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ABSTRACT This paper proposes a reliable data dissemination framework for edge networks, leveraging
network coding combined with low-rank approximation. We consider an edge network that consists of a
server and power-limited mobile devices, where the data is broadcasted by the server. In such networks,
broadcasted data may be lost due to poor channel conditions or the interference caused by the mobility of
edge mobile devices, particularly without a retransmission mechanism. This can cause application errors in
edge devices, lower the Quality of Service (QoS), and compromise network stability. To overcome these
challenges, we propose a framework for reliable edge networks in broadcasting without retransmissions.
The edge network reliability can be achieved by the approximate decoding of broadcasted data. In the
proposed framework, the edge server employsmatrix factorization to encode data with principal components,
ensuring a lower decoding error rate even with potential packet losses. Furthermore, the proposed framework
can shift the computational complexity from mobile edge devices to the edge server using the low-rank
approximation at the decoding stage, effectively mitigating power limitations on mobile devices. Through
theoretical analysis, we demonstrate that the proposed algorithm outperforms typical broadcasting in terms of
decoding accuracy, and present an upper bound error rate for the proposed algorithm. The simulation results
confirm that the proposed algorithm outperforms other state-of-the-art algorithms in terms of decoding
accuracy, time delay, and complexity.

INDEX TERMS Data dissemination, edge computing, edge network, network coding, low-rank
approximation, decoding accuracy, low computational complexity, complexity shift.

I. INTRODUCTION
The significant amount of data and variety of services has
led to an increased demand for innovative sixth-generation
wireless technology (6G) networks. To ensure reliability
while effectively managing the heterogeneous and large
volumes of data, storing and processing data at the edge of
the network has emerged as an attractive solution [1], [2].
Especially, edge computing is gaining prominence in 6G as
it may include artificial intelligence (AI) native architectures
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by effectively integrating and utilizing AI models and
data [3], [4], [5]. In such edge networks, reliable data
dissemination is a fundamental requirement for transmitting
large volumes of data to edge devices. A variety of services,
including vehicular communications, extended reality (XR),
and mobile video streaming, are expected to benefit from
reliable data dissemination. This approach can be supported
by a centralized infrastructure, where a central server
establishes broadcasting connections with optimal control
to achieve low latency and high efficiency [6]. However,
the data dissemination system in an edge network can be
highly susceptible to the network dynamics incurred by user
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activities and the unexpected channel conditions, which can
compromise the reliability of data transmission [7], [8], [9].
This becomes an even more critical issue for broadcasting,
in particular, without a retransmission mechanism. Packet
loss can incur data errors or data loss in edge devices,
triggering the straggling effect. This effect arises when a
single missing data induces significant delays in the overall
process. Therefore, it is crucial to implement reliable data
dissemination to prevent data loss or errors at edge devices
in broadcasting protocols.

Several reliability assurance solutions for data dissemina-
tion in edge networks have been developed. In [10], [11], [12],
and [13], the probabilistic retransmission approach is con-
sidered by retransmitting each data with a given probability.
In [14], packet-by-packet parallel processing is proposed by
utilizing repeated transmission for low latency and reliable
services. In [15], a compressed broadcasting approach with
retransmission is proposed for federate learning, where it
controls the number of packets to transmit in an error-prone
wireless network. In [16], a data-importance aware retrans-
mission protocol is proposed which adapts retransmission
decisions on both data importance and reliability. The main
idea of these studies is utilizing adaptive additional trans-
missions. However, many dissemination strategies present a
common design pattern, mainly characterized by a retrans-
mission policy, which is not applicable in broadcasting.
Specifically, in broadcasting, employing retransmission can
lead to excessive packet duplication, packet collisions, and
network contention, ultimately resulting in the broadcast
storm problem.

Unlike the retransmission-based data reliable dissemina-
tion approaches, network coding (NC) with broadcasting can
be a solution to reliable and efficient data transmission [17],
[18], [19]. NC technique can dramatically simplify the
individual retransmission process into the broadcasting of
equal data dissemination as NC can make packets anony-
mous [20]. The systematic network coding (SNC) [17] is
proposed in a one-hop broadcasting network, which simply
transmits additional packets encoded by the random linear
network coding (RLNC) and enables each receiver node to
recover the missing original packets. An SNC-based real-
timemultimedia streaming system is proposed in [21] to cope
with dynamic channel conditions by adaptively determining
the code rate based on the packet loss rate. In this way,
the reliability of data dissemination in broadcasting can be
provided in the application layer by accurately decoding
multiple NC data.

