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ABSTRACT The rapid development of communication technology has promoted the development of the
Internet of Things technology. It has resulted in a scarcity of computing resources for the Internet of Things
devices, and limited the further development of the Internet of Things. In order to improve the utilization
efficiency of the system resources for the Internet of Things devices and promote the further development of
the Internet of Things, the continuous Markov decision process model is constructed. The value function
approximation algorithm of the convolutional neural network is used to solve the problem. Continuous
Markov decision process model is an excellent single-user decision process model, but not optimal for
multi-user systems. Using convolutional neural network to solve the value function of continuous Markov
decision process model, so that it can be applied to multi-user system. The results show that the average
algorithm has growth rates of 0.48 and 0.84, respectively, in comparison to the other two algorithms. The
average arrival rate has the least effect on the average delay of the value function approximation algorithm
and the greatest influence on its power consumption. With the average arrival rate, the average delay of the
algorithm increased by 0.25S and the power consumption by 0.27W. The effectiveness of the value function
approximation algorithm based on convolutional neural network surpasses that of the multi-user multi-task
offloading algorithm and the queue-aware algorithm, thus applying continuous Markov decision process
models to multi-user systems. The study combines the continuous Markov decision process model with
the resource decision of IOT devices, resulting in optimized resource scheduling decisions and improved
utilization efficiency of IOT devices.

INDEX TERMS MDP, CNN, value function, IoT, fog computing.

I. INTRODUCTION
With the continuous development of communication technol-
ogy, many devices are becoming more and more intelligent.
Sensor networks are embedded in smart devices. Smart
devices can collect environmental information in real time
with the help of sensor networks, and upload these informa-
tion to the Internet to realize the connection and interaction of
smart devices. Based on this phenomenon, Auto-ID proposed
the concept of ‘‘The Internet of Things (IOT)’’ in 1999.
IOT can connect people and things through network access.
As a result, smart devices can collaborate via the internet
to accomplish various functions [1], [2]. However, due to
the explosive growth of IOT, the traditional cloud computing
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data processing methods cannot meet the data processing
requirements of IOT. To solve this problem, scholars first
proposed the concept of ‘‘fog computing’’ based on ‘‘cloud
computing’’ in 2012, that is, adding the network edge layer
between smart devices and cloud data processing center. This
approach significantly enhances the transmission efficiency
and reduces the latency [3], [4]. The emergence of atomized
computing systems has greatly improved the data processing
capacity of the IOT. However, it has also resulted in a deple-
tion of computing and storage resources for the IOT devices.
Therefore, this data processing method needs to deal with
offloading and unlimited allocation of resources. MDP is a
commonly used method to obtain the best control strategy
in random task reach models, but it is extremely difficult to
apply in multi-user systems. In order to make the decision
maker can be applied to multi-user system, a convolutional
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neural network (CNN) based on value function approxima-
tion algorithm (VFAA) is proposed. This VFAA solves the
application problem of MDP in multi-user systems, thereby
enabling its use in such scenarios.

The primary achievement of this research lies in its
pioneering efforts to broaden the application of the MDP
specifically tailored for multi-user systems. By doing so,
it has opened new avenues for system optimizations. Fur-
thermore, the study introduces innovative methodologies that
harness the potential of IOT devices. It results in significant
enhancements in the efficiency of allocated system resources.
These advancements not only serve the theoretical realm
but also have practical implications in enhancing multi-user
system operations. The paper innovatively proposes the appli-
cation of continuous Markov decision process and multi-user
system, and the use of CNN based VFAA to solve it.

The study will be conducted from four parts. Section II
provides an overview of IOT-related research. Section III
presents an analysis of an optimized fog computing technique
for IOT using improved CNN. Section IV details the experi-
mental verification of this method, and SectionV summarizes
the research conducted.

