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ABSTRACT In order to solve the problem of performance degradation, such as local optimality, that may
occur when shallow learning is used to predict the high-rise buildings seismic response under difficult
conditions, a high-rise building vibration intelligent control method integrating genetic algorithms and long
short-term memory networks is proposed. First, a structural response prediction model is constructed and
combined with vibration control theory. Furthermore, an intelligent control algorithm using long short-term
memory networks is designed. In conjunction with this algorithm, a centralized controller that integrates
convolutional neural networks at different levels is designed. The structure of the centralized control system
is improved, and genetic algorithms and Lyapunov stability theory are used to optimize thenetwork hyperpa-
rameters through deep learning. The results showed that this framework had high prediction accuracy, with
the smallest relative difference in predicting C-library data at -0.0053 cm on average. The largest prediction
error for B-library data was 0.015 cm on average. The long short-term memory network had the smallest
prediction error and the best learning and prediction performance. When the degradation level of each layer
stiffness in the benchmark model was between 10.2% and 20.5%, this intelligent controller achieved the best
control effect, maintaining above 39.8%. Optimized using genetic algorithm, the optimal fitness value after
80 iterations represented controllerloss function value, which were 8.3 × 10.5, 2.3 × 10.4, 2.2 × 10.4, and
3.0 × 10.4, respectively, demonstrating good prediction results. Compared with traditional trial calculation
methods, this algorithm has higher computational efficiency and accuracy. The fusion of genetic algorithms
and long short-term memory networks with different structural forms shows good seismic reduction effects
on the time responses of benchmark models. The research method has good prediction accuracy, high
reliability, and flexible system design, providing new strategies for intelligent control of high-rise building
structures under different conditions.

INDEX TERMS Genetic algorithm, LSTM, architecture, structure, intelligent control.

I. INTRODUCTION
It is necessary to apply direct or indirect vibration control
measures to buildings to minimize the negative impact of
earthquakes on human society [1]. With the rapid increase in
population density and the shortage of land resources, people
are gradually exploring higher height and larger span building
structural forms. In recent years, many domestic and foreign
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research institutions have made significant breakthroughs in
structural vibration control, forming a series of new control
theories and methods. However, for complex high-rise build-
ings, the control effect may not be satisfactory [2]. Due to the
instability of energy input and high system costs, traditional
control technologies are still under in-depth research and
have relatively few applications in engineering [3]. Intelli-
gent control combines the advantages of traditional control
and artificial intelligence, with a wider range of applica-
tions and control effects that are more in line with practical
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engineering [4]. In addition, intelligent control can also be
combined with traditional control algorithms and other intel-
ligent control algorithms, utilizing the different advantages
of the two to achieve the best control effect. In intelligent
algorithms, genetic algorithms are applied to the optimal
placement of actuators and the linear quadratic regulator
(LQR) algorithm with discrete-time state feedback, which is
much better than traditional LQR active vibration control [5].
Regarding the issue of control performance, artificial intel-
ligence theory has a wide range, and deep learning is a new
direction of artificial intelligence, with a focus on improving
the model depth of the network and the learning accuracy
of feature extraction. Currently, mature research frameworks
include Long Short Term Memory (LSTM), Convolutional
Neural Networks (CNN), and others.

In this study, a new intelligent control algorithm is pro-
posed by combining LSTM with structural vibration control
theory. Using the 20-layer Benchmark model as the control
object, the CNN-LSTM centralized controller with 1 and
2 dimensions is proposed for vibration control of the struc-
ture. According to Lyapunov theory, GA-LSTM intelligent
decentralized controller is constructed by using GA to
optimize controller hyperparameters. The research aims to
achieve the goal of reducing the degree of building damage
by scientifically and reasonably predicting and controlling
the vibration response of high-rise building structures during
earthquakes, and also provide new ideas for the seismic the-
ory and technical application of building structures.

The research mainly includes five parts, and in the first part
of the article, the background and significance of research
on intelligent vibration control are mainly introduced. The
content of Part 2 is a summary of the intelligent control
technology for building vibration. The third part is the
research method content, mainly divided into two sections.
In section I, a structural intelligent control algorithm based
on LSTM is proposed. In section II, the study integrates
CNN hierarchical feature learning to improve the LSTM cen-
tralized controller. Based on Lyapunov theory, the sufficient
condition of stability of the sub-controller is deduced, and
the hyperparameters of the sub-controller are optimized by
genetic algorithm. A decentralized control model of high-rise
building structure vibration response based on GA-LSTM
optimization algorithm is constructed.The fourth part is about
verifying the effectiveness of the research model. The fifth
part is a summary of the most research methods and an
analysis of the experimental results. At the same time, the
shortcomings of research methods and future research direc-
tions are proposed.