Unfortunately, in practice, implementing NC in edge
networks is a non-trivial task because of two critical
drawbacks: high computational complexity and an ‘all-or-
nothing’ problem.1 The computational complexity becomes
a critical issue for resource-limited edge devices, as NC often

1A receiver cannot recover any information from received data, unless
it receives at least the same number of innovative packets as are originally
combined together [22].

resorts to a significantly large amount of computation to the
devices in mobile wireless networks (e.g., battery-powered
devices). This is because mobile devices may suffer from
significant computational complexity during the decoding
process, even with only a few coded packets [23]. Further-
more, the computational complexity of NC in the decoding
process can cause a throughput bottleneck in comparison
to the achievable speed of a wireless local area network
interface [24]. The computational complexity associated with
NC data is determined by how the data are combined at
the encoder. For example, random matrix multiplication is
required for RLNC in the encoding process, and the decoding
process at the receiver needs matrix inversion to recover
the original packets. Gaussian elimination is one of the
well-known approaches for matrix inversion in the RLNC
decoding process. However, Gaussian elimination in NC
generally requires high computational complexity and even
causes decoding failure because of the matrix singularity.
This issue also ties in with the second challenge of NC which
is an all-or-nothing problem. The burst of packet loss can
cause an all-or-nothing problem in NC. This is because the
received NC data cannot guarantee the matrix inversion due
to matrix singularity during the decoding process.

To overcome these NC drawbacks, special constructions
of a coding matrix in the encoding process have been
proposed. Table 1 presents the comparison of the algorithms
and key findings of these studies. In [25], a weighted
Vandermonde echelon fast coding scheme is proposed to
reduce the dependence problem of the NC matrix with less
computational overhead. Similarly, the sliding NC streaming
code for ultra-reliable low-latency communication (URLLC)
using RLNC is proposed in [26]. The authors reduced
the decoding complexity compared to typical RLNC by
skipping either the forward elimination or back substitution
of Gaussian elimination. A low-complexity coding scheme
is proposed in [27], where packets are encoded by random
subsets sequentially formed from source packets. In this
algorithm, sparse coding is used to achieve high encoding
and decoding efficiency while they allow controlling the
complexity. In [28], the Fulcrum sliding window coding is
proposed with low computational complexity in the binary
field to avoid in-order packet delay. As these approaches
include RLNC operation, however, the decoding process
still requires computationally inefficient matrix inversion
approaches. Therefore, to expedite the realization of a reliable
yet robust NC in edge networks, it is essential to develop new
coding processes that embed simple and reliable decoding
processes.

Our goal is to improve the reliability of data dissemi-
nation with low complexity, even when retransmissions are
avoided in broadcasting. Therefore, we focus on achieving
better Quality of Service (QoS) in data dissemination by
enhancing decoding accuracy without retransmissions. For
this, we propose a reliable data dissemination framework
based on the low-rank approximation in edge networks.
The proposed framework involves splitting the data at the
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TABLE 1. A comparison of the NC algorithms.

edge server via matrix decomposition and merging them
at the edge devices using low-rank approximation. The
matrix decomposition includes singular value decomposition
(SVD) to factorize the data into singular values and unitary
matrices. This can improve the reliability of dissemination
by differentiating the priority of data and facilitate real-time
data decoding by ensuring the early recovery of crucial
data. Hence, the proposed algorithm makes the best effort
to receive packets containing significant information first.
Moreover, the proposed framework can shift the complexity
burden from mobile devices to edge servers, relieving the
power constraints of the mobile devices. This is because
the low-rank approximation of the proposed approach can
simplify the decoding process, significantly reducing the
decoding complexity than existing NC decoding algorithms.

We analytically prove that the proposed algorithm outper-
forms typical broadcasting, even in the worst-case scenario
where the collected data are independent and identically
distributed. In addition, we study the bound of decoding
accuracy with the reception of the decodable packets over
time. An extensive set of experiments confirms that the
reliability of the proposed algorithm performs better than
other algorithms in both synthetic data and real-world data.
Furthermore, we confirm that the proposed algorithm reduces
the decoding computational complexity compared to other
state-of-the-art NC algorithms.