II. RELATED WORKS
As the growth of IOT, the traditional cloud computing data
processing method cannot satisfy the computing demands of
IOT, based on this, Lakhan et al. proposed a federated learn-
ing fog computing model based on digital twin technology to
enable hospital equipment to connect to the IOT, improve the
efficiency of healthcare resource utilization, and reduce task
processing time and failure risk. The author also proposed
a fog computing framework that considers security and fault
tolerance strategies. The results demonstrate a 40% reduction
in security risks and a 50% reduction in task failure risks
with the proposed fog computing model [5]. Mohammed et
al. proposed a cancer detection method based on fog hetero-
geneous computing nodes to improve the detection efficiency
of cancer by utilizing distributed fog computing. They also
proposed a cancer multi omics spiritual bed dataset for model
learning. The results show that the detection accuracy of the
method proposed by the author is 98%, and the processing
delay is 61% [6]. Mohammed et al. proposed a distributed
blockchain network task offloading and scheduling system to
improve data processing capabilities and security in medical
systems. The results showed that the method proposed by
the author reduced the data processing power consumption
of existing medical systems. It results in a 39% reduction
in training and testing time and improved data security [7].
Lakhan et al. proposed a fuzzy energy-saving decision sup-
port system to improve the efficiency of energy and resource
utilization in transportation applications. The results show
that the method proposed by the author can effectively reduce
energy consumption, task latency, and transmission costs.
It enhances the scheduling accuracy of the application [8].
Mutlag et al. proposed a fog computing resourcemanagement
model to optimize task scheduling in existing healthcare

systems in order to solve the scheduling problem of task
resources by devices in healthcare systems. The results show
that the model proposed by the author outperforms existing
methods in terms of task latency, response or component,
transmission cost, and power consumption [9].

CNN is often combined with various types of functions in
applications to improve their potential. Chen et al. proposed
a generalized frequency response function combined with
CNN to improve the accuracy of traditional fault diagnosis
methods. The results showed that the new method had an
accuracy of 0.9875, thus confirming the reliability of conven-
tional fault diagnosis methods [10]. Pezzano et al. put forward
a CNN segmentation strategy combined with loss function to
optimize the segmentation problem of lung nodules in com-
puted tomography images. The results showed that the new
method has an F1 score and IoU aspects of 0.033 and 0.047,
respectively. They are significantly better than the existing
CT nodule segmentation techniques and also increases the
detail in nodule boundaries, even under the noisiest condi-
tions [11]. Xiong et al. put forward a four-layer CNN based
on loss function to preserve the spatial and spectral informa-
tion of the original panchromatic, and multispectral images.
The outcomes showed that the method attained superior
performance in both subjective visual effects and objective
evaluation [12]. Sharma et al. to make image enhancement
and adjustment techniques that can improve the quality and
characteristics of images proposed an edge adjustment CNN
with S-shaped functions. The results prove that the method
has better performance. However, due to the limited amount
of information contained in a single image, themethod cannot
work efficiently [13]. In order to improve the recognition rate
of finger vein, Xie et al. proposed a new algorithm for finger
vein recognition using CNN and supervised discrete hash
algorithm. The results show that this method significantly
enhances the precision of recognition when compared to
alternative finger vein recognition methods [14].

In summary, the optimization of the offloading and infinite
resource allocation problems in IOT fog computing remains
an ongoing challenge. Markov Decision Process (MDP) has
high applicability in such problems but cannot meet the
application in multi-user systems. The CNN combined with
functions can help MDP solve the problem that cannot be
applied to multi-user systems. Therefore, the article uses
CNN-based VFAA to solve and analyze MDP. Consequently,
it can be applied in multi system to solve the offloading and
infinite resource allocation of IOT fog computing.

III. ANALYSIS OF IOT FOG COMPUTING OPTIMIZATION
METHOD BASED ON IMPROVED CNN
A. MDP-BASED IOT FOG COMPUTING OPTIMIZATION
MODEL CONSTRUCTION
In IOT, the comprehensive resources of the device are limited,
but the computing volume of the device is increasing. This
leads to the contradiction between the number of comput-
ing resources and the computing resources of the device in
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FIGURE 1. Results of centralized offloading decisions for IOT devices.