II. RELATED WORKS
Currently, intelligent control of building structures has a
wider range of adaptability and practical engineering control
effects, and the implementation of equipment systems is sim-
pler, making it a hot field of control research. Hamza A et al.
proposed an intelligent control method using artificial neural
networks to obtain an active suspension system, and provided

information about the system through physical laws to deter-
mine system parameters. The results showed that this method
had good performance in graphical and simulation output
validation [6]. Song Y’s team designed asolution for high-rise
buildings vibration suppression. They mainly developed a
high-rise building structures model through the Hamiltonian
principle, and used the Lyapunov direct method to make the
closed-loop system uniformly bounded in the time domain.
The results showed that the designed method was effec-
tive [7]. Ma et al. proposed a numerical model to predict the
vibration of buildings caused by subway trains operating in
curved tunnels, and established corresponding models to pre-
dict the vibration of buildings. The results indicated that the
model provided a track solution for implementing vibration
control [8]. Konar and Ghosh and other scholars designed
a shallow liquid level that remained constant between the
free liquid level and the floating base to overcome the basic
shaking frequency changes caused by liquid level fluctuations
in the tank. The results showed that in an example building’s
water storage tank system, a reduction in structural response
was achieved [9].
Structural vibration is mainly caused by ground motion

excitation, and its structural safety is the main goal of build-
ing technology development. To achieve this goal, Fali et
al. proposed a passive control strategy in which no energy
was required to ensure the reduction of structural vibration
caused by ground motion excitation. The results verified
the effectiveness of this method [10]. Control algorithms
are the most critical aspect for successfully controlling
civil structures under earthquake and wind effects. Adap-
tive intelligent control algorithms have gradually become
an acceptable alternative method. Saeed M U’s team made
the practical application of vibration response attenuation of
intelligent civil structures possible from the perspective of
artificial intelligence to create an intelligent civil structure.
The results showed that this method had obvious technical
advantages [11]. Active vibration control systems are usually
considered the most effective method for structural vibration
control, but the type of ground motion may greatly affect
their performance. To solve it, Elias et al. designed a lin-
ear quadratic Gaussian control algorithm that considered the
situation under earthquakes and incorporated the nonlinear
behavior of the structure into seismic analysis. The results
showed that this method improved model robustness [12].
To cope with the vibration and structural damage of super
high-rise buildings by natural disasters, Gao et al. established
a new finite dimensional dynamic model using the assumed
mode method. The results verified the effectiveness of this
method in vibration suppression [13].
In summary, for complex buildings, the control effect

may not be satisfactory. Active control technology is still in
the further research stage due to the main issues of unsta-
ble energy input and high system cost, and its engineering
applications are relatively limited.Intelligent control is a new
type of theory with highly interdisciplinary properties. Com-
pared to traditional control theory, intelligent control has the
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advantages of rapid response, large force, and low energy
consumption. Deep learning has many advantages compared
to shallow learning. Combining it with vibration control the-
ory and applying it to intelligent buildings vibration control is
a relatively novel and practical work.To reduce the vibration
response of structures during earthquakes and achieve the
goal of reducing the degree of building damage, this study
proposes an intelligent control method for high-rise building
vibration that integrates genetic algorithm and short-term
memory network.

III. DESIGN OF INTELLIGENT VIBRATION CONTROL
MODEL FOR TALL BUILDING STRUCTURES BASED ON
GENETIC ALGORITHM AND LSTM NETWORK
Buildings can experience complex structural responses with
significant and random variations under various external fac-
tors such as earthquakes and typhoons. In active intelligent
control algorithms, a large amount of structural response
information is required to command actuators in order to
control structural vibration. In order to extract and improve
the intrinsic relationships within nonlinear data and obtain
structural responses, a structural response prediction model
is first constructed and combined with vibration control
theory. Furthermore, an intelligent control algorithm based
on LSTM is designed. In conjunction with this algorithm,
a centralized controller that integrates CNN at different levels
is designed. The structure of the centralized control system
is improved, and genetic algorithms and Lyapunov stability
theory can optimize the hyperparameters of LSTM network
through deep learning. Ultimately, a distributed controlmodel
for high-rise building structural vibration response based on
GA-LSTM optimization algorithm is developed.

A. STRUCTURAL RESPONSE PREDICTION METHOD
BASED ON LSTM
LSTM has added a state c on top of the original RNN
to address its sensitivity to short-term inputs [14]. With-
out changing the training algorithm, LSTM can effectively
extend memory time and improve its reliability. The general
formula for the accumulation of structural errors in LSTM
networks at any time is shown in equation (1).

δTk = δTf ,jWfh + δTi,jWih + δTc̃,jWch +

t−1∏
j=k

δTo,jWoh (1)

Reply: Thank you very much for your valuable advice,
and the unnecessary basics in the method have been cut.
Please review. Thank you. f represents the forgetting gate,
c̃ represents the corrected state storage unit, and o represents
the corrected output gate output. δTf ,j, δ

T
i,j, δ

T
c̃,j, δ

T
o,j represent

the error at time t of each link. Woh represents the weight
matrix. During data training, over-fitting is the main prob-
lem with shallow learning, which manifests as a decrease
in the generalization performance of the network model.
Comparing the LSTM training process to the process of infor-
mation transmission, the criteria for over-fitting are shown in

equation (2).

|1W | · |1Y | ≥
TPh

2 log2 (1 +M/N )
(2)

In equation (2), T represents the correlation function, and
h represents the number of network nodes. M represents
the normalized output value, P represents the over-fitting
parameter, and N represents the root mean square error. 1W
represents the weight variable ratio trained twice for LSTM
over-fitting, and N ≈ 1Y represents the prediction error.
When there is over-fitting in LSTM, N ≈ 1Y , as shown in
equation (3).

p ≤
2 |1W | · |1Y | · og2 (1 +M/N )

Th
(3)

In equation (3), the smaller the value of p, the less
over-fitting occurs during network operation. If p decreases
first and then increases, it indicates over-fitting in network
training. In the LSTM network structure, methods that can
effectively solve over-fitting include weighted parameter reg-
ularization, Dropout technology, and so on. Regularization
is to reduce the complexity and generalization error of deep
learning models by adding constraints to the loss function.
The calculation expression is shown in equation (4).

