
Received 4 December 2023, accepted 22 December 2023, date of publication 29 December 2023,
date of current version 9 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3348170

HyPHEN: A Hybrid Packing Method and
Its Optimizations for Homomorphic
Encryption-Based Neural Networks
DONGHWAN KIM 1, (Graduate Student Member, IEEE),
JAIYOUNG PARK 2, (Graduate Student Member, IEEE),
JONGMIN KIM1, (Graduate Student Member, IEEE),
SANGPYO KIM 2, (Graduate Student Member, IEEE),
AND JUNG HO AHN 1,2,3, (Senior Member, IEEE)
1Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, South Korea
2Department of Intelligence and Information, Seoul National University, Seoul 08826, South Korea
3Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, South Korea

Corresponding author: Jung Ho Ahn (gajh@snu.ac.kr)

This work was supported in part by Samsung Electronics Company Ltd., under Grant IO201207-07812-01; and in part by the Institute of
Information and Communications Technology Planning and Evaluation (IITP) grants funded by the Korean Government through Ministry
of Science and ICT (MSIT) under Grant 2020-0-00840, Grant 2021-0-01343, and Grant IITP-2023-RS-2023-00256081.

ABSTRACT Convolutional neural network (CNN) inference using fully homomorphic encryption (FHE) is
a promising private inference (PI) solution due to the capability of FHE that enables offloading the whole
computation process to the server while protecting the privacy of sensitive user data. Prior FHE-based CNN
(HCNN) work has demonstrated the feasibility of constructing deep neural network architectures such as
ResNet using FHE. Despite these advancements, HCNN still faces significant challenges in practicality due
to the high computational andmemory overhead. To overcome these limitations, we present HyPHEN, a deep
HCNN construction that incorporates novel convolution algorithms (RAConv and CAConv), data packing
methods (2D gap packing and PRCR scheme), and optimization techniques tailored to HCNN construction.
Such enhancements enable HyPHEN to substantially reduce the memory footprint and the number of
expensive homomorphic operations, such as ciphertext rotation and bootstrapping. As a result, HyPHEN
brings the latency of HCNN CIFAR-10 inference down to a practical level at 1.4 seconds (ResNet-20) and
demonstrates HCNN ImageNet inference for the first time at 14.7 seconds (ResNet-18).

INDEX TERMS Convolutional neural network, cryptography, homomorphic encryption, privacy preserving
machine learning, secure two party computation, secure inference.

I. INTRODUCTION
Private inference (PI) has recently gained the spotlight in the
machine-learning-as-a-service (MLaaS) domain, allowing
cloud companies to comply with privacy regulations such
as GDPR [1] and HIPAA [2]. PI enables inference services
at the cloud server while protecting both the privacy of the
client and the intellectual properties of the service provider.
For example, by exploiting PI, hospitals can provide a

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Huang .

private medical diagnosis of diseases, and security companies
can provide privacy-preserving surveillance systems, each
without accessing client’s sensitive data [3], [4].

Fully homomorphic encryption (FHE) [5] is a crypto-
graphic primitive that enables direct evaluation of a set
of functions on encrypted data, making it suited for PI in
terms of security and usability among other cryptographic
candidates [6], [7]. FHE-based PI solutions, illustrated in
Figure 1, uniquely feature 1) fully offloading compute pro-
cess to a server, 2) succinct data communication requirement,
and 3) non-disclosure of any information about the model

3024

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0000-3294-5744
https://orcid.org/0009-0000-7072-6147
https://orcid.org/0000-0001-9477-6683
https://orcid.org/0000-0003-1733-1394
https://orcid.org/0000-0003-0586-090X

D. Kim et al.: HyPHEN: A Hybrid Packing Method and Its Optimizations

FIGURE 1. FHE-based private inference.

except the inference result. Such benefits, enabled by the
unique capability of FHE that supports direct computation
on ciphertexts (encrypted data), have driven researchers
to investigate the FHE-based PI of convolutional neural
networks (HCNN) [8], [9], [10], [11], [12]. In particular, this
study explores HCNN construction with the CKKS (Cheon-
Kim-Kim-Song) FHE scheme [13], which offers higher
throughput compared to the other FHE schemes and supports
handling real and complex numbers.

Despite these benefits, FHE incurs high computational
and memory overhead, which hinders the adoption of
HCNN for real-world services. Furthermore, computation
with encrypted data in FHE exhibits distinct characteristics
compared to its unencrypted counterpart. Particularly, the
manipulation of data organization incurs substantial costs
when dealing with encrypted data. Thus, to minimize
the computational and memory overhead, HCNN requires
an optimized convolution algorithm and a distinct data
organization tailored to FHE circumstances.

Gazelle [14], a pioneering study in PI, provides an
efficient convolutional algorithm that can be used in FHE to
reduce the number of homomorphic operations compared to
naïvely adopting conventional convolution algorithms used
for unencrypted CNN inference. Gazelle avoids the high cost
of the FHE evaluation of data rearrangement and nonlinear
activation (e.g., ReLU) by combining the use of secure
multi-party computation (MPC). Still, Gazelle accumulates
data elements dispersed in a ciphertext using FHE, which is
also costly. Reference [15] extends Gazelle’s algorithm for
end-to-end HCNN inference by introducing FHE-based data
rearrangement and ReLU evaluationmethods. Reference [11]
further enhances HCNN performance with a more dense
data format, which minimizes the number of ciphertexts.
However, prior implementations take tens of minutes [11]
to even hours [15] to perform a single HCNN inference
for CIFAR-10 (ResNet-20) due to the high cost of accumu-
lation, data rearrangement, and ReLU evaluation. We can
significantly reduce the cost for ReLU evaluation by utilizing
alternative activation functions proposed in AESPA [16];
however, inefficiency in convolution persists due to the cost
of accumulation and data rearrangement.

We tackle this problem by combining multiple flexible
data formats with a polymorphic FHE convolution algorithm
that performs convolution tailored to each data format.
We identify that the high data rearrangement cost stems
from the inconsistency in data format between the input
and output of a convolution layer. Prior work utilizes a
fixed data format throughout HCNN inference, incurring
frequent data rearrangement using homomorphic rotation
operations. We instead propose using multiple flexible data
formats by allowing replication of data elements inside a
ciphertext. The input and output of a convolution layer can
freely choose from multiple data formats to minimize the
cost of data rearrangement. To support different data formats,
we also create polymorphic FHE convolution algorithms
tailored to each data format. The replication has a positive
side effect of reducing the cost of data accumulation
during convolution because fewer unique data elements need
accumulation.

Furthermore, our data format enables scaling HCNN to
real-world images and larger CNN models. In previous
works [9], [10], [11], [14], [15], memory expansion of
plaintext weight has not received sufficient consideration.
However, we identify that the memory footprint of weight
plaintext increases significantly with image size and eventu-
ally brings a significant bottleneck. Thus, existing techniques
do not scale to larger datasets such as ImageNet due to
the substantial memory requirement for storing weights.
To address this challenge, we introduce a data formatting
method that can effectively reduce the plaintext weight
size. Our approach involves dividing an image into multiple
image segments along the row direction, which ensures that
the plaintext size correlates with the image segment size.
Consequently, weight plaintexts become smaller and can
be reused across these image segments during convolution,
alleviating the memory footprint.

We evaluate the real-world scalability of HyPHEN, our
HCNN framework combining the previously described
solutions. The GPU implementation of HyPHEN achieves
1.40 seconds for encrypted CIFAR-10 inference with the
ResNet-20 model. We also demonstrate for the first time
end-to-end HCNN inference on the ImageNet dataset with
the ResNet-18 model, achieving an execution time of
14.69 seconds.

The main contributions of the paper are as follows:
• We propose a novel data format that enables streamlined
data arrangement between consecutive convolutions.

• We devise optimized FHE convolution algorithms,
which support various data formats with less computa-
tional complexity.

• We identify that the huge memory footprint of HCNN
deteriorates its performance and propose an efficient
data format that can save hundreds of gigabytes of
memory space with negligible overhead.

• We showcase the evaluation of various neural networks
within practical execution times. We extend FHE-based
PI to complex real-world data, such as ImageNet,

VOLUME 12, 2024 3025

D. Kim et al.: HyPHEN: A Hybrid Packing Method and Its Optimizations

TABLE 1. Benchmark of homomorphic operations averaged over
100 iterations on CPU (64 threads). Pt and Ct postfixes each represents
ciphertext-plaintext and ciphertext-ciphertext operation, respectively.
PRot and CRot express the rotation of plaintext and ciphertext,
respectively. The experimental setup is detailed in Section IV-A.

by demonstrating the performance with the ResNet-18
model.