IOT. However, this issue can be resolved through computa-
tion offloading technology. In IOT, there are more factors
affecting computational task offloading. The Communica-
tion overhead and computation overhead are the performance
indicators of computational task offloading. They reflect the
operational performance of the application. The computa-
tional task offloading process of IOT devices comprises four
steps: task submission, task remote execution, offloading
decision result and computation result feedback, where the
offloading decision result is shown in Figure 1 [15].
Since partial offloading involves performing part of the

computation locally and offloading the rest to a fog comput-
ing server for processing. It is a complex process influenced
by various factors, such as the type of application and the
data to be offloaded. However, the article focuses solely on
full offloading and local offloading when optimizing IOT
fog computing. The IOT device includes sensing, computing
and communication as the main modules. The data collected
during its operation needs to be processed to produce useful
results that can be used to control the device and execute
commands. However, due to the extremely limited computing
power of the device, the data it collects needs to be offloaded
to the fog computing server for processing. Figure 2 depicts
the IOT fog computing system model.

The IOT fog computing system model comprises commu-
nication model and computation model. The communication
model is responsible for wireless resource control, including
scheduling, link adaption and power control. The computa-
tion model is divided into the device computation model and
fog server computation model. The article mainly considers
the multi-user fog computing system for IOT. To simplify
the MDPmodel, it formulates a continuous-timeMDPmodel
for the IOT, in which each packet records the global system
state (GSS) when it moves. During decision moments of the
MDP model, it is necessary to select the behavior for the
system state at that moment. When the packet moves, it will
cause the system to move from the current state to another
state. The article defines the GSS as Sk and the behavior

of the k decision period (DP) as ak =
(
ao,k , as,k

)
, where

ao,k ∈ A0 = {−1, 0, 1} denotes the offloading behavior and
as,k ∈ AS = {0} ∪ N denotes scheduling behavior, then the
state-dependent unloading behavior is as in Equation (1) [16].

Ao,sk =



{0} , nk = −N ∪ {0} , or
nk = n ∈ N ,Qn,k = M ,Qlocn,k < M loc

{1} , nk = n ∈ N ,Qn,k < M ,Qlocn,k = M loc

{−1} , nk = n ∈ N ,Qn,k = M ,Qlocn,k = M loc

{0, 1} , otherwise

(1)

In Equation (1) Ao,sk denotes the state-dependent offload
behavior, nk denotes the state, Qn,k denotes the transmission
queue (TQ) length vector for offloading to the fog server
appeared at the very start of the k DP when the packet
movement first occurs, M denotes its maximum length,
Qloc
n,k

denotes the processing queue (PQ) length vector for
local computation, M loc denotes its maximum length, and n
denotes the IOT device, satisfying n ∈ N = {1, 2, 3, . . . ,N }.
Since the packet arrival event occurs in IOT devices, accord-
ing to the offloading behavior, the arriving packets need to be
added to the TQ or PQ of the device n. They will result in the
length of the TQ and PQ after the offloading behavior of at
the Skk DP with the values of Qn,k , Qlocn,k , at this time, the TQ
length of the device n after the offloading decision at the k
DP is Equation (2).

Q̃locn,k =

{
Qlocn,k + 1, ℓk = n ∈ N , ao,k = 0
Qlocn,k , otherwise

(2)

In Equation (2), Q̃locn,k represents the TQ length of the device
after the offload decision in the DP. The PQ length of the
device n after the offload decision at the k DP is Equation (3).

Q̃n,k =

{
Qn,k + 1, ℓk = n ∈ N , ao,k = 1
Qn,k , otherwise

(3)
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FIGURE 2. A Schematic diagram of the IOT fog computing system model.

In Equation (3), Q̃n,k represents the PQ length after the
offload decision of the device at the nk DP. At this point, the
post-decision transfer queue and PQ for the DP is kQ̃k ={
Q̃n,k

}N
n=1

, Q̃lock =

{
Q̃locn,k

}N
n=1

. Based on the above values,
as,k is defined such that if as,k = 0, then it denotes that
no queue is planed and if as,k = n ∈ N , then it means
that the TQ n is scheduled and the scheduling behavior is
considered only when packets leave from the TQ or packets
arrive and no queue is scheduled. When the above happens,
the device to be scheduled is selected from the IOT devices
with non-empty TQ, or else, it is similar to the previous
DP bk . So the set of state-dependent scheduling behaviors is
shown in Equation (4).