J̃ (w., x, y) = J (w., x, y) + α1 (w) (4)

In equation (4), J̃ represents the regularized loss function,
and J represents the loss function. 1 (w) represents the con-
tribution coefficient, and α represents the constraint term.
Research using L2 regularization, i.e. 1 (w) = ∥w∥

2
2. In the

LSTM deep learning model, the Dropout technique is intro-
duced to prevent over-fitting. Dropout technology modifies
the structure of LSTM networks, resulting in random failure
of the weight matrix of hidden layer neuron nodes. The work-
ing principle of Dropout technology is shown in Figure 1 (a).
The robustness of connections between hidden layer random
subset nodes is improved while reducing network consensus.
Equation (5) is the mathematical expression for the LSTM
layer after using Dropout technology.

r (l)
i ∼ Bernoulli

(
p′
)

∼

x(l)
= r (l)

× x(l)

z(l+1)
i = w(l+1)

i

∼

x(l)
+b(l+1)

i

y(l+1)
i = f

(
z(l+1)
i

) (5)

In equation (5), r (l)
i represents the j-th Dropout strength

coefficient of layer l. p′ represents the Bernoulli distribution

probability. x(l),
∼

x(l) represent the input value of layer l and
the corrected input value, respectively. w(l+1)

i represents the
i-th weight coefficient of the l + 1-th layer. b(l+1)

i represents
the i-th deviation value of the l + 1-th layer. z(l+1)

i represents
the i-th output value of the l + 1-th layer. l + 1 repre-
sents the activation function, and y(l+1)

i represents the output
value of the i-th activated layer in layer l + 1. Early stopping
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technology is a method of adaptively selecting Epoch values,
used to calculate the training error of eachMini batch segment
and compare it with the results of the previous period. The
working principle of Early Stopping technology is shown in
Figure 1 (b).

FIGURE 1. The working principle of dropout technology and early
stopping technology.

When there are too few hyperparameters Epoch in the
model, the data training effect is poor, leading to underfitting.
When there are too many hyperparameters in the model, the
over-fitting probability will increase due to the increase of
noisy data. Early stopping technology can truncate Epoch as
the error increases, and use the minimum error iteration value
corresponding to Epoch as the final network hyperparameter.
If L (t) is defined as the training proportion loss of Early
Stopping technology, then there is equation (6).

L (t) = 100 ·

[
Etest (t)
Em (t)

− 1
]
% (6)

FIGURE 2. Gradient descent paths of different algorithms.

In equation (6), Etest (t) represents the test error. Em (t)
represents the optimal testing error for network training to
time t . In the LSTM network structure, methods that can
effectively solve local optimal problems include adaptive
learning rate α, Mini-batch random gradient descent, etc.
[15]. The LSTM control algorithm proposed in the study is
the Adam algorithm, which can make reasonable changes to
the learning rate in situations with high gradient coefficients
and noise. As shown in Figure 2, there are gradient descent
paths for different algorithms.

In Figure 2, in a Full batch, an epoch only contains one iter-
ation step. The Mini-batch random gradient descent divides
the database into multiple batches. At the same time, it quan-
tifies the data of each batch and updates the parameters. The

calculation expression of the variation of the weight matrix
with step size is shown in equation (7) [16].

1W (t) = β1W (t − 1) − α
∂Loss (t)
∂W (t)

(7)

In equation (7), α represents momentum and β represents
exponential decay rate. The tanh function is used as the
activation function for LSTM gate operations and the Relu
function as the activation function for the state and final out-
put of LSTM units. Due to the fact that the data distribution
of deep learning has the same conditional probability but
no edge probability, Zhejiang has led to excessive changes
in deep unit nodes distribution. Thus, normalization tech-
niques are used in LSTM. The displacement data generated
by vibration in building structures have weak boundary sense
and strong disorder. Therefore, for the processing of input
data, the Z-score normalization method is more suitable.
Considering the variation pattern of building displacement
values caused by vibration and the length of the database
itself, four hidden layers were selected. The output layer is a
linear regression layer, and its number of nodes is determined
by the hidden layer construction of the LSTM depth frame-
work. The output content is the displacement response at the
time. The object of predicting building vibration response
is the displacement of building structures at different times,
which is a nonlinear regression problem based on time series.
When constructing a deep learning framework for it, themean
square error of all data will be used as the objective function.
By combining the over-fitting scheme, equation (8) can be
obtained.