II. BACKGROUND
A. FULLY HOMOMORPHIC ENCRYPTION (FHE)
FHE is a set of public key encryption schemes that enable
computation on encrypted data. Within the array of widely
adopted FHE schemes, RNS-CKKS [17] has been favored
in the PI domain. This scheme leverages an optimization
technique of Residue Number System (RNS) decomposition
within the CKKS approximate homomorphic encryption
scheme. The popularity of RNS-CKKS stems from its support
for fixed-point numbers and its capability to perform slot
batching.

A plaintext in RNS-CKKS is an unencrypted polynomial in
a cyclotomic polynomial ring Z[X]/(XN +1) for a power-of-
two degree N , whose typical values are 215–217. Encryption
of a plaintext generates a ciphertext, a pair of polynomials
hiding the plaintext using an additional random polynomial
and an obfuscating error term. As a vector containing
N/2 real (or complex) numbers, referred to as message, can
be mapped to a plaintext, we can simultaneously operate
on N/2 numbers by performing homomorphic operations
on plaintexts and ciphertexts. This approach, known as slot
batching, refers to the specific position within this vector
message as a slot. Additionally, it is possible to batch a
message with a shorter length, typically following a size that
is a power of two.

The RNS-CKKS scheme supports slot-wise additive
operations (AddPt/AddCt) and multiplicative operations
(MulPt/MulCt). These operations, along with their respective
execution times, are presented in Table 1. AddCt/MulCt,
for instance, receives two ciphertexts as input and returns a
ciphertext corresponding to a vector message approximately
equal to the element-wise addition/multiplication result
between the two vector messages in the input ciphertexts.
AddPt/MulPt does a similar job except that it receives
a plaintext and a ciphertext as input and involves less
computation than AddCt/MulCt. In particular, MulPt takes
34× less execution time compared to MulCt.

A fundamental constraint of HE lies in the limited number
of sequential multiplications possible with a ciphertext. Each
ciphertext or plaintext is associated with a (multiplicative)
level ℓ, where 0 ≤ ℓ ≤ L for the max level L.
The size of ciphertext or plaintext and the complexity of
homomorphic operations increase with the level. Following
MulCt or MulPt, a Rescale process is required for the output

ciphertext. Rescale is crucial as it reduces the amplified error
in the ciphertext caused by multiplication. Rescale reduces
the level by one with the constraint that the level cannot
drop below zero. Additionally, when performing operations
with operands having different levels, Rescale operations are
essential to adjust the levels of the operands to match the
lowest level among them.

To overcome this constraint, bootstrapping (Boot in
Table 1) serves as the solution. Bootstrapping emerges as a
unique operation designed to elevate the level of a ciphertext.
Bootstrapping elevates a ciphertext’s level up to L ′, which is
smaller than the max level L due to the levels bootstrapping
consumes for its computation. Therefore, in practice, we can
only utilize L ′ levels for other operations. As can be observed
from Table 1, bootstrapping incurs significantly higher costs
than basic operations. Therefore, it is crucial to suppress level
consumption and perform bootstrapping as few as possible.

Another limitation of HE is that, when using slot batching,
it is difficult to arbitrarily change the data order among
slots. The only available option is cyclically shifting the
slots, which we refer to as rotation. CRot is a homomorphic
operation to rotate a ciphertext to the left by a given amount.
When computation between data elements in different slots is
required, CRot is performed to adjust the positions. As such
a computational pattern is extremely common, CRot is one
of the most frequently performed operations in RNS-CKKS
applications.

Also, as CRot is a relatively expensive operation among
basic operations (see Table 1), CRot accounts for a large
portion of computational overhead. There is also a rotation
operation for plaintexts, PRot, but it is rarely performed and
is computationally cheap.

The data organization among the slots is the paramount
concern in RNS-CKKS because it determines the number
of CRot and bootstrapping operations. The cost of other
operations is much less sensitive to the data organization.
To reduce the number of bootstrapping, it is advisable to
pack as many data elements as possible into a ciphertext
to reduce the number of ciphertexts to bootstrap. However,
such a dense packing may result in increased amounts of
rotations because putting some data elements instead into
another ciphertext would remove the need for rotation. As an
extreme example, if we pack only one element per ciphertext,
we can eliminate all rotation operations; however, this would
incur excessively high costs for bootstrapping and other
operations. Therefore, to deliver high performance for RNS-
CKKS applications, we need to devise an application-specific
data organization that strikes a balance between the two
objectives, minimizing computation among different slots
and maximizing slot usage.

B. CONVOLUTION ON HE
Table 2 summarizes the symbols and their descriptions used
throughout the paper. As aforementioned in the previous
section, the symbols L,L ′, ℓ denote the maximum level,
multiplicative level, and current level of a ciphertext,

3026 VOLUME 12, 2024

D. Kim et al.: HyPHEN: A Hybrid Packing Method and Its Optimizations

FIGURE 2. Single-input and single-output channel convolution (SISO) [14]. Image ciphertexts and filter plaintexts are illustrated as 2D matrices, but
are stored in a 1D manner with each matrix row concatenated. ⊙ symbolizes MulPt and ⊕ symbolizes AddCt.

TABLE 2. Notations and descriptions of the symbols used.

respectively. Regarding the notations for the baseline CNN
network, we simplify the notation by assuming square-shaped
images and filters. We represent the input and output of
a single convolutional layer with tuples {channel, image
width} as {ci,wi} and {co,wo}, respectively. Parameters for
a convolution are represented with tuples {output channel,
input channel, filter width} denoted as {co, ci, f }, stride s, and
padding pad . For other symbols associated with the context
of our HCNN implementation, we will provide detailed
explanations within the relevant sections of the paper.
Single-Input, Single-Output Channel Convolution (SISO):

Gazelle [14] proposes an efficient convolution algorithm on
HE, referred to as SISO. Figure 2 illustrates SISO with s
equal to 1 and 2, where an input ciphertext containsw2

i pixels.

Algorithm 1 Single-input, single-output channel convolution
(SISO)
Input cti: input ciphertext, W : plaintext filter
Output cto: output ciphertext
1: // SubRoutine: Slidef (cti)
2: for j1 = 0, . . . , f − 1 do
3: for j2 = 0, . . . , f − 1 do
4: r ← wi(j1 −

f−1
2)+ (j2 −

f−1
2)

5: ct ′[j1, j2]← CRot(cti; r)
6: // SubRoutine: MulFilter&Sumf (cti,W)
7: for j1 = 0, . . . , f − 1 do
8: for j2 = 0, . . . , f − 1 do
9: cto +=MulPt(ct ′[j1, j2],W [j1, j2])
10: return cto

Although we represent the data format with two dimensions
as (H ,W) in this example, pixels are stored in the slots
in a flattened row-major order regardless of the number of
dimensions. f 2 plaintexts each storing distinct filter elements
need to be prepared for SISO. Each slot of the i-th plaintext
(0 ≤ i < f 2) holds a filter element (ki) or zero (0), depending
on whether ki participates in the computation of the output
pixel at the same slot. SISO operation proceeds as follows
(see Algorithm 1):
1) Slidef rotates an input image placed in encrypted

ciphertext with different rotation amounts for each of the
f 2 plaintexts as shown in Figure 2b.

2) MulFilter&Sumf multiplies each rotated input by a filter
plaintext and accumulates each of the f 2 multiplied
results to obtain the output as depicted in Figure 2c.

VOLUME 12, 2024 3027

D. Kim et al.: HyPHEN: A Hybrid Packing Method and Its Optimizations

FIGURE 3. Convolution procedure in [11] when ci , co = 2. A single superscript denotes the channel and a superscript pair denotes (input
channel, output channel). A(m) represents the m-th channel of the input image contiguously placed in the slots and K (m,n) is the

corresponding filter deployed in plaintexts. We simplify the notation of the intermediate SISO result
∑f 2

i=1 CRot(A(m); r (i))K (m,n)
i as B(m,n).

C (n) represents the n-th channel of the output image.