As,Sk =

{
Ns,k , nk = 0or (nk ∈ N and bk = 0)
{bk} , otherwise

(4)

In Equation (4) As,Sk denotes the state-dependent schedul-
ing behavior. The article defines the post-decision GSS of the
k th DP as S̃k , then the deterministic function of Sk and the
behavior of for the akk th DP is Equation(5).

S̃k = f (sk , ak) =

(
Q̃K , Q̃lock , ℓk , as,k

)
(5)

The post-decision GSS is the state after the optimal pol-
icy has been determined, and its state space is the same
as that of the GSS. The transfer from the decision state to
the post-decision state of the continuous MDP is shown in
Figure 3 [3].

The duration of the k DP is equivalent to the sojourn time
of the continuous-time MDP model at Sk given the behavior
ak , which obeys an exponential distribution with parameter

β (sk , ak) and β (sk , ak) as shown in Equation (6).

β (sk , ak) =

N∑
n=1

λn + µas,k +

N∑
n=1

µloc
n 1(

Q̃locn.k ̸=0
) (6)

In Equation (6) λn is the average packet arrival rate. µas,k
denotes the fog computing system data processing time. µloc

n
denotes the local data processing time, which can also be
represented by the post-decision state. To retrace the payoff
function of the continuous MDP model, it is necessary to
observe the strategy that shortens the weighted sum (WS) of
the average delay (AD) and power consumption (PC) of all
IOT devices �. � is a function by which the decision maker
can determine the behavior at the state skak = � (sk) ∈

Ao,sk ∪As,sk , whose associated behavior space has been given
in Equation (1), Equation (4). And this study considers the
above dynamic optimization problem as a wireless average
payoff continuousMDP problemwith the optimization objec-
tive of Equation (7).

min
�

J (�) =

N∑
n=1

(
ωnD̄n + γnP̄n

)
= lim

T→∞

E�
[∑ T

k=0

∫ σk+1
σk c (sk , � (sk)) dt

]
E�

[∑ T
k=0τk

] (7)

In Equation (7)ωnmin
�

J (�) denotes the optimal objective.

ωn, γn are the weights of the AD. D̄n and PC P̄n of the
device n respectively.E� [.] denotes the function� taking the
expectation, σk , τk are the begin point and length of time of
the k DP respectively. c (sk , � (sk)) denotes when the system
is at Sk and the cost is appeared at this rate by choosing the
behavior � (sk) in the k DP. To complete the expression of
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FIGURE 3. Schematic of state transition of the continuous MDP model.

Equation (7), it is necessary to obtain c (sk , � (sk)), the local
processing delay of the packet is Equation (8).

D̄locn =

Eπ(�)
[
Q̃locn,k

]
λnpn,noff

(8)

In Equation (8) pn,noff is the local processing probability
of the device n and Eπ(�) [.] denotes the expectation taken
for the policy �. The remote processing of packets is divided
into uplink transmission, remote calculation and downlink
transmission delay. Therefore, the AD of remote processing
of the device n be derived as Equation (9).

D̄remn =

Eπ(�)
[
Q̃n,k

]
λnpn,off

(9)

In Equation (9), pn,off is the offload probability of the
device n. According to Equation (8) and Equation (9), the AD
of the device n can be inferred as Equation (10). The average
PC of IOT devices can be obtained by the same method of
derivation, the article does not go into too much detail.

D̄n = Eπ(�)

[
Q̃n + Q̃locn

λn

]
(10)

Combining the average latency and PC of IOT devices and
their weights, the expression c (sk , � (sk)) can be obtained.
It is demonstrated in Equation (11).

c (sk , � (sk)) =

∑  ω′
n∑ N

i=1λl

(
Q̃n,k + Q̃locn,k

)
+

γ ′
n
N

(
Pn ∗ 1as,k ̸=n + Plocn ∗ 1Q̃locn,k ̸=0

) 
(11)

In Equation (11), 1condition is a random variable. The
continuous-time MDP theory and the Bellman equation can
be utilized to calculate the posterior decision state value
function of the optimal strategy for the continuous-timeMDP
model V (s̃k).