Loss = MSE (yt , yt) =
1
N

∑N

t=1

(
yt −

∼
yt
)

+ α ∥w∥
2
2 (8)

In equation (8), N counts databases. yt ,
∼
yt represent the

displacement calculation and predicted values at each time.
The value of α is 0.04. The smaller the objective function
value, the better the learning and prediction performance of
LSTM prediction on the data. Based on the LSTM based
structural response prediction model proposed above, a 3-
layer Benchmark framework structure is used as an example
model. The damping ratios of the first and second modes are
all 0.05, using Rayleigh damping, with actuators arranged
on all three layers. The system motion equation is shown in
equation (9).

KX (t) +MẌ (t) + CẌ (t) = BsU (t) − mẍg (t) (9)

In equation (9), Bs represents the position matrix. C,K ,M
represent the damping matrix, stiffness, and mass, respec-
tively. The formula for converting space is shown in
equation (10) [17].

Ż (t) = AZ (t) + BU (t) + DẌg (t) (10)

In equation (10), X represents seismic acceleration, U (t)
represents control force vector, and Z (t) represents sys-
tem state vector. Based on the motion equation and spatial
equation of the building structure, a Simulink simulation
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FIGURE 3. Simulink simulation system based on LSTM.

system for the LSTM controller can be established, as shown
in Figure 3.

In Figure 3, the core of the simulation system is a deep
learning framework based on LSTM. Obtained by adjusting
the LSTM structural response prediction model. Embed the
LSTM controller into the intelligent control simulationmodel
of this structure in the form of writing an S function. The
input of this system is seismic acceleration, and the LSTM
controller is used to collect the response feedback of the con-
trol force applied to the building structure. Thus achieving the
goal of real-time reduction of structural response. The Linear
Quadratic Regulator (LQR) algorithm for discrete-time state
feedback has a high requirement for the accuracy of the
structural model, but its structure is simple and easy to imple-
ment. Therefore, the study adopts this algorithm to collect
calculation data. Apply a 30s El-centrowave to the structure
and set the frequency to 0.02 s/time. Normalize and train the
input LSTM control data, with the same objective function as
equation (8).

B. DECENTRALIZED CONTROL MODEL FOR VIBRATION
RESPONSE OF TALL BUILDING STRUCTURES BASED ON
GENETIC ALGORITHM AND CNN-LSTM OPTIMIZATION
ALGORITHM
For highly complex inductive problems, extracting complex
function expressions that describe the laws of the problem
is the key. The currently widely used and effective method
is neural network algorithm, among which the most clas-
sic algorithms include Back Propagation (BP), Radial Basis
Function (RBF), CNN, etc. [18]. CNN can perform good data
feature extraction for one-dimensional, two-dimensional, and
three-dimensional information. As shown in Figure 4, it is a
three-dimensional CNN framework diagram [19].
In Figure 4, the convolutional layer of CNN contains sev-

eral sets of parameters, which are called several convolutional
kernels. Each filter can convolution the raw data to obtain a
feature map, which is called a channel. The elements of the
feature map are shown in equation (11) [20].

ai,j = f

(
D−1∑
d=0

F−1∑
m=0

F−1∑
n=0

ωd,m,nxd,i+m,j+n + ωb

)
(11)

FIGURE 4. 3D-CNN frame.

In equation (11), f (·) represents the activation function,
using the Relu function. D represents the filter depth, and
F represents the convolutional kernel size. represents the
weights of m rows and n columns in the d layer of the
convolutional kernel. ωb is the bias term of the convolutional
kernel, and xd,i+m,j+n is the d-layer m-row n-column graph
element. Assuming the dimension of the input data is n × n,
the step size is set to s, and the number of fills is p. After
convolution calculation, the output data dimension is shown
in equation (12).[

(n+ 2p− F)

s
+ 1

]
×

[
(n+ 2p− F)

s

]
(12)

The feature extraction method of CNN directly affects the
calculation of errors in convolution and pooling layers. There
are no parameters that need to be learned in the downsampling
operation of the pooling layer, therefore, it only plays a role
in error backpropagation during the training process of the
pooling layer, and there is no calculation of weight gradients.
Maximizing pooling will transfer the error term of this layer
unchanged to the neuron where the maximum value of the
corresponding region is located in the previous layer, while
the error values of other neurons are all 0. Similarly, average
pooling distributes the error term of this layer evenly to all
neurons in the corresponding region of the previous layer.
To quantitatively study the working logic of CNN operation,
the DeepDream visual algorithm and AugmentedImageData-
store function were used to extract and analyze local features
of each channel and complete features of each network layer
in the network [21]. The specific expression of the Deep-
Dream visual algorithm is shown in equation (13) [22].

I = DeepDreamImage (net, layer, chamnnels, name, value)

(13)

In equation (13), layer represents the hidden layer for
extracting visual features. net represents the pre trained
network structure. chamnnels represents the vector of the
channel index. value, name represent the parameter values
and names of the input data, respectively. The Augmented-
ImageDatastore function can be used to automatically resize
features, but it must be used in conjunction with the Acti-
vations function to extract the complete features of the
designated network layer. The expression of this function is
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FIGURE 5. Control simulation flow of CNN-LSTM centralized controller.

shown in equation (14)

{
auimds = AugmentedImageDatastore (outputsize, imds)
features = Activations (net, caugimds, layer)

(14)

In equation (14), outputsize represents the output size, and
imds represents the dataset. auimds represents the batch pro-
cessed dataset. Figure 5 shows the control simulation process
using the CNN-LSTM centralized controller.

