. Likewise, in the previous case,
the prediction plots are identical for the MC ECs M3, M4,
and M5. Fig. 9g, Fig. 9h, Fig. 9i present the DSET UQ
for MC ECs M3, M4, and M5, respectively. In contrast
to the previous plots, the uncertainty is reduced as the
ensemble size increases. In the case of the MC EC M5,
the model presents the clearest plot, except for the fm3,
which has a noisy behavior. Figures 9j, 9k, 9l show the
precision-recall curves for the MC ECs M3, M4, and M5,
respectively. The precision-recall curves present the same
performance for the MC ECs M3, M4, and M5. Similarly to

the confusion matrices, the precision-recall curves reflect a
high performance of the ECs.

2) INFUSION USING THE BGS DATA
Table 13 presents the F1-scores of the knowledge-
based model, the fusion of data-based models, and the
fusion of data-based and knowledge-based models. The
knowledge-basedmodel is represented by themodel using the
KLAFATE methodology. The fusion of data-based models
is represented by the models using the ECET methodology
(M3, M4, M5) and an additional case performing a DSET
fusion of the data-based models KNN and SVM (without
the ECET methodology). The fusion of data-based models
and the knowledge-based model is represented by the models
using the INFUSION methodology (IFS3, IFS4, IFS5) and
an additional case performing a fusion of the models KNN,
SVM, and KLAFATE. The KLAFATE model presents an
average F1-score of 0.75, whereas the individual cases (1,2,3)
presented values of 0.95, 0.79, and 0.52, respectively. The
ECET and INFUSION models (IFS3, IFS4, IFS5) present
the best average F1-score with a value of 1.00. The fusion
of SVM and KNN presents an average F1-score of 0.96,
whereas the fusion of KLAFATE, SVM, and KNN presents
an improved average F1-score with a value of 0.98.

Fig. 10 presents the plots of the main models: the
KLAFATEknowledge-basedmodel, ECET data-basedmodel
(M3), and the INFUSION model (fusion of KLAFATE and
ECET). Fig. 10a, 10b, 10c show the confusion matrices
for the models KLAFATE, ECET (M3), and INFUSION
(IFS3), respectively. The confusion matrices with the best
performance correspond to the models ECET and INFU-
SION. In contrast, KLAFATE presents a poor performance
by detecting fm3. Fig. 10d, Fig. 10e, Fig. 10f display the
predictions in blue color compared with the ground truth in
red color for the models KLAFATE, ECET, and INFUSION,
respectively. The clearest plots correspond to the ECET and
INFUSION models, whereas the KLAFATE model presents
a noisy plot. Fig. 10g, Fig. 10h, Fig. 10i present the DSET
UQ for the models KLAFATE, ECET, and INFUSION,
respectively. In the case of KLAFATE, the plot presents a
continuous line since the expert team can only change the
uncertainty’s value. In contrast, ECET presents an extremely
noisy plot for the fm3. In the case of INFUSION, the plot
presents a steadier uncertainty. Figures 10j, 10k, 10l show the
precision-recall curves for the models KLAFATE, ECET, and
INFUSION, respectively. The precision-recall curves present
the same high performance for the models ECET and SYS,
whereas the model KLAFATE presents a lower performance
(e.g., especially for fault cases 2 and 3).

It is important to remark on the INFUSION robustness,
in which we perform the fusion of a high-performing ECET
with a low-performing KLAFATE. The low performance of
KLAFATE for some fault cases did not affect INFUSION’s
performance. INFUSION performance presents a steady high
performance while examining table 13 and the confusion
matrix from Fig. 10c. Alternatively, a detailed examination
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TABLE 11. EC hyperparameters using the BGS dataset and the cases (1,2,3).

FIGURE 9. Results using different models KLAFATE, ECET (MC EC M3), and SYS using cases (1,2,3): Confusion matrices (a)-(c), classification results
(d)-(f), DSET UQ (g)-(i), and precision-recall curves (j)-(l).

of the uncertainty provides an additional perspective on
INFUSION’s performance, in which the uncertainty presents
areas with high values. Thus, uncertainty monitoring can
be used to evaluate ECET and KLAFATE to determine the
causes of low performance.

D. DISCUSSION
The knowledge-based model KLAFATE presented mixed
results, in which some faults are well identified or predicted.
However, the strength of this approach relies on how well the
rule represents a machine condition. Representing knowledge
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FIGURE 10. Results using different models KLAFATE, ECET (MC EC M3), and INFUSION (MC EC M3 and KLAFATE) using cases (1,2,3): Confusion
matrices (a)-(c), classification results (d)-(f), DSET UQ (g)-(i), and precision-recall curves (j)-(l).