As an input image tuple in CNN usually has multiple chan-
nels, multiple ciphertexts are often required per convolutional
layer when using SISO. We denote the number of input
and output ciphertexts per convolutional layer as ni and no,
respectively.
Convolution and Data Format:When the image size (w2

i)
is smaller than N/2, we can reduce ni and no by batching
multiple channels into a single ciphertext. Gazelle also
proposes a channel-aligned batching method where the data
format of the input and output ciphertexts adopts a flattened
(C,H ,W) 3D vector. Reference [15] follows it and utilizes
the same (C,H ,W) format to implement an end-to-end CNN
inference using FHE. By following steps similar to SISO, this
format enables performing convolutions onmultiple channels
simultaneously. Moreover, [11] introduces input repetition
to amplify parallelism, which we represent the data format
as (R,C,H ,W) and the input tuple is repeated |R| times to
fill all the slots of a ciphertext. In Figure 3, we present an
example when {co, ci,wi} = {2, 2, 32} and the number of
slots (N/2) is 4,096. The input ciphertext (ni = 1) has two
channels (A(1),A(2)) repeated twice. f 2 filter plaintexts are
prepared, where each plaintext holds filter elements with |C|
input channels for |R| output channels.
Convolution on this ciphertext can be described as follows:

1) SISO: With a single input ciphertext, SISO can be
performed to get convolution results for |C| input
channels and |R| output channels simultaneously. The
resulting ciphertext contains |R||C| intermediate convo-
lution outputs B(x,y) (1 ≤ x ≤ |C|, 1 ≤ y ≤ |R|).

2) RaSci : To obtain the result for the y-th output channel,
accumulation of |C| intermediate results are performed
(
∑|C|

x=1 B
(x,y)) by computing rotate and sum (RaS),

which requires log |C| rotations.
3) IR: For subsequent convolutions, data rearrangement

aligns the data format to match the subsequent layer’s
format by masking and rotating data elements, which we
refer to as image realigning (IR).

Throughout this paper, we refer to this convolution that takes
an (R,C,H ,W) ciphertext as Convlc.
Gap and Multiplexed Packing: Strided convolution (s > 1)

using SISO generates a gap (denoted as g) between valid

FIGURE 4. Previous gap packing methods to fill gap induced by

downsampling layers. a(j)
i denotes the i -th element in the j-th channel

of an image.

values (see Figure 2d). When using a ciphertext with a
gap, slot underutilization degrades the throughput. While
interactive protocols such as Gazelle [14] remove the gap
by a client-aided re-encryption process, FHE demands heavy
masking (MulPt) and rotation (CRot) operations to remove
the gap, which incurs additional computation and level
consumption. Reference [11] proposes multiplexed packing
(MP) method on top of Convlc (MP-Convlc) to remedy the
slot underutilization.
MP-Convlc adds repacking process to the IR process

of Convlc, which fills the gap with different channels
(see Figure 4b). MP-Convlc uses the data format of
(R,Ca,H ,W ,Cg), adding mutiplexed channel at the inner-
most dimensionCg. The convolution process on an encrypted
image with |Cg| = 4 is depicted in Figure 8. After applying
SISO and RaS on the outer channel dimension Ca, additional
RaS accumulates channels in the inner dimension Cg within
the gap. Multiplexed packing requires a more complex IR
process to fill the gap with multiple channels from the output
tensor. For further details ofMP-Convlc, we refer the readers
to Section IV of [11].

C. ACTIVATION FUNCTION ON HE
Nonlinear activation functions, for example ReLU, cannot
be used directly in HCNN. They must be replaced by
polynomial functions approximating them because FHE only
supports additive and multiplicative operations. Maintaining
a low polynomial approximation error across a wide range

3028 VOLUME 12, 2024

D. Kim et al.: HyPHEN: A Hybrid Packing Method and Its Optimizations

FIGURE 5. ResNet-20 inference latency and their breakdown for [11] and
the adoption of low-degree polynomial [16]. Two experiments are
conducted under paramter Setlc and Sethyp from 9, respectively.

is crucial to preserving the accuracy of a CNN model.
Reference [15] approximates ReLU with a composition of
15-, 15-, and 27-degree polynomials, which keeps L1 norm of
approximation error lower than 2−13 in range [-50, 50]. This
approach has the benefit that pretrained CNN models can be
directly used without modification. However, the evaluation
of high-degree polynomials imposes a significant runtime
overhead; a series of Rescale during the evaluation incurs a
lot of level consumption, resulting in an increased number
of bootstrapping. One may attempt to mitigate this overhead
by using a CKKS parameter with more levels (i.e., higher L ′);
however, such a parameter set has an extremely large memory
footprint as presented in Table 9, and thus each operation
becomes much more expensive.

Another approach is to retrain neural networks with
low-degree polynomial activation functions as in [20], [21],
[22], [23], and [24]. By retraining, the operational cost drops
significantly. Recently, AESPA [16] has shown that CNNs
trained with low-degree polynomials can achieve equivalent
accuracy to the original ReLU-based networks across various
CNN architectures and image datasets. AESPA replaces
ReLU and batch normalization (BN) with the composition
of orthogonal basis polynomials and basis-wise BN. During
inference, vertical layer fusion transforms the composition
into a simple square function, drastically reducing the runtime
of activation.

Due to the use of high-degree polynomials, the primary
performance bottleneck of prior work [11] stems from
bootstrapping operations. In contrast, our analysis reveals
that, if we adopt AESPA, the portion of bootstrapping in the
entire HCNN inference time becomes small and convolution
operations dominate the execution time (see Figure 5).
We also analyze that rotation operations (CRot) account for
the most of computation in convolution. Therefore, in this
work, we focus on enhancing the performance of convolution
by proposing convolution algorithms and packing methods
that effectively mitigate the substantial rotation overhead in
HCNN inference.

III. HYPHEN CONSTRUCTION
We introduce HyPHEN, our HCNN solution that focuses
on reducing the memory footprint and the number of

resource-intensive homomorphic operations, including rota-
tion and bootstrapping. We propose convolution algorithms
and data formats that can streamline data arrangement
between consecutive convolutions. Our method consists of
two data formats: channel-aligned (CA) and replication-
aligned (RA) formats, which we denote as πCA and
πRA. Both formats can be formally described as πCA =

{Ca,H ,W ,Rg,Cg}, πRA = {Ra,H ,W ,Cg,Rg}. In the out-
ermost dimension, πCA aligns images with different channels
(Ca) similar to [14] and [19], whereas πRA aligns with
the replications (Ra) of images. We introduce two distinct
convolutions for the two data formats in the following section.

A. CONVOLUTION ALGORITHMS OF HYPHEN
We devise two convolution algorithms that start with input
ciphertexts in the format of πCA and πRA, respectively (see
Figure 6). For the simplicity of illustration, we assume that
the size of the last two dimensions is one, implying that no
gap exists, in the figure; gap packing is handled by additional
computation during RaS and IR, which will be discussed
in Section III-B. We focus on how the outermost Ca (Ra)
dimension is handled for πCA (πRA).
Channel-aligned convolution (CAConv) is designed for

the πCA data format, resembling MP-Convlc but without
requiring the IR process. Recall that, in MP-Convlc targeting
the data format {R,Ca,H ,W ,Cg}, |Ca| (|Cg| = 1 for
simplicity) intermediate SISO results are accumulated into
the first channel’s position and the rest of the slots
contains meaningless values (## in Figure 3). Subsequent IR
rearranges the ciphertext for the next convolution. In contrast,
by relocating the input repetition to inside the gap (πCA =
{Ca,H ,W ,Rg,Cg}), we can position Ca as the outermost
dimension. Executing RaS on this ciphertext automatically
leads to the replication of the output result because homo-
morphic rotation is cyclic. The resulting ciphertexts follow
the data format of πRA as depicted in Figure 6a. By using
CAConv, our image realignment does not require any rotation
at the cost of an increase in the number of output ciphertexts
by co.
Replication-aligned convolution (RAConv) goes even

further by eliminating most of the RaS computation in
addition. RAConv performs a sequence of {Slidef ,MulFilter ,
Sumf ,ci} operations on πRA-formatted inputs and returns
πCA-formatted results. Slidef expands input ciphertexts with
f 2 rotations and MulFilter multiplies slided ciphertexts with
plaintext filters using MulPt operations. Sumf ,ci accumulates
the intermediate results of f 2 · ci ciphertexts using only
additions (AddCt) without costly rotation operations. The
resulting ciphertexts follow the πCA format, allowing the next
CAConv to directly utilize them as input.
As the number of input ciphertexts (ni) of RAConv has

increased by the number of input channels ci, additional
rotation cost (ci · (f 2 − 1) rotations) is required for
Slidef . The increase in the Slidef cost undermines the
performance enhancement from reduced rotations in RaS and

VOLUME 12, 2024 3029

D. Kim et al.: HyPHEN: A Hybrid Packing Method and Its Optimizations

FIGURE 6. CAConv and two variants of RAConv. A single superscript denotes the channel and a superscript pair denotes (input
channel, output channel). We simplify the notation of M(a)K (a,b) as MK (a,b).