In Figure 5, the data input to the CNN dimensionality
reduction system is theacceleration response, velocity, dis-
placement, and seismic acceleration of the 20-layer Bench-
mark model under seismic excitation, totaling 61 dimensions.
The first two-thirds data is used as training data, and the
remaining is used as test data. After dimensionality reduc-
tionprocessing on convolutional kernels of different sizes,
they are then fed into the LSTM intelligent control system
to generate actuator control forces. Simultaneously applied
to the Benchmark model to quickly collect, analyze, and
control vibration of data. At present, the most widely used
centralized control strategy has exposed many drawbacks,
and decentralized control strategies based on large system
theory have therefore received widespread attention. How-
ever, this strategy has not yet been widely adopted in the field
of civil engineering. The research focuses on high-rise civil
engineering structures under earthquake action, and improves
the structures of several control systems. Assuming that the
actuators of the controlled K -story high-rise building struc-
ture are fully distributed and dispersed into N subsystems,
and there is no overlap between each subsystem. The i sub-
system contains k floors. Displacement vector Xi and control

force vector Ui are shown in equation (15) [23].{
Xi =

[
xj, . . . , xj+k

]T
k×1

Ui =
[
uj, . . . , uj+k

]T
k×1

(15)

The state space equation is shown in equation (16).

Żi = AiZi + BiUi + Eiẍg +

∑
j̸=i

AijZj +
∑
j̸=i

BijUj (16)

The main computational blocks of the LSTM sub con-
troller include forward core algorithms, error backpropaga-
tion, and optimizing the processor. If it is set as the input at
time t of the substructure LSTM controller, then there exists
equation (17).

Pj,t =
[
Xi,t Ẋi,t Ẍi,t a

]T
(3k+1) (17)

In equation (19), a represents seismic acceleration. Xi,t
represents the output of the j controller at t . By combining
equations (15) and (16), complete dispersion and overlapping
dispersion control equations can be obtained, as shown in
equation (18). {

hj,t = Uj,t
hj,t = Ūj,t

(18)

The LSTM sub controller adopts the Backpropagation
Through Time (BPTT) algorithm for error backpropagation
[24]. Firstly, the input values of the LSTM sub controller are
calculated at each moment, and time and network levelsare
used as the backpropagation directions respectively. Then the
errors of each LSTM unit are calculated using the formula,
and then the weights of each unit in the LSTM hidden layer
are calculated. Finally, the unit weights are updated using the
optimization processor Adam. As shown in Figure 6, it is
the schematic diagram of the LSTM decentralized control
system.
Based on Lyapunov stability theory, LSTM sub-controllers

stability is studied and sufficient conditions to be stable
are derived. Controller output error is set as shown in
equation (19).

E (t) = y (t) − ŷ (t) = 1y (t) (19)

In equation (19), y (t) represents controller’s actual output
value. ŷ (t) is the predicted output value of LSTM. Error
energy function is shown in equation (20).

ζ (t) =
E2 (t)
2

(20)

The neuron activation function is derived at a sufficiently
high sampling frequency, as shown in equation (21).

σ ′ (t) =
1y (t)
1u (t)

|1t→o =
dy (t)
du (t)

(21)

In equation (21), u (t) represents controller input value,
and W represents weight coefficient matrix. The BPTT
algorithm is used for error backpropagation, and the formula
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FIGURE 6. Schematic diagram of LSTM decentralized control system.

for updating the LSTM weight coefficient matrix is shown in
equation (22).

1wji (t) = αE (t) σ ′ (t) hi (t − 1)
∂u (t)

∂netj (t)
(22)

In equation (22), 1wji (t) counts the change from the i to
j. The initial learning rate α also has a significant impact
on LSTM sub-controller stability. In LSTM, α controls the
adjustment speed. When F is too small, the rate of loss
gradient decrease and the convergence time is longer. When
α is too large, the descent process may cross the optimal
value and obtain a suboptimal value. Therefore, it is necessary
to optimize α. Genetic algorithms can establish an initial
population set of parameters to be optimized and eliminate
inferior individuals based on fitness functions. Screen out the
best offspring and continuously update the population set to
obtain the optimal solution [25]. A new parameter optimiza-
tion method was proposed by combining genetic algorithm,
as shown in Figure 7.

In Figure 7, for the initial learning rate optimization prob-
lem of GA-LSTM sub controller, the fitness function adopts
the loss function of the LSTM deep learning framework.
The construction of the GA-LSTM deep learning prediction
framework uses El-centro waves with wider motion fre-
quency bands. The adoption period is set to 0.02 seconds and
the time positioning is calculated for 30 seconds. The training
data is the first 1000 sets of data calculated by the LQR
control algorithm, and the data is normalized before training.
The control forces of each layer at the previous moment are
used as the output of the prediction framework. After building
the framework, it is compiled into Simulink to complete the
design of the GA-LSTM intelligent decentralized controller.
After inputting unknown structural responses and seismic
acceleration data into the controller, suitable real-time control
forces can be predicted. The network structure for centralized
control is 61 × 300 × 20, including condition 1, 2, 3, and 4.
The schematic diagram of each working condition is shown
in Figure 8.