B. CNN-BASED VFAA
CNN is a common deep learning method in artificial neural
networks. The article will use CNN-based VFAA to solve
the value function of MDP model V (s̃k). Its approximation

architecture is Equation (12).

V
(
s̃(i)

)
∼=

N∑
n=1

D∑
j=1

φ
S̃(j)
n

(
S̃(i)

)
Vn

(
S̃(j)
n

)
(12)

In Equation (12), φ
S̃(j)
n

is the feature vector of the

post-decision GSS S̃(i)
n and Vn

(
S̃(j)
n

)
is the single-node value

function of the post-decision local system state (LSS) S̃(j)
n .

The CNN-based value function approximation architecture is
shown in Figure 4 [17].
s̃(i) (N ∗ D) ((n− 1)D+ j) js̃(i)N the quantity of neurons

in the fully connected layer (FCL) is similar to those in the
input layer (IL), and the corresponding state of each neuron is
also the same as the IL. The output layer (OL) is used to infer
the global value function (GVF) of s̃(i) based on the approx-
imate architecture of the post-decision GVF. Let c

(
s̃(i)

)
be

theN dimensional activation vector of the convolutional layer
(CL), then the f weightwf

m,sjn
is the link weight of the FCL s̃(j)n

from the first m neuron in the CL, then the activation vector
is Equation (13) [18].

φ̄
(
s̃(i)

)
= σ

(
c
(
s̃(i)

)
∗W f

)
(13)

In Equation (13), φ̄
(
s̃(i)

)
is the FCL activation vector. σ is

the Tanh function, and is the W f (N ∗ (N ∗ D)) dimensional
matrix. The activation of the ((n− 1)D+ j) the neuron in
the multiplication layer (ML) is the eigenvalue of the approx-
imate architecture of the post-decision GVF φ

s̃(j)n
. φ

(
s̃(i)

)
is

dimensional, and the N ∗ D ((n− 1)D+ j) the element is
φ
s̃(j)n

, φ
(
s̃(i)

)
which is expressed as Equation (14).

φ
(
s̃(i)

)
= φ̄

(
s̃(i)

)
ex

(
s̃(i)

)
(14)

In Equation (14), e denotes the product of two vector
elements and x

(
s̃(i)

)
presents the matrix of s̃(i). To explain

and illustrate the CNN-based function approximation archi-
tecture, the article assumes that the post-decision GVF vector
V , the f weight matrix W f and the c weight vector wc are
obtained for each device. Then at the first k DP, the optimal
behavior a∗

k
= �∗ (Sk) can be derived from the above

obtained value functions and weights under the current GSS
Sk according to Equation (15).

�∗ (Sk)
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FIGURE 4. Function approximation architecture of CNN based VFAA.

= argmin
�

N∑
n=1

(
g̃n

(
Sn,k , � (Sk)

)
+φs̃n,k

(
S̃k

)
Vn

(
fn

(
Sn,k , � (Sk)

))
− θn,k/β (Sk , ak)

)
(15)

In Equation (15), g̃n
(
Sn,k , � (Sk)

)
is the return function

of the continous MDP model. In designing the CNN archi-
tecture, the article first, obtains the approximate GVF by
summing the local value function of each of all users and
incorporates local features to rely on the global system. It can
enhance the approximation accuracy. Second, the effective-
ness of the learning algorithm can be improved by a CL to
compress the LSS of each user into a single scalar. Third, the
computational complexity and signaling overhead associated
with parameter updates can be reduced by inserting a ML
before the OL. Finally, an auction mechanism is used to bid
on each IOT device to bidding according to its local behavior
and decide on the optimal behavior. In the above approach,
the global optimum is determined through a semi-distributed
implementation that involves the base station architecture and
IOT devices. The determination of the global optimum is
illustrated in Figure 5 [19].