FIGURE 7. Plaintexts inversely rotated for SISO reordering.

IR. We resolve this issue by reordering the operations in
RAConv, which significantly reduces the Slidef cost.
Reordered RAConv: We rearrange the RAConv sequence

to {MulFilter, Sumci , Slide1, Sumf } under the observation
that the order of sliding and filter multiplication can be
reversed if we prepare filter plaintexts to be inversely rotated.
We describe the procedure of reordered SISO in Figure 7
and Algorithm 2. Unlike Slidef that generates f 2 rotated
ciphertext from a single input ciphertext, Slide1 gathers
f 2 ciphertexts into one by single rotations and addition. By

Algorithm 2 Reordered SISO for RAConv
Input cti: input ciphertext, W ′: filter plaintexts inversely
rotated
Output cto: output ciphertext
1: // MulFilter&Sumci (cti,W)
2: for j1 = 0, . . . , f − 1 do
3: for j2 = 0, . . . , f − 1 do
4: ct ′[j1, j2] +=MulPt(cti,W ′[j1, j2])
5: // Slide1&Sumf (ct ′)
6: for j1 = 0, . . . , f − 1 do
7: for j2 = 0, . . . , f − 1 do
8: r ← wi(j1 −

f−1
2)+ (j2 −

f−1
2)

9: cto += CRot(ct ′[j1, j2],−r)
10: return cto

reordering these operations, we can perform rotations after
ni input ciphertexts are accumulated as shown in Figure 6c,
effectively reducing the number of rotations required for
sliding from ci · (f 2 − 1) to (f 2 − 1).
We also propose an inter-layer optimization aimed at

reducing the memory footprint required for ciphertexts in
CAConv and RAConv, as outlined in Algorithm 3. In homo-
morphic convolutions, the number of input, output, and
temporary ciphertexts is determined by their data formats.
Our optimization utilizes aggressive forwarding which aims
to avoid states where the intermediate data formats occupy
large memory space (e.g. ct2, ct3 in Algorithm 3). We denote

3030 VOLUME 12, 2024

D. Kim et al.: HyPHEN: A Hybrid Packing Method and Its Optimizations

TABLE 3. Cost of homomorphic convolutions. We compare our convolutions with [11] when ni = no = 1 in their setting. (cn: channel multiplexing
in Ca dimension), (m: channel multiplexing in Cg dimension), (d: input repetition in R dimension).

Algorithm 3 CAConv and RAConv Fused Block
Input cti: input ciphertext vector, WCA,WRA: weight plain-
texts for CAConv, RAConv, nCA, nRA: number of ciphertexts
with data format πCA, πRA, ctk : temporary ciphertexet vectors
Output cto: output ciphertext vector
1: for k = 0, . . . , nCA-1 do
2: ct1[k]← Slidef (cti[k])
3: for j = 0, . . . , nRA-1 do
4: for k = 0, . . . , nCA-1 do
5: ct2[j, k] +=MulFilter&Sumf (ct1[k],WCA[j, k])
6: ct3[j]← RaSci (ct2[j, k])
7: ct3[j]← Square(ct3[j])
8: for l = 0, . . . , nCA-1 do
9: ct4[l] +=MulFilter&Sumci (ct3[j],WRA[l, j])
10: for k = 0, . . . , nCA-1 do
11: cto[k]← Slide1& Sumf (ct4[k])
12: return cto

the number of inputs for CAConv and RAConv as nCA
and nRA, respectively, to prevent confusion incurred by
fusing these two convolutions. By fusing loops that yield
ct2 and ct3 into ct4, we forward each ciphertext from
ct2, ct3 to subsequent operations until obtaining ct4 (see
line number 4-9). Our forwarding optimization retains the
number of ciphertexts to nCA · f 2, which is much smaller than
nRA · f 2.

B. DATA FORMATS FOR 2D GAP PACKING
We propose a gap packing method that collaboratively
employs duplication and channel multiplexing to alleviate
the high cost of the repacking process. In the innermost two
dimensions, referred to as 2D gap packing, Cg and Rg of
πCA and πRA represent duplication and channel multiplexing,
respectively. UnlikeMP-Convlc, which maintains a single Cg
for convolution,πCA andπRA act together in a complementary
manner such that each convolution transforms Cg (Rg)
into Rg (Cg). Our key observation is that introducing
this heterogeneity can significantly reduce the number of
rotations being invoked. Specifically, in MP-Convlc, image
repacking inside the gap (IRg) spends O(g2) rotations to
maintain the gap packing byCg, when g denotes the gapwidth
(height). In contrast, when using our 2D gap packing, IR only

FIGURE 8. The procedure of convolution on single pixel of image with

gap size g=2. a(j)
i denotes the i -th element in the j-th channel of an input

image tuple a. b(mk+n,l) represents the channels are accumulated by

stride m
∑ ci

m
k=1 b(mk+n,l).

requires O(log g2) rotations in the Rg direction as shown in
Figure 8b and Figure 8c.

C. COMPLEXITY ANALYSIS
We describe the complexity of rotation counts of convolution
algorithms in Table 3. We first start with the baseline [11],
and denote cn, m and d as |Ca|, |Cg| and |R| of MP-Convlc.
In CAConv, d turns into |Rg| as we relocate input repetition
to the gap dimension, then RAConv proceeds on the output
of CAConv. Except for the RaS of CAConv, our convolution
does not require any rotation for RaS and IR. As elaborated
in Section III-A, our convolution does not require any
rotations except for RaS of CAConv aside from the gap.
By reorganizing the order of sliding rotation, Slide of
RAConvReorder requires mcn

d × fewer rotations compared to
RAConvNaive We also separately present rotation amounts to
retain our 2D gap packing method (RaSg and IRg). Overall,
our construction halves the rotation cost of RaS and avoids
the high rotation cost of IR.

We highlight that ni and no have a direct impact on the
total number of activation functions and bootstrappings.
For instance, ni of RAConv is typically larger than ni of
CAConv, increasing the number of activation functions or

VOLUME 12, 2024 3031

D. Kim et al.: HyPHEN: A Hybrid Packing Method and Its Optimizations

bootstrappings on πRA. Unlike the square activation function
which has minor impacts on overall performance, HCNN
performance is critically dependent on the number of
bootstrapping. Therefore, we conduct bootstrappingwhen the
number of ciphertexts is minimal, particularly in the format
of πCA. Furthermore, during end-to-end network implemen-
tation, we fine-tune (m, d) on each block, aiming for the least
total execution time for rotation and bootstrapping. An in-
depth performance analysis of the choice of (m, d) is provided
in Section IV-E.

D. PLAINTEXT SIZE REDUCTION THROUGH IMAGE TO
CIPHERTEXT REARRANGEMENT
When extending HCNN to high-resolution images (e.g.,
224 × 224 images in ImageNet), HCNN encounters a
significant surge in memory footprint. This spike is espe-
cially pronounced in the weight plaintext, with each filter
element occupying the fragment-sized wihi slots as shown in
Figure 2c. In total, filters require wihif 2cico slots to produce
weight plaintexts. For instance, when running ResNet-18
on ImageNet, weight plaintexts alone occupy a substantial
364.8GB of memory space (see Table 5). This exceeds the
memory capacity of a single cutting-edge GPU, limited by
the current memory technology.

We propose an optimization named PRCR (Plaintext size
Reduction through the image to Ciphertext Rearrangement)
to mitigate the data expansion of plaintexts. Our method
involves splitting an image into multiple image segments
along the row direction. Thus, the data format of CAConv
is adjusted to πCA′ = {Ca, S,H ′,W ,Rg,Cg}, where S
denotes the dimension of sub-images and H ′ denotes the
dimension of rows of an image segment. This rearrangement
can reduce the fragment size of a filter element to the
image segment size. Furthermore, These fragments are
organized circularly, allowing the pieces to be reused by
permutation. In Figure 9, we depict PRCR method when
slot=wihi, f =1, and ci=co=2. CAConv reuses a single
weight plaintext |S| times, by multiplying with an input
ciphertext and rotating by a fragment size. Subsequent
Sumci accumulates input channels, restoring image-size
fragments and generating replication-aligned ciphertexts.
While πRA remains unchanged, PRCR rearranges weight
plaintexts into smaller fragments, placing different output
channels circularly. As CAConv, RAConv reuses the weight
plaintexts |S| times with multiplication and rotation and
returns πCA′ .
PRCR can be independently applied along with any

form of packing technique to reduce plaintext memory. The
extra computation of PRot is not significant to the overall
performance, because PRot is much cheaper than other FHE
operations as presented in Table 1. For our implementation,
we use |S| = 8 for ImageNet. However, as GPU memory is
capable of CIFAR-10 workloads, we do not apply PRCR to
CIFAR-10.