FIGURE 7. GA-LSTM hyperparameter optimization flow chart.

In Figure 8, ni represents the numbering of each subsystem.
Condition 1 and Condition 2 are used to investigate the influ-
ence of the number of subsystems on control effectiveness.
Overlapping decentralized in a chain topology - 5 subsystems
(Condition 3) are compared with Conditions 1 and 2 to study
the effect of controller overlap. Overlapping decentralized in
a chain topology - 6 subsystems (Condition 4) are compared
with Conditions 2 and 3 to study the influence of the number
of overlapping controllers. A comparison is made with LQR
centralized control (Condition 5). The number of LSTM layer
units is determined by a combination of experience and trial
calculations, aiming to minimize the loss function of the
prediction framework and optimize the output effectiveness
of the controller’s control force. It is assumed that the control
force applied to the overlapping region is opposite to the
direction of structural vibration, and the control force output
for adjacent subsystems with overlapping actuators is defined
as shown in equation (23).

uk =


−∇

(
uj,k , uj−1,k ′

)
·
1
2

(∣∣uj,k ∣∣+ ∣∣uj−1,k ′

∣∣) ,(
uj,k · uj−1,k ′ ≥ 0

)
−sgn

(
uj,k · xj

)
· max

(∣∣uj,k ∣∣ , ∣∣uj−1,k ′

∣∣) ,(
uj,k · uj−1,k ′ < 0

) (23)

In equation (23), sgn (·) represents the symbolic function.
uj,k is actuatorcontrol forcewith subsystem j number k . The
calculation expression of ∇ (·) is shown in equation (24).

∇ (·) =

{
sgn

(
uj−1,k ′

)
,
(∣∣uj,k ∣∣ ≥

∣∣uj−1,k ′

∣∣)
sgn

(
uj−1,k ′

)
,
(∣∣uj,k ∣∣ <

∣∣uj−1,k ′

∣∣) (24)

IV. EXPERIMENTAL RESULTS ANALYSIS OF THE
EFFECTIVENESS OF INTELLIGENT VIBRATION CONTROL
MODEL FOR HIGH-RISE BUILDINGS
In the finite element software Abaqus 6.13, a steel can-
tilever beam model was established using beam elements.
The structural dimensions were 2.5 × 0.3 × 0.2 m, with
a density mainly of 7800 kg/m3. The elastic modulus was
taken as 2.06 × 105 MPa, and the Poisson’s ratio was set to
0.3. A concentrated vertical downward stress of 1 kN was
applied at the cantilever end. The fixed end was restrained,
with a mass of 9.36 × 104 kN applied, and seismic wave
excitation was applied in the long side direction of the fixed
end of the cantilever beam. Three different seismic waves
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FIGURE 8. Schematic diagram of each working condition.

with distinct data characteristics were selected as input exci-
tation: E1-centro wave, Ninghe Tianjin wave, and artificially
synthesized wave. Displacement values were chosen as the
predicted quantities, and the displacement values at the break-
point of the beam cantilever were calculated, serving as three
displacement databases, as shown in Table 1.

In Table 1, displacement value data from Library A
were selected for framework construction, and the network
architecture was trained with 1-800 sets of data. A library
801-1500 sets of data, B and C libraries were used to test the
network architecture constructed. The 20-layer Benchmark
model designed by ASCE was selected as the simulation
example. Assuming that the horizontal stiffness of the floor
is infinite, the static condensation method is used to reduce
the order of the original finite element model, only 20 trans-
lational degrees of freedom are retained, and each layer of
the actuator is fully distributed. The structure parameters of
Benchmark after condensation are shown in Table 2 [26].

The LSTM deep learning framework used an Adam opti-
mizer with four gate operations, and the output activation
function used tanh and relu functions to set the initial learning
rate to 0.008. As shown in Figure 9, it shows the variation of
MSE with parameters.

In Figures 9 (a) and (b), when the dimension of the input
matrix is 5, the number of hidden layer units is 40 and
80, respectively, and the dropout action intensity coefficient
is 0.2. When the maximum iteration was 300, LSTM deep
learning framework had high prediction accuracy. When the
dimension was too large, training involved a lot of repetitive
work and can also reduce learning efficiency.When the inten-
sity of over-fittingwas too high, it can cause strong sparsity
in the hidden layer, which greatly reduced the generalization
ability of the LSTM deep learning framework. In Figure 9
(c), when the number of units in the first layer was set to 40,
the training time took 47 seconds, and when the number was
set to 200, the MSE showed multiple orders of magnitude

TABLE 1. Three different data characteristics of seismic wave
displacement database.

growth, with a training time of up to 276 seconds. Com-
pared to increasing or decreasing hidden layers, adjusting the
number of nodes in the hidden layer was simpler and had
higher accuracy. However, having toomany nodes in the same
layer can cause non convergence and local minimization of
the network. If there was too little, it resulted in insufficient
weight combination. From Figure 9 (d), it can be seen that
when using the A-library to build a network framework for
1000 iterations, the MSE increased by 59.3% compared to
the optimal value of 300 iterations, and the training time
was 183 seconds, an increase of 3.9 times. This indicated
that the maximum number of iterations had a significant
impact on MSE and runtime, with poor regularity, and not
necessarily the more iterations the better. Using the LSTM
structural response prediction model, the data from libraries
A, B, and C were learnt and predicted, as shown in Figure 10,
for comparison of response prediction results.