In the overall flow of decision operations and signaling
overhead, each IOT device involves only one addition opera-
tion and one multiplication operation. While the base station
must perform N addition operations, and the signaling over-
head and base stations grow linearly with IOT devices. The
overall solution’s operational flow is depicted in Figure 6
[20]. In Figure 6, at the beginning of the scheme, chaotic
variables are used to initialize the data, which can effectively
avoid concentration during data initialization [21]. The data
initialization, letting k = 0, indicates the DP index, initial-
izing the single node value function vector. When the packet
movement occurs, it is possible that the device of the event
in the DP, the device of the event and the device of the newly
scheduled packet in the DP need to update the LSS. While
the base station only needs to notify the second and third

devices for the LSS update. There are also three possibilities
for the event to occur in the DP, i.e., determining the offload
behavior, determining the scheduling behavior, and no need
to determine the behavior. When the packet leaves the PQ
of the device, it is not necessary to determine the behavior.
All other possibilities must determine their behavior. After
the optimal control behavior is confirmed, the post-decision
system state update as well as the single node value function
update for the device is required.

The training process of CNN is as follows: first, prepare
the dataset and divide it into training, validation, and test
sets. Secondly, preprocess the data, such as normalization
and enhancement. Thirdly, build a model. Design a network
structure consisting of convolutional layer, pooling layer, and
fully connected layer, and initialize all parameters. During the
model training phase, data is transmitted through the network,
generating feature maps layer by layer until the prediction
results are output. Use loss functions, such as cross-entropy
to compare predictions to real labels and compute errors.
Fourthly, initiate back-propagation. This process calculates
the gradient of losses and updates weights based on opti-
mizer such as Adam. This process is iterated numerous times
throughout the dataset until the loss reaches convergence or
the specified number of cycles.

IV. SIMULATION RESULTS ANALYSIS OF CNN-BASED
VFAA
The optimal decision of the continuous MDP model is a
classification problem. The Image Net dataset is a commonly
used image recognition dataset. To verify the superiority
of CNN in classification problems, a study was conducted
on the Image Net dataset. The accuracy of image classi-
fication was compared between CNN and Support Vector
Machine (SVM), Decision Tree Theory, Naive Bayes (NB),
and k-Nearest Neighbor (KNN), as shown in Figure 7.

In Figure 7, as the number of samples increases, the correct
rate of both the classification method and the decision tree
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FIGURE 5. Semi-distribution implementation of CNN based VFAA.

FIGURE 6. Overall solution implementation process.

classification method improves, except for the decision tree
classification method. It also improves when the number of
samples is less than 12. At a sample size of 20, the correct rate
of CNN is the highest at 0.988 and the lowest at 0.821. When
the sample size is 18, the maximum correct rate of CNN is
99.8. The maximum correct rate of support vector machine is
96.2 when the sample size is 16. The maximum correct rate
of Bayesian classification is 0.953 when the sample size is
10. The maximum correct rates of both K-nearest neighbor
and decision tree are 0.948 and 0.953 respectively when the
sample size is 12. In conclusion, the CNN algorithm achieves
higher accuracy than the other algorithms, and it is more
suitable for the decision judgment of the IOT. Prior to sim-
ulating the CNN-based VFAA, the paper reviews cross-node
communication latency and CPU utilization of mainstream
CNN models. The results are shown in Figure 8.
In Figure 8, LeNet has the highest CPU utilization at

0.60, trailed by R-CNN and ZFNet with 0.55, and the lowest
CPU utilization is U-Net with only 0.01, followed by FCN
with 0.05. The highest cross-node communication latency
is U-Net at0.40, followed by YOLO v3, MobileNet v2 and
Incepeion v4 at0.23. The lowest cross-node communication
latency is R-CNN with only 0.09, followed by LeNet with

0.095. To verify the superiority of the algorithms proposed
in this paper, a discrete event system-level simulator for
the NB IOT fog computing system was built using Matlab
software on a Windows 7 system. A comparative experi-
ment was conducted on the performance gap between the
UCI Machine Learning Repository dataset and other tradi-
tional IOT fog computing algorithms. This dataset comprises
numerous IOT-related data that can facilitate a broad array
of IOT-related learning tasks. The study sets the transmission
radius of the simulated IOT to 500m, divides the IOT area
into 10. And it sets the repetition number of IOT devices
in a single area to 1, sets the Path loss channel model to
15.3 + 37.6log10lk [m], lk to (dk−1 + dk) /2m, PCMAX to
23dBm, X to 105, f locn to [1, 3] × 109cycles/ sec, and L to
10kbits. The comparison results of the average latency, power
consumption, and weighted sum of the two algorithms with
the number of devices are shown in Figure 9.