FIGURE 9. Simplified convolution processes with PRCR. We assume
ci = co = 2 but with images per ciphertext cn and filter size f equals one
for this figure. Ciphertexts are filled with subscript a and b represents
upper half and lower half of an image, respectively (e.g., π ′

C A of (a) has
single image, but each composed of different half of channel image).
PRCR reuses weight plaintexts through plaintext rotation (PRot).

FIGURE 10. ResNet basic block built on HyPHEN. The level consumption
per block is written in each parentheses. In the downsampling block,
pointwise convolution is added to the critical path. Otherwise, a simple
shortcut is added.

E. RESNET CONSTRUCTION WITH HYPHEN
HyPHEN combines RAConv, 2D gap packing and PRCR
to build the entire CNN model. Figure 10 illustrates
the ResNet implemented in HyPHEN. There are three
considerations when deciding the placement of operations.
First, it is effective to place bootstrapping after RAConv,
and not CAConv, due to the smaller number of ciphertexts
involved. Second, to match the levels between the shortcut

3032 VOLUME 12, 2024

D. Kim et al.: HyPHEN: A Hybrid Packing Method and Its Optimizations

TABLE 4. Model architecture detail of ResNet-20/32/44 for CIFAR-10 and ResNet-18 for ImageNet. Downsampling Convolution with stride 2 is
represented as dsconv. Pointwise convolution with filter size 1 is denoted as pconv.

path and the main CAConv-RAConv path, bootstrapping
should be positioned either before the divergence of residual
connections or after their convergence. Lastly, it is beneficial
to perform convolutional layers at the lowest level possible
because the complexity of FHE operations such as rotation,
is proportional to the ciphertext level l.
Putting everything together, our ResNet basic block

consumes a total of 6 levels. The level consumption of
each layer is represented in the parentheses of each block.
CAConv and RAConv use 2D gap packing and consume
one level for each of SISO and IR. For convolution with
m > 1 need level consumption for multiplication with mask.
We adopted AESPA for activation which consumes one level.
AESPA is a quadratic polynomial with different coefficients
for each channel. During inference, we fuse the coefficients
into nearby layers, resulting in a simple square function x2 for
activation. We set the ciphertext level after bootstrapping
(L ′ in Section II-A) to six and perform bootstrapping every
time when the level becomes zero.

IV. EVALUATION
A. EXPERIMENTAL SETUP
We conducted HCNN inference in both CPU and GPU
environments using the RNS-CKKS library, HEaaN [25]. The
CPU system is equipped with two AMD EPYC 7452 CPUs
running at 2.35GHz (32 cores per socket) and 480GB of
DRAM. GPU experiments were carried out on the same
system with an additional NVIDIA A100 GPU with 80GB
of memory. In our HCNN inference experiments, we used
ResNet-20/32/44 for CIFAR-10 [26] and ResNet-18 for Ima-
geNet [27] datasets. The training was conducted with AESPA
on PyTorch under normal a supervised setting following the
original paper. We utilized the Kaiming-normal initialization
method to initialize convolution and fully connected layers.
After the training process, we applied a fusion technique to
combine the weights and biases of batch normalization (BN)
and the coefficients of AESPA with convolution layers. Our
RNS-CKKS parameters satisfy a 128-bit security level [28]
with a polynomial degree N = 216 and a hamming
weight of 192. Table 4 displays the parameters used in the
convolution layers of ResNet-20/32/44/18. All the parameters
(ci, co,wi,wo, f , s) are determined following the original

FIGURE 11. HCNN execution time of ResNet-18 (ImageNet) on our CPU
and GPU systems.

TABLE 5. Memory footprint of ResNet-18 on ImageNet. Reference [11] is
an extended implementation to ImageNet. Baseline is [11] augmented
with AESPA, where HyPHEN improves it with PRCR.

ResNet paper [29]. Execution time measurement begins once
all weight plaintexts and input ciphertexts are loaded into
either host or device memory. It ends once the encrypted
inference result is returned. The client’s decrypt and encrypt
processes are excluded as they are not considered critical
bottlenecks in HCNN inference.

B. IMPACT OF HYPHEN’S COMPONENTS ON
PERFORMANCE
To analyze the effectiveness of each component of HyPHEN,
we gradually apply alternation between CAConv and
RAConv with reordering (+ Reorder), 2D gap packing
(+ 2P), and PRCR (HyPHEN). We tested with the CPU/GPU
implementations of ResNet-18 for ImageNet. The results are
shown in Figure 11. By Alternating between CAConv and
RAConv with Reorder, we achieved a 1.29× speedup and
an additional 1.75× speedup due to 2D gap packing in the
CPU. The benefits of both Reorder and 2D gap packing also
extend to GPU, resulting in a 2.05× speedup of computation

VOLUME 12, 2024 3033

D. Kim et al.: HyPHEN: A Hybrid Packing Method and Its Optimizations

TABLE 6. HyPHEN inference time of a single CIFAR-10 image using ResNet20/32/44 and a single ImageNet image using ResNet-18 on CPU and GPU. As FC
and pooling layers have a tiny execution time, we gather them at Others. For ResNet-18, we implement the initial downsampling convolution by im2col,
which is also summed in Others.

TABLE 7. Comparison of the classification accuracy between unencrypted
execution (Backbone) and execution employing our HCNN
implementation (HyPHEN) of the ResNet models. While ResNet-20/32/44
results are accuracy of CIFAR-10, ResNet-18 is the accuracy of ImageNet
classification.

time, excluding memory access latency. Meanwhile, PRCR
results in 1.89× latency reduction inGPU, but leads to a slight
slowdown (4.6%) in CPU due to the added computation of
plaintext permutation. Although PRCR reduces the aggregate
size of weight plaintexts by si = 8 times, it does not lead
to latency reduction for our CPU system since its memory
capacity can accommodate the whole working set (see
Table 5). However, for the GPU system, PRCR enables the
entire working set to fit in the 80GB GPU memory, reducing
latency by eliminating the runtime overhead of copying data
from the host CPU to theGPU (Memcpy). In summary, PRCR
offers the benefits of substantial memory footprint reduction
and latency reduction, especially for memory-constrained
cases.

C. EXECUTION TIME BREAKDOWN
Table 6 displays the runtimes of ResNet-20/32/44 for the
inference of a single CIFAR-10 image and ResNet-18
for a single ImageNet image. Our ResNet-20/32/44 imple-
mentations on GPU take a few seconds to complete.
While the majority of inference time for ResNet20/32/44 is
spent on bootstrapping, for ResNet-18, 49.6% (CPU) and
51.7% (GPU) of inference time is spent on convolution.
This is because ResNet-18 has four times more channels
than ResNet-20/32/44. Table 6 also demonstrates that our
RAConv, which replaces about half of the convolution layers
effectively reduces the overall runtime of the convolutional
layers.

D. ACCURACY
In Table 7, we measured the classification accuracies of
the validation set for CIFAR-10 running ResNet models

with HyPHEN. Near-zero accuracy degradation (≤ 0.01%) is
observed for ResNet-20/32/44. HyPHEN proves to be more
robust to accuracy degradation than [11], which exhibits
0.09% to 0.21% accuracy degradation for ResNet-20/32/44
on CIFAR-10. The difference in accuracy drop can be
explained by whether the original network is executed as is
(using AESPA) or an approximation has been made (using
ReLU approximation). HyPHEN shows the same accuracy as
the backbone accuracy even for a wider network (ResNet-18)
and a larger dataset (ImageNet).

E. PARAMETER STUDY
We conducted a parameter study to determine the optimal
2D gap packing setting for ResNet models to minimize
latency. The choice of (m, d) is crucial as it determines the
number of rotations and bootstrappings to run the networks
and thus execution time. Table 8 shows the representative
(m, d) instances, along with the resulting operation counts
and execution times. We only present the (m, d) of CAConv
for simplicity, as m and d are exchanged at RAConv, and
we omit ResNet-32/44 as ResNet-20/32/44 share the same
optimal points.