From Figure 10, it can be seen that the predicted relative
difference for the C database data was the smallest, with an
interval of [−0.034, 0.028] cm and a mean of −0.0053cm.
The prediction error for database B data was the largest, with
an interval of [−0.122, 0.160] cm and a mean of 0.015cm.
Finally, the MSE of the LSTM prediction framework for E1-
centro wave, Tianjin wave, and artificial wave at a total of
1500 data points in 30 seconds was 0.00182, 0.00472, and
0.00223, respectively. The LSTM prediction model had good
stability, and the error distribution in earthquake response
prediction was relatively concentrated, with good prediction
results. Themost widely used shallow learning BP neural net-
work and RBF neural network were selected for performance
comparison. As shown in Figure 11, the comparison results
of the top-level control force time histories of three neural
networks are presented.

In Figures 11 (a), (b), and (c), under the same iteration
number, the LSTM neural network had the best predictive
performance, with the highest degree of overlap with the orig-
inal data at the extreme. Both RBF and BP neural networks
exhibited local optima and over-fitting in their predictions,
with BP having the worst performance. The maximum pre-
diction difference among larger extreme points was 23.27%,
which occured at 14.33 seconds. As shown in Figure 12
(d), the MSE of LSTM network, RBF network, and BP
neural network were 3.30 × 10.4, 2.19 × 10.3, 5.53 × 10.3,
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TABLE 2. Benchmark model parameter.

FIGURE 9. Changes of MSE with parameters.

FIGURE 10. Comparison of response prediction results.

respectively. This indicated that the LSTM network had the
smallest prediction error value and the best learning and
prediction performance. Figure 12 shows the peak response
of each floor L in both uncontrolled and controlled states
when El-centro waves acted on the Benchmark model.

According to Figure 12, the control effectiveness of the
three controllers (LSTM, RBF, BP) on the top displacement
decreased from 38.6 mm (no control) to 18.4 mm, 20.7 mm,
and 21.6 mm, respectively. The control rates were 52.1%,
46.2%, and 43.8%. The control effectiveness on velocity

FIGURE 11. Top-level control time history comparison.

decreased from 0.36 m/s (no control) to 0.17 m/s, 0.20 m/s,
and 0.21 m/s, respectively, with control rates of 51.3%,
43.1%, and 40.4%. The control effectiveness on accelera-
tion decreased from 4.72 m/s2 (no control) to 2.46 m/s2,
3.11 m/s2, and 3.03 m/s2, respectively, with control rates of
47.7%, 33.9%, and 35.6%. The LSTM controller achieved
a maximum damping ratio of 65.0% for the acceleration
of the top floor, indicating its superior control effectiveness
on the Benchmark model’s acceleration. The robustness of
the LSTM intelligent controller was studied by simulating
stiffness degradation phenomena caused by seismic actions
through reducing the stiffness matrix values of the Bench-
mark model. Table 3 shows the control effectiveness on the
top displacement amax under various stiffness degradation
conditions.

From Table 3, it can be seen that when the degradation
degree of stiffness in each layer of the Benchmark model was
in the range of 10.2% −20.5%, the LSTM control effect was
the best, and it remained above 39.8%. The shock-absorbing
rate of the shallow learning controller for the top level accel-
eration was reduced to 29.56%, and there was a significant
difference in shock-absorbing rate. This indicated that the
LSTM robust performancewas superior. The 20-layer Bench-
mark model proposed by ASCE was selected as a simulation
example, with relevant structural parameters [27]. By using
different partitioning methods, the LSTM intelligent con-
trollers applied to the Benchmark model were designed into
various decentralized control forms, as shown in Table 4.

Based on the GA-LSTM hyperparameter optimization
method, a GA algorithm program in Matlab was written
to optimizeLSTM sub controller’s initial learning rate. The
evolutionary algebra was set to 80 times, the crossover proba-
bility was set to 0.1, the population size to 8, and the mutation
probability to 0.01. Figure 13 shows the population evolu-
tion curves of LSTM sub controllers under four operating
conditions.

According to Figure 13, after optimization with the GA
algorithm, the optimal initial learning rates for four scenarios
were 0.006, 0.01, 0.006, and 0.04, respectively. The opti-
mal fitness after 80 iterations corresponded to the LSTM
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FIGURE 12. Peak response of each layer under E1-centro.

TABLE 3. Control effect of top layer amax under various stiffness
degradation conditions.