In sub-figure (a), the CNN-based VFAA has the slowest
growth rate of latency, with an increase in latency of only
0.65 seconds when the number of devices reaches 35. When
the number of devices is from 0 to 10, the gap between the
latency of the three algorithms is not large. They all grow
slowly from 0.05S to 0.2S. When the number of devices
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FIGURE 7. Comparison of accuracy rates of classification algorithms.

FIGURE 8. Cross node communication latency and CPU utilization of different networks.

exceeds10, the growth rate of the algorithm latency starts to
open up the gap. As can be seen in sub-figure (b), the PC of
the queue-aware algorithm grows the slowest. The PC only
increases by 0.22W when the number of devices increases to
35. At 15 devices, the PC of all three algorithms is equivalent,
measuring 0.09W. When the number of devices increases
from 25 to 30, the PC of the CNN-based VFAA decreases
from 0.27 to 0.265. The PC of all other algorithms increases.
In sub-figure (c),theWS ofAD and PC of the three algorithms
are basically the samewhen the number of devices is less than
10. However, the difference between the algorithms becomes
more significant when the number of devices exceeds 10.
The WS of the AD and PC of the CNN-based VFAA is the
lowest when the number of devices is 35, which is about
0.5. In conclusion, the proposed algorithm exhibits the lowest
average delay and the lowest power growth. The AD, PC and
WS of the two algorithms are compared with the average
arrival rate of the three algorithms as shown in Figure 10.

In sub-figure (a), the difference in the AD growth among
the four algorithms increases when the average arrival rate
exceeds 1. Themulti-user multi-service offload algorithm has

the largest growth, and its AD increases by 0.6S when the
average arrival rate increases from 1 to 2. The remaining
algorithms have a lower increase, with the CNN-based VFAA
having the smallest increase of 0.21S. In sub-figure (b),
when the average arrival rate is less than 1, the PC of the
linear VFAA and the CNN-based VFAA are the same. Both
are lower than the other two algorithms. Among the four
algorithms, the PC of the multi-user multi-service offloading
algorithm increases more slowly at about 0.1. The remaining
three algorithms increase more rapidly, with the queue-aware
algorithm having the most significant increase at around 0.3.
In sub-figure (c), the WS of the AD and PC with the average
arrival rate of the three algorithms is basically the same trend.
The growth of the CNN-basedVFAA is the lowest, increasing
only by about 0.25. In conclusion, the power consumption
of the proposed algorithm is the lowest. Figure 11 displays
the comparison results of AD, PC, and WS for the three
algorithms while changing the delay weights.

In sub-figure (a), the AD of the queue-aware algorithm
basically does not changewith the change of the delayweight.
When the delay weight is 0.25, the AD of the CNN-based
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FIGURE 9. Comparison results of AD, PC and WS of the three algorithms under the number of devices.

FIGURE 10. Comparison results of AD, PC and WS of the three algorithms under average arrival rate.

FIGURE 11. Comparison results of AD, PC and WS of the three algorithms under delay weighting.

VFAA and the multi-user multi-service offloading algorithm
are consistent at about 1S. And then, with the increase of
the delay weight, the AD of the CNN-based VFAA con-
tinues to decrease, while the AD of multi user and multi
service offloading algorithms begins to rise. It can be seen
in sub-figure (b) that the PC of the queue-aware algorithm
also does not change with the delay weights. The PC of
the algorithm increases with the delay weights. Additionally,
it shows that the CNN-based VFAA has the lowest PC, with

its highest value being around 0.27 W. It can be seen in sub-
figure (c) that the delay weights of the CNN-based VFAA
are from 0 to 0.25,while the WS of the AD and PC increase
faster from 0.25 to 1, and it is basically unchanged from 0.5 to
about 1. In conclusion, with the increasing delay weight, the
proposed algorithm has the lowest power growth and the
highest average arrival rate. The AD andWS of the algorithm
increases linearly with the delay weight, and the maximum
value is about 1.3. The article also conducts the convergence
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FIGURE 12. Convergence characteristics of CNN based VFAA.