In ResNet-20, [11] uses input repetition because the size
of the input tensor in the first layer (32 × 32 × 16)
is smaller than the ciphertext slots (215). To avoid input
repetition, we start with (m, d) = (1, 2) in ResNet-20,
instead of using input repetition. In ResNet-18, we start
with the default (m, d) = (1, 1). When input repetition
occurs, it is more efficient to increase d instead, but further
increasing m or d does not yield better performance because
it leads to more bootstrapping, as shown in our proposed
architecture (see Figure 10). As the input ciphertexts go
through the downsampling layer, m · d gets quadrupled
and the size of the intermediate tensor gets halved. 2D gap
packing, which doubles m and d every downsampling layer
demonstrates optimal performance, corresponding to the
minimal bootstrapping setting. In ResNet-18, the minimal
bootstrapping setting shows better performance than MP-
CAConv. However, thanks to the flexibility of 2D gap packing
we can find more efficient settings. The optimal setting
requires 27 more bootstrappings and 20641 fewer rotations

3034 VOLUME 12, 2024

D. Kim et al.: HyPHEN: A Hybrid Packing Method and Its Optimizations

TABLE 8. Runtime for the ResNet instances with different (m, d) parameters and packing strategies. † We decompose rotation indices of unloaded evks
into loaded evks. Effective rotations, the number of rotations after decomposition are represented as eff.total.

than the one with the minimum bootstrapping. 2D gap
packing method helps balance the amount of rotation and
bootstrapping to derive better performance.

F. TRAINING DETAILS
The Models used in this paper are all trained using
PyTorch [30]. For ResNet-18 and 20, our training settings are
mostly identical to AESPA; specifically, networks are trained
for 200 epochs using an SGD optimizer. We also use soft
labels as in [16] to achieve higher accuracy. For ResNet-32
and 44, we use knowledge distillation [31] to enhance the
accuracy, using pre-trained ResNet-32/44 with 93.4% and
94.1% accuracies as teacher models. We adopt additional
l2 loss (Lkd = ∥ft − fs∥22) for distillation and trained for
240 epochs using the SGD optimizer.

G. MEMORY FOOTPRINT ANALYSIS
Memory-capacity requirement for HCNN depends on FHE
parameters and data representations, such as packing
schemes. In FHE, data size expands during encoding
and encryption procedures. The resulting plaintexts and
ciphertexts are typically orders of magnitude larger than
the original messages. Table 9 presents the actual size
of ciphertexts, plaintexts, and evaluation keys on two
FHE parameter settings. We denote the RNS-decomposition
number introduced in [18] as Dnum. Given N, the degree
of a cyclotomic polynomial ring, a large dnum increases L,
the maximum level of a ciphertext. We assume Setlc is a
setting used in [11]. As [11] approximates ReLU with a high
degree polynomial for activation, Setlc adopts the maximum
dnum to have L ′ = 16. Sethyp is the parameter set used
in this work. Adopting AESPA allows us to select a smaller
RNS-CKKS parameter (L ′ = 6), as activation consumes
one level. Certain FHE operations, such as MulCt, Rotate,
and Conjugate, require the key-switching procedure. Evk
denotes the public evaluation key used during this process.
The size of a single Evk is 1,056MB and 176MB in Setlc and
Sethyp, respectively. For bootstrapping, one relinearization
key for MulCt, one conjugation key, and 48 rotation keys
are required. Frequently used rotation keys for Slide are
loaded for convolution. For instance, loading 66 unique Evks
in ResNet-18 takes up 69.7GB and 11.1GB in Setlc and
Sethyp, respectively. Other irregular rotation keys used in IR

TABLE 9. FHE parameter settings. dnum is tuned to support 16, 6 levels
required in Setlc , and Sethyp. Each ciphertext and plaintext memory size
is represented when bootstrap refresh the level.

FIGURE 12. Total memory size (GB) of each object in residual blocks.
We abbreviated Down-sampling Block and Basic Block to DSB and BB
with each layer number as a postfix number. Weight plaintexts, bias
plaintexts, and input ciphertexts configure the memory footprint of each
residual block. Base and Ours represent the baseline and HyPHEN,
respectively.

are not loaded; instead, these rotation indices are synthesized
using the already loaded key indices.

Once FHE parameters are determined, the packing scheme
determines the number of ciphertexts and plaintexts required
to run each ResNet block. In the SISO-based HCNN filter,
the size of filter plaintexts increases by a factor of wihi as
each filter element is duplicated to the size of an input image.
The number of slots for weight plaintexts is wihif 2cico.
Thus, weight plaintexts significantly outweigh ciphertexts
in terms of memory footprint, which only requires wihicid
slots. Figure 12 illustrates the total memory capacity of
ciphertexts and plaintexts of each CNN residual block. In the
case of ResNet-20, our implementation shows up to a 14.75%
memory-capacity overhead compared to the baseline. This
overhead is due to the increase in the number of intermediate
ciphertexts and bias plaintexts when using CAConv and
RAConv, as HyPHEN does not apply PRCR for CIFAR-10.
However, for ResNet-18, our implementation achieves
6.15-6.81× memory reduction compared to the baseline.

VOLUME 12, 2024 3035

D. Kim et al.: HyPHEN: A Hybrid Packing Method and Its Optimizations

V. RELATED WORK
A. HE-BASED PRIVACY PRESERVING MACHINE LEARNING
Several variants of homomorphic encryption (HE) have been
explored for Privacy-Preserving Machine Learning (PPML).
Early literatures [8], [9], [10], [12], and [32] employed
Leveled HE (LHE), which lacks support managing ciphertext
errors and can only perform a limited number of operations,
restricting its use to shallow networks. Convolutions in
these prior works can still be adopted for FHE but are less
efficient than convolutions specifically designed for FHE.
For example, [12] devised a general tensor framework based
on tiling, which can serve as an alternative to a SISO-based
framework for specific HE parameter settings and image
sizes. We observe that tiling incurs excessive bootstrapping
for FHE-based CNNs in general, so we mainly focus on prior
FHE CNN implementations for comparison. By contrast,
SHE [33] implements CNN based on a TFHE scheme [34]
and evaluates non-linear functions through table lookups,
but it requires a long latency per operation. Using RNS-
CKKS, [11], [15] have demonstrated ResNet implementation
on CIFAR-10, employing high-degree polynomial approx-
imation of ReLU. Reference [11] reported a single thread
implementation of ResNet-20, which took 2271 seconds by
efficiently utilizing ciphertext slots. A concurrent work [35]
utilizes coefficient-packed ciphertexts that deploy values as
the coefficient of a ring polynomial. This method reduces
the number of rotations in convolution at the cost of limiting
flexibility, as a single convolutionmust be pairedwith a single
bootstrapping.

B. HYBRID PPML
To address the high computational complexity in PPML,
the HE-MPC hybrid PI protocol has gained attention as
an alternative solution. In this protocol, client-aided MPC
handles non-linear functions such as ReLU while HE oper-
ations compute linear functions. HE-MPC protocols [14],
[36], [37], [38] have made significant progress. Cheetah [38]
introduced an efficient packing scheme that removed rota-
tions. However, it is challenging to make a fair comparison
between HCNN and HE-MPC protocols due to differences in
their security models. HE-MPC protocols also reveal network
architecture. The hybrid approach places less computation
burden on the server but assumes 1) continuous network com-
munication and 2) comparable client-side computation power
for optimal performance. In contrast, FHE only requires
succinct communication for transmitting and receiving small
input and output ciphertexts. Contrary to the common
belief that HE-MPC protocols are significantly faster than
FHE-based implementations, our results show comparable
performance to prior HE-MPC protocols.

C. FHE HARDWARE ACCELERATION
FHE-based applications are promising especially when
combined with hardware acceleration. In response to the
IT industry’s need for privacy-preserving services with

realistic quality of service (QoS), prior studies [39], [40]
have introduced and analyzed the characteristics of FHE
operations from a computer architectural perspective. This
sufficient analysis has led to well-suited solutions for various
hardware platforms such as CPU [41], GPU [42], [43],
FPGA [44], [45], and ASIC [46], [47], [48]. While our
HCNN implementation demonstrates performance on CPU
andGPUplatforms, specialized FHE accelerators can achieve
2–3 orders of magnitude performance improvements.

VI. DISCUSSION
In our implementation, HyPHEN, we introduced several
significant enhancements to boost the performance ofHCNN.
First, we incorporated a low-degree polynomial activation
function obtained from AESPA. Additionally, we developed
HCNN based on the GPU implementation of RNS-CKKS.
Most importantly, we proposed novel algorithms to tackle
two key challenges of HCNN: computational complexity and
memory footprint.