TABLE 4. Distribution of subsystems in each disperse operating
condition.

controller’s loss function values, which were 8.3×10.5, 2.3×

10.4, 2.2×10.4, and 3.0×10.4, respectively, achieving good
prediction results. Compared to the commonly used trial-and-
error method, this algorithm exhibited higher computational
efficiency and accuracy. To further investigate the algorithm’s
impact on the structural response of the building, the ref-
erence paper provided evaluation indicators EV xy

max for the
Benchmark model’s time history. EV xy

max superscripts indicate
displacement and acceleration, respectively, while El-centro
wave andWenchuan wave are represented by subscripts [28].
Smaller indicator values indicate better process control effec-
tiveness. For the El-centro wave, the LQR centralized control
had EV 11

max,EV
21
max values of 0.5003 and 0.5934, while for the

Wenchuan wave, it had EV 12
max,EV

22
max values of 0.4413 and

FIGURE 13. Population evolution curves of LSTM sub-controllers under
four working conditions.

FIGURE 14. Time history evaluation indexes under different seismic
excitation.

0.6209, and EV 12
max,EV

22
max value of 2.1559. Figure 14 illus-

trates the time history evaluation indicators under different
seismic excitations.

In Figure 14, GA-LSTM decentralized control with differ-
ent structural forms had a good seismic reduction effect on
the time-history response. GA-LSTM decentralized control
had good generalization and self-learning capabilities. The
evaluation indicators of condition 1-4 were reduced by 8.6%,
9.0%, 7.3%, and 6.6% compared to LQR centralized control,
respectively, indicating that the time history control effect of
condition 4 was closer to LQR centralized control. The time
history evaluation index EV 21

20 value of LQR algorithm under
non-interference working conditions was 0.5119. Figure 15
shows the acceleration time history evaluation index of the
20th layer for GA-LSTMdiscrete control system under Gaus-
sian white noise disturbance.

From Figure 15, it can be seen that the GA-LSTM decen-
tralized controller designed by the research institute had good
fault-tolerant performance when each sensor was subjected
to different amplitude noise interference. Under the action of
10% amplitude noise, the acceleration peak of the 20th layer
under four working conditions increased by 11.6%, 8.8%,
0.49%, and 1.7% compared to the original acceleration peak.
As the amplitude of noise increased, the peak acceleration
remained almost unchanged. Like 40% amplitude Gaussian
white noise, the time history evaluation indicators EV 21

20 for
conditions 1-2 to 4-2 increased by 16.8%, 15.7%, 11.4%, and
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FIGURE 15. Time history evaluation indexes of Layer 20 of Benchmark
model under different noise effects.

9.3%, respectively. Among them, the time history response
changed the most during the 20-30s period.

V. CONCLUSION
Earthquakes have a serious impact on the normal use of
buildings during their service life. In order to improve the
vibration control of building structures, a high-rise build-
ing vibration intelligent control method combining genetic
algorithm and LSTM has been proposed. For the 20 layer
Benchmark model, LSTM centralized controllers fused with
CNN hierarchical feature learning and GA-LSTM decentral-
ized controllers with various structural forms are designed.
Results showed that when the dimension of the input matrix
was 5, the number of hidden layer units was 40 and 80, respec-
tively, and the dropout action intensity coefficient was 0.2.
When iteration was 300, the LSTM deep learning framework
had high prediction accuracy. The relative difference in pre-
diction for C database data was the smallest, with an interval
of [−0.034, 0.028] cm and amean of−0.0053cm. The predic-
tion error for database B data was the largest, with an interval
of [−0.122, 0.160] cm and a mean of 0.015cm. Finally, the
MSE of the LSTM prediction framework for E1-centro wave,
Tianjin wave, and artificial wave at a total of 1500 data points
in 30 seconds was calculated to be 0.00182, 0.00472, and
0.00223, respectively. This indicated that the LSTM predic-
tion model had good stability, and the error distribution in
earthquake response prediction was relatively concentrated,
with good prediction results. The MSE of LSTM network,
RBF network, and BP neural network was 3.30 × 10.4,
2.19 × 10.3, 5.53 × 10.3, respectively. LSTM network had
the smallest prediction error value and the best learning and
prediction performance. The maximum damping rate of the
LSTM controller was 65.0% of the first layer acceleration,
indicating that the controller had the best control effect on the
acceleration of the Benchmark model. When the degradation
degree of stiffness in each layer of the Benchmark model was
in the range of 10.2% -20.5%, the control effect of LSTM
was the best, and it remained above 39.8%.After optimization
by GA algorithm, the optimal fitness of 80 iterations was the
LSTM controller loss function value, which was 8.3 × 10.5,
2.3 × 10.4, 2.2 × 10.4, 3.0 × 10.4, respectively, achieving
good prediction results. Compared with the commonly used
trial and error method, this algorithm had higher compu-
tational efficiency and accuracy. GA-LSTM decentralized

control with different structural forms had a good seis-
mic reduction effect on Benchmark model’s time-history
response. Although research has achieved good results, many
hyperparameter optimization problems for LSTM intelligent
controllers still need further improvement. In the future,
we will also attempt to combine LSTMwith other algorithms
to improve the optimization effect of its hyperparameters.
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