TABLE 1. Comparison of task scheduling methods.

simulation experiments for the value function of the CNN-
based single-node VFAA and the convergence simulation
experiments of the GVF. The results are shown in Figure 12.

In sub-figure (a) of Figure 12,the initial single node value
function of Device 1 is lower than that of Device 2. And it
starts to be higher than that of Device 2 at the thousandth
update. The single node value function of device 2, finishes
converging at the eighth thousandth update. The single node
value function of Device 1 stops converging at the ten thou-
sandth update. The highest value of the single node value
function of device 1 is 0.0158 and the highest value of the
single node value function of device 2 is 0.0015. It can be seen
in sub-figure (b) that the GVF starts to converge only at the
500,000th update and then at the two millionth update, and it
completes the convergence and the highest value of the GVF
of the device is -0.0135. The study on resource scheduling
optimization for IOT devices is inadequate as it lacks discus-
sion on the total number of subcarriers involved. It is vital in
creating effective scheduling strategies for data transmission,
especially in a frequency-division multiplexing system. Their
quantity and appropriate allocation are paramount for the
seamless and efficient functionality of IOT devices. This
can ensure that data transmissions occur without disrup-
tions, interference, or unnecessary congestion. Neglecting the
importance of considering the whole number of subcarriers,
as the study did, inadvertently compromises the robustness
and efficiency of proposed resource scheduling solutions.

Finally, the proposed task scheduling optimization algorithm
is compared with the current common task scheduling opti-
mization calculation. The results are shown in Table 1.

V. CONCLUSION
The rapid development of the IOT has created a scarcity of
computing and storage resources for IOT devices. To rea-
sonably allocate the computing and resources of the devices
in the IOT fog computing system, the paper constructs a
continuous MDP model. It transforms it into a dynamic opti-
mization solution problem and uses a CNN-based VFAA to
solve that. The results indicate that as the number of devices
in the IOT fog computing system increases, the algorithm’s
AD and PC also increase. Among them, the CNN-based
VFAA exhibits the lowest rate of increase, with its WS for
AD and PC increasing by 0.48, and its increase rate for both
algorithms being 0.84.With the increase of the average arrival
rate, the AD and PC of the algorithm increase. As the delay
weight increases, the AD and PC of the CNN based VFAA
gradually decrease, and when the delay weight is 0. With the
increase of the delay weight, the AD of CNN-based VFAA
gradually decreases. When the delay weight is 0.25, the per-
formance of CNN-based VFAA and multi-user multi-service
offloading algorithm is the most reasonable. At this time, the
AD of the CNN-based VFAA is about 1S and the PC is about
0.18W. TheAD of the multi-user multi-service offloading
algorithm is 1S and the PC is about 0.24W. Therefore, the
CNN-based VFAA has the best performance in solving the
continuous MDP model.

In the study of resource scheduling optimization for IOT
devices, only 12 subcarriers were considered, and the cases
of 1, 2, and 6 subcarriers were not considered. If flexible
scheduling of subcarriers can be achieved, network coordi-
nation can be effectively achieved and the weighted sum of
average delay and power consumption can be minimized.
Future research may be focused on implementing flexible
subcarrier scheduling.
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The algorithm proposed in the study can effectively opti-
mize the task scheduling problem in the fog computing
system. And enables the continuous Markov decision system
to be applied in multi-user systems.

The advantage of the study is that all the conclusions
are drawn from objective facts, and all the conclusions of
the study are supported by corresponding data. The method
proposed by the research solves the limitation of massive
data on the development of the IOT, optimizes the utilization
efficiency of the IOT devices on computing resources and
storage resources. This method is also valuable in guiding
task scheduling and decision-making processes within the
IOT.
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