A. COMPUTATIONAL COMPLEXITY
We conducted a comprehensive bottleneck analysis of
previous HCNN implementations and discovered that a per-
formance limitation arises from FHE rotations. We found out
that the majority of the rotation is attributed to the summation
of channels within a ciphertext (RaS) and the adjustment of
data format between two convolution layers (IR). To address
this challenge, we developed novel algorithms, RAConv and
CAConv, which enable encrypted convolution without the
need for IR and effectively reduce RaS rotations. We also
proposed a hybrid packing method capable of efficiently
managing gaps introduced by strided convolution while
minimizing the required rotations. Our implementation,
HyPHEN, demonstrated a substantial reduction in execution
time, from tens of minutes to just a few seconds.

B. MEMORY FOOTPRINT
In addition to the memory expansion resulting from encryp-
tion and encoding procedures in the FHE scheme, we iden-
tified another significant source of memory expansion:
duplicated data in packing methods. Specifically, while
plaintext has lower memory expansion compared to cipher-
text, it suffers from additional memory expansion because
each weight element occupies the same number of slots
as the input image size. Our experiments on the ImageNet
dataset highlighted that loading weight plaintexts from host
memory can significantly hinder the performance in CNN
models such as ResNet-18. The available High Bandwidth
Memory (HBM) in accelerators may not be capable of
accommodating the entire model weights. Our proposed
solution, PRCR, addressed this problem by introducing a
novel data arrangement that eliminates the need to duplicate
each weight element to match the size of an input image.
For larger models like ResNet-50, the memory reduction
ratio achieved by PRCR becomes even more significant. The
problem of memory footprint becomes particularly crucial

3036 VOLUME 12, 2024

D. Kim et al.: HyPHEN: A Hybrid Packing Method and Its Optimizations

when utilizing specialized accelerators, which are reported
to be one or two orders of magnitude faster than GPUs but
still share the same HBM technology and, therefore, have the
same capacity limitations.

C. LIMITATION
While HyPHEN has made significant strides in advancing
HCNNs, several limitations should be considered. Despite
achieving a remarkable reduction in execution times, a few
seconds for inference are still challenging for deployment in
real-world scenarios. Further, as image classification models
evolve to achieve higher accuracy, they require largermemory
capacity. Advanced memory footprint reduction algorithms
could further facilitate the broad adoption of PPML.

VII. CONCLUSION
In this paper, we have proposed HyPHEN, an efficient
private inference construction of FHE-based CNN (HCNN).
Combining two convolution methods with reordering and
2D gap packing enables fast inference by significantly
reducing the number of homomorphic rotations in convo-
lution. Additionally, PRCR enables HyPHEN to reduce the
memory footprint for high-resolution image classification
tasks, which is especially beneficial for memory-constrained
devices. Our experiments with HyPHEN on CPU systems
show 1.83×/2.15× lower latency compared to the prior state-
of-the-art algorithm baseline in ResNet-20/18. Using GPU
acceleration, HyPHEN achieves 1.40s/2.17s/2.96s execution
time for running ResNet-20/32/44 for CIFAR-10, and we also
demonstrated HCNN inference of ResNet-18 for ImageNet in
14.69s for the first time. We have showcased the practicality
of utilizing FHE as a solution to achieve private inference
through HyPHEN, which exhibits reasonable execution time
while enabling clients to benefit from succinct computation
and communication processes.

ACKNOWLEDGMENT
The ICT at Seoul National University provides research
facilities for this study. (Donghwan Kim and Jaiyoung Park
contributed equally to this work.)

REFERENCES
[1] Regulation (EU) 2016/679 of the European Parliament and of the Council,

Eur. Parliament Council Eur. Union, Brussels, Belgium, 2016.
[2] Health Insurance Portability and Accountability Act of 1996, U.S. Dept.

Health Hum. Services, Washington, DC, USA, 1996.
[3] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma,

‘‘CrypTFlow: Secure TensorFlow inference,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), San Francisco, CA, USA, May 2020, pp. 336–353.

[4] W. Bowditch, W. Abramson, W. J. Buchanan, N. Pitropakis, and A.
J. Hall, ‘‘Privacy-preserving surveillance methods using homomorphic
encryption,’’ in Proc. 6th Int. Conf. Inf. Syst. Secur. Privacy (ICISSP),
Valletta, Malta, Feb. 2020, pp. 240–248.

[5] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattices,’’ in Proc.
41st Annu. ACM Symp. Theory Comput. (STOC), Bethesda, MD, USA,
May/Jun. 2009, pp. 169–178.

[6] A. C.-C. Yao, ‘‘Protocols for secure computations (extended abstract),’’
in Proc. 23rd Annu. Symp. Found. Comput. Sci., Chicago, IL, USA,
Nov. 1982, pp. 3–5.

[7] V. Costan and S. Devadas, ‘‘Intel SGX explained,’’ Int. Assoc. Cryptologic
Res. (IACR), Tech. Rep. 86, 2016.

[8] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig, and
J. Wernsing, ‘‘CryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy,’’ in Proc. 33rd Int. Conf. Mach. Learn.
(ICML), New York, NY, USA, Jun. 2016, pp. 201–210.

[9] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, ‘‘Low latency privacy
preserving inference,’’ in Proc. 36th Int. Conf. Mach. Learn. (ICML),
Long Beach, CA, USA, Jun. 2019, pp. 9–15.

[10] R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine, and
M. Musuvathi, ‘‘EVA: An encrypted vector arithmetic language and
compiler for efficient homomorphic computation,’’ in Proc. 41st ACM
SIGPLAN Conf. Program. Lang. Design Implement., London, U.K.,
Jun. 2020, pp. 546–561.

[11] E. Lee, J.-W. Lee, J. Lee, Y.-S. Kim, Y. Kim, J.-S. No, andW. Choi, ‘‘Low-
complexity deep convolutional neural networks on fully homomorphic
encryption using multiplexed parallel convolutions,’’ in Proc. Int. Conf.
Mach. Learn. (ICML), Baltimore, MD, USA, Jul. 2022, pp. 17–23.

[12] E. Aharoni, A. Adir, M. Baruch, N. Drucker, G. Ezov, A. Farkash,
L. Greenberg, R. Masalha, G. Moshkowich, D. Murik, H. Shaul, and
O. Soceanu, ‘‘HeLayers: A tile tensors framework for large neural
networks on encrypted data,’’ 2020, arXiv:2011.01805.

[13] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, ‘‘Homomorphic encryption
for arithmetic of approximate numbers,’’ in Proc. 23rd Int. Conf. Theory
Appl. Cryptol. Inf. Secur., Hong Kong, Dec. 2017, pp. 409–437.

[14] C. Juvekar, V. Vaikuntanathan, and A. P. Chandrakasan,
‘‘GAZELLE: A low latency framework for secure neural network
inference,’’ in Proc. 27th USENIX Secur. Symp. (USENIX Secur.),
Baltimore, MD, USA, Aug. 2018, pp. 1651–1669.

[15] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y.-S. Kim, and J.-S. No, ‘‘Privacy-preserving machine
learning with fully homomorphic encryption for deep neural network,’’
IEEE Access, vol. 10, pp. 30039–30054, 2022.

[16] J. Park, M. J. Kim, W. Jung, and J. H. Ahn, ‘‘AESPA: Accuracy
preserving low-degree polynomial activation for fast private inference,’’
2022, arXiv:2201.06699.

[17] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, ‘‘A full RNS variant of
approximate homomorphic encryption,’’ in Proc. 25th Int. Conf. Sel. Areas
Cryptogr. (SAC), Calgary, AB, Canada, Aug. 2018, pp. 347–368.

[18] K. Han and D. Ki, ‘‘Better bootstrapping for approximate homomorphic
encryption,’’ Int. Assoc. Cryptologic Res. (IACR), Tech. Rep. 688, 2019.

[19] J. Lee, E. Lee, J.-W. Lee, Y. Kim, Y.-S. Kim, and J.-S. No, ‘‘Precise
approximation of convolutional neural networks for homomorphically
encrypted data,’’ 2021, arXiv:2105.10879.

[20] T. Ishiyama, T. Suzuki, and H. Yamana, ‘‘Highly accurate CNN inference
using approximate activation functions over homomorphic encryption,’’ in
Proc. IEEE Int. Conf. Big Data (Big Data), Atlanta, GA, USA, Dec. 2020,
pp. 3989–3995.