TABLE 12. Inference results of selected MC ECs using the cases (1,2,3) of
the BGS dataset, and F1-score.

rules is a challenging task and often time demanding.
An additional positive characteristic of the knowledge-based

model relies on its explainability: an expert user can directly
observe the logic and transform the rules.

Alternatively, the data-based models using ECET out-
performed the knowledge-based model, which is clearly
reflected in the F1-scores of Table 13. However, the
relationships between the features and outputs are often
hidden (except for data-based models such as DTR, where
the rules can be observed). It is important to remark
on the number of features the models use, in which
the knowledge-based models are built using less than ten
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TABLE 13. Inference results of knowledge-based model KLAFATE, data fusion models (ECET and SVM-KNN), and knowledge and data fusion (INFUSION
and SVM-KNN-KLAFATE) using the cases (1, 2, 3) of the BGS dataset, and F1-score. The ECET models are the MC ECs M3, M4 and M5. The INFUSION
models are IFS3, IFS4, and IFS5.

features. In contrast, the ECET models are built using
133 features.

The fusion of data-based and knowledge-based models
slightly improved the overall system’s performance. The
fusion model SVM-KNN-KLAFATE presented an improve-
ment of fault 3 to the fusion model SVM-KNN, with scores
of 0.95 and 0.92, respectively. In the case of INFUSION,
the ECET results were already outstanding, resulting in a
predominant effect on the fusion. The poor performance of
some fault cases of KLAFATE did not affect the system
performance.

The INFUSION methodology performed a fusion of the
KLAFATE knowledge-based model and the ECET data-
based models. No performance changes were reported since
the ECET data-based models (M3, M4, and M5) presented
already outstanding performance, and the INFUSIONmodels
(IFS3, IFS4, and IFS5) presented the same performance.

The INFUSION methodology presented a novel general
framework that combines predictions of models of different
domains. This general framework differentiates from the
state-of-the-art, which presents a novel fault detection system
that can combine n number of information sources (regardless
of the model’s information source) to achieve more robust
predictions, as it was showcased in the results.

VII. CONCLUSION
We presented a novel adaptive information fusion method-
ology for fault detection systems using evidence theory and
uncertainty quantification. We focused on two main topics
of the fault detection system: improving anomaly detection
and information fusion. The anomaly detection system was
improved by adding the capability of automatic retraining
of the models while feeding unknown fault cases into the
data.

For this purpose, we presented an EC retraining strategy
based on uncertainty monitoring of the EC predictions. The
retraining results of the use case validated the approach,
in which the benchmark TE dataset was used to test different
anomalies. Different experiments were performed to analyze
the impact of the main parameters of the retraining approach,
namely, threshold size, window size, and detection patience.
Though the results were not entirely comparable with the
literature, the approach’s claim was validated, in which the
EC updated the models while feeding unknown fault cases
into the data. The results demonstrated the applicability of
the proposed approach to multivariate (industrial) data in a

supervised classification problem, which can be extrapolated
to different (industrial) use cases following the methodology.

Furthermore, we proposed an information fusion approach
to combine an EC and a knowledge-based model at the
decision level. The approach was tested using the data
of an industrial setup. We performed an ablation study
to compare the performance of the systems, namely, EC,
knowledge-based models, and the fusion of both systems.
The system performance reported better results while using
an information fusion of the EC and the knowledge-based
model, confirming, thus, the approach’s claim. The proposed
information fusion approach addressed combining models of
different domains using a general framework for decision-
level fusion. This general framework can be applied to
address the information fusion of other (industrial) domains
following the procedure defined in this research.

Future research includes a semi-supervised approach in
which the EC results are confronted with an unsupervised
model. This approach aims to validate the data samples of the
detected anomaly by examining the location of the samples
in the input space. Prospective works include comparing
our approach with one-class models (e.g., autoencoders
and isolation forests) and integrating such models with the
information fusion framework. Furthermore, we will test
other combination rules to improve the anomaly detection
results, thus increasing the size of anomalous data. In addi-
tion, we will extend our information fusion framework by
integrating state-of-the-art knowledge-based models (e.g.,
ontology-based approaches and knowledge frameworks for
multi-modal and multi-structured data). Finally, we want
to enhance our approach using techniques of explainable
artificial intelligence (XAI) on the base classifiers of the EC
in order to gain more insights into the learning process.
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