[21] H. Chabanne, A. deWargny, J.Milgram, C.Morel, and E. Prouff, ‘‘Privacy-
preserving classification on deep neural network,’’ Int. Assoc. Cryptologic
Res. (IACR), Tech. Rep. 35, 2017.

[22] S. Obla, X. Gong, A. Aloufi, P. Hu, and D. Takabi, ‘‘Effective activation
functions for homomorphic evaluation of deep neural networks,’’ IEEE
Access, vol. 8, pp. 153098–153112, 2020.

[23] E. Hesamifard, H. Takabi, and M. Ghasemi, ‘‘Deep neural networks
classification over encrypted data,’’ in Proc. 9th ACM Conf. Data Appl.
Secur. Privacy, Richardson, TX, USA, Mar. 2019, pp. 97–108.

[24] P. Thaine, S. Gorbunov, and G. Penn, ‘‘Efficient evaluation of activation
functions over encrypted data,’’ in Proc. IEEE Secur. Privacy Workshops
(SPW), San Francisco, CA, USA, May 2019, pp. 57–63.

[25] HEaaN Library, CryptoLab Inc., Seoul, South Korea, 2022.
[26] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from

tiny images,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009.
[27] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
‘‘ImageNet large scale visual recognition challenge,’’ Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211–252, Dec. 2015.

[28] J. H. Cheon, M. Hhan, S. Hong, and Y. Son, ‘‘A hybrid of dual and meet-in-
the-middle attack on sparse and ternary secret LWE,’’ IEEE Access, vol. 7,
pp. 89497–89506, 2019.

[29] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

VOLUME 12, 2024 3037

D. Kim et al.: HyPHEN: A Hybrid Packing Method and Its Optimizations

[30] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance deep
learning library,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 8024–8035.

[31] G. E. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531.

[32] Q. Lou and L. Jiang, ‘‘HEMET: A homomorphic-encryption-friendly
privacy-preserving mobile neural network architecture,’’ in Proc. 38th Int.
Conf. Mach. Learn. (ICML), Jul. 2021, pp. 18–24.

[33] Q. Lou and L. Jiang, ‘‘SHE: A fast and accurate deep neural network for
encrypted data,’’ in Proc. Annu. Conf. Neural Inf. Process. Syst. (NIPS),
Vancouver, BC, Canada, Dec. 2019, pp. 10035–10043.

[34] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, ‘‘TFHE: Fast
fully homomorphic encryption over the torus,’’ J. Cryptol., vol. 33, no. 1,
pp. 34–91, Jan. 2020.

[35] D. Kim and C. Guyot, ‘‘Optimized privacy-preserving CNN inference
with fully homomorphic encryption,’’ IEEE Trans. Inf. Forensics Security,
vol. 18, pp. 2175–2187, 2023.

[36] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A.
Popa, ‘‘Delphi: A cryptographic inference service for neural
networks,’’ in Proc. 29th USENIX Secur. Symp. (USENIX Secur.),
Aug. 2020, pp. 2505–2522.

[37] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, ‘‘CrypTFlow2: Practical 2-party secure inference,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), USA,
Nov. 2020, pp. 325–342.

[38] Z. Huang, W.-J. Lu, C. Hong, and J. Ding, ‘‘Cheetah: Lean and fast
secure two-party deep neural network inference,’’ in Proc. 31st USENIX
Secur. Symp. (USENIX Security), Boston, MA, USA, K. R. B. Butler and
K. Thomas, Eds., Aug. 2022, pp. 809–826.

[39] W. Jung, E. Lee, S. Kim, J. Kim, N. Kim, K. Lee, C. Min, J. H. Cheon,
and J. H. Ahn, ‘‘Accelerating fully homomorphic encryption through
architecture-centric analysis and optimization,’’ IEEE Access, vol. 9,
pp. 98772–98789, 2021.

[40] S. Kim, W. Jung, J. Park, and J. H. Ahn, ‘‘Accelerating number theoretic
transformations for bootstrappable homomorphic encryption on GPUs,’’
in Proc. IEEE Int. Symp. Workload Characterization (IISWC), Beijing,
China, Oct. 2020, pp. 264–275.

[41] F. Boemer, S. Kim, G. Seifu, F. D. M. de Souza, and V. Gopal,
‘‘Intel HEXL: Accelerating homomorphic encryption with Intel AVX512-
IFMA52,’’ in Proc. 9th Workshop Encrypted Comput. Appl. Homomorphic
Cryptogr. (WAHC), South Korea, Nov. 2021, pp. 57–62.

[42] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, ‘‘Over 100x faster
bootstrapping in fully homomorphic encryption through memory-centric
optimization with GPUs,’’ IACR Trans. Cryptograph. Hardw. Embedded
Syst., vol. 4, pp. 114–148, Aug. 2021.

[43] S. Fan, Z. Wang, W. Xu, R. Hou, D. Meng, and M. Zhang, ‘‘TensorFHE:
Achieving practical computation on encrypted data using GPGPU,’’ in
Proc. IEEE Int. Symp. High-Perform. Comput. Archit. (HPCA), Montreal,
QC, Canada, Feb./Mar. 2023, pp. 922–934.

[44] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, ‘‘HEAX: An architecture for
computing on encrypted data,’’ in Proc. Archit. Support Program. Lang.
Oper. Syst. (ASPLOS), Lausanne, Switzerland, Mar. 2020, pp. 1295–1309.

[45] R. Agrawal, L. de Castro, G. Yang, C. Juvekar, R. Yazicigil,
A. Chandrakasan, V. Vaikuntanathan, and A. Joshi, ‘‘FAB: An FPGA-
based accelerator for bootstrappable fully homomorphic encryption,’’ in
Proc. IEEE Int. Symp. High-Perform. Comput. Archit. (HPCA), Montreal,
QC, Canada, Feb./Mar. 2023, pp. 882–895.

[46] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H. Ahn,
‘‘BTS: An accelerator for bootstrappable fully homomorphic encryption,’’
in Proc. 49th Annu. Int. Symp. Comput. Archit. (ISCA), New York, NY,
USA, Jun. 2022, pp. 711–725.

[47] J. Kim, G. Lee, S. Kim, G. Sohn, M. Rhu, J. Kim, and J. H. Ahn, ‘‘ARK:
Fully homomorphic encryption accelerator with runtime data generation
and inter-operation key reuse,’’ in Proc. 55th IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Oct. 2022, pp. 1237–1254.

[48] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sánchez, ‘‘Crater-
Lake: A hardware accelerator for efficient unbounded computation on
encrypted data,’’ inProc. 49th Annu. Int. Symp. Comput. Archit., NewYork,
NY, USA, Jun. 2022, pp. 173–187.

DONGHWAN KIM (Graduate Student Member,
IEEE) received the B.S. degree in electrical
engineering from Seoul National University,
in 2022, where he is currently pursuing the
master’s degree with the Interdisciplinary Program
in Artificial Intelligence. His research interests
include privacy-preserving machine learning and
architecture-centric optimization for emerging
applications.

JAIYOUNG PARK (Graduate Student Member,
IEEE) received the B.S. degree in electrical and
computer engineering from Seoul National Uni-
versity, in 2020, where he is currently pursuing the
Ph.D. degree with the Graduate School of Conver-
gence Science and Technology. His research inter-
ests include privacy-preserving machine learning
and architecture-centric optimization for emerging
applications.

JONGMIN KIM (Graduate Student Member,
IEEE) received the B.S. degree in electrical
and computer engineering from Seoul National
University, in 2021, where he is currently pursuing
the Ph.D. degree with the Interdisciplinary Pro-
gram in Artificial Intelligence. His research inter-
ests include architecture-centric optimization and
hardware accelerator design for emerging applica-
tions, especially cryptographic applications.

SANGPYO KIM (Graduate Student Member,
IEEE) received the B.S. degree in naval architec-
ture and ocean engineering from Seoul National
University, in 2019, where he is currently pursuing
the Ph.D. degree with the Graduate School of
Convergence Science and Technology, with a
focus on computer architecture for accelerating
emerging applications.

JUNG HO AHN (Senior Member, IEEE) received
the B.S. degree in electrical engineering from
Seoul National University and the M.S. and Ph.D.
degrees in electrical engineering from Stanford
University, Stanford, CA, USA. He is currently
the Dean of the Graduate School of Convergence
Science and Technology, Seoul National Univer-
sity. His research interests include bridging the
gap between the performance demand of emerging
applications and the performance potential of

modern and future massively parallel systems.

3038 VOLUME 12, 2024