The main contributions of this paper are summarized as
follows:

• We address the challenges in data dissemination of edge
networks where packet loss is prevalent but retransmis-
sion is not allowed. We propose a data dissemination
framework to support reliability by reducing decoding
error rates, time delay, and computational complexity for
mobile edge devices.

• We leverage network coding in conjunction with
low-rank approximation to approximately decode lost
packets, which improves decoding accuracy and facil-
itates real-time data decoding on mobile edge devices,
ensuring the prompt recovery of crucial data.

• We theoretically show that the proposed algorithm
outperforms typical broadcasting algorithms in terms of
decoding accuracy and find the analytical upper bound
of decoding error rate as a function of the number of
decoded packets over time.

FIGURE 1. Illustrative examples of the edge network consisting of an
edge server and multiple mobile edge devices.

• We assess the performance of the proposed algorithm
in terms of decoding error rate, time delay, and
computational complexity via a comprehensive set of
simulations. Results show that the proposed algorithm
not only reduces decoding errors but also offloads
computational complexity from edge devices to servers
and facilitates real-time data dissemination.

The rest of our paper is organized as follows. A system
setup and problem formulation in the edge network are
described in Section II. Section III provides the proposed
data dissemination framework and corresponding procedures
for the broadcasting protocol. Section IV demonstrates that
the proposed algorithm outperforms the typical broadcasting
approach in terms of decoding accuracy. An extensive set of
simulation results is provided in Section V. Finally, we draw
conclusions in Section VI.

II. SYSTEM SETUP AND PROBLEM FORMULATION
We consider a mobile network consisting of edge servers and
massive mobile edge devices. In this network, a set of mobile
edge devices are connected directly to the nearest edge server
via wireless links and receive data packets. An illustrative
example of the considered network is shown in Fig. 1.

An edge server is denoted by gh(h ∈ H) and a mobile
edge device associated with the edge server gh is denoted by
dh(m) (m ∈ M), where H and M correspond to the index
sets of edge servers and the associated mobile edge devices,
respectively. The edge servers aim to efficiently disseminate
the data to the associated mobile edge devices with equal
opportunities. We assume that an edge server disseminates
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data in one transmission at a single time step. The features
of the edge servers and the mobile edge devices are briefly
summarized below.

• Edge servers: The edge servers employ an NC-based
data encoding algorithm that utilizes matrix decompo-
sition, and disseminates the encoded data.

• Mobile edge devices: Mobile edge devices receive the
data that is encoded by the associated edge server. The
mobile edge devices proceed with the decoding process
of NC-encoded data and recover the original data using
low-rank approximation. Themobile edge device cannot
request packet retransmission because we consider the
data broadcasting without acknowledgment.

Let Xh(∈ RN×L) = [xTh,1, · · · , xTh,N ]
T be a source dataset

that is encoded together and disseminated to all the associated
mobile edge devices, where xh,j = [xh,j(1), · · · , xh,j(L)] be
the data with length L. The number of source data elements
N that are combined by NC in each transmission is referred to
as the encoding number [29]. LetYn,k

m (∈ Rn×L) =
⋃

j∈Jm y
T
h,j

be a set of encoded data packets received at dh(m) by time k ,
where yTh,j is a packet of encoded data, and Jm correspond to
the index set of received data packets at dh(m). We denote
the number of elements of Jm as |Jm|. Then, the number
of elements Yn,k

m are n (i.e., |Jm| = n), and this implies
that if n < k , (k − n) packets have been lost. We assume
that the packets are adequately protected against interference
from other servers using several interference management
approaches [30], [31], [32]. Therefore, packet loss is mainly
attributed to device mobility or inter-symbol interference in
this paper. We set a decoding function at the edge device as
D(·) that partially decodes data from received packets and the
decoded data as D(Yn,k

m ).
As an evaluation of the decoding accuracy in the proposed

data dissemination frameworks, we use the Normalized
Root Mean Square Error (NRMSE). This facilitates the
comparison between the datasets with different scales. Since
we disseminate the source dataset through encoded data
packets yTh,j, we calculate the NRMSE of the cumulative
decoded data observed over time. Therefore, we define the
NRMSE estimator at time k for the dataset as

L(D(Yn,k
m )) =

1
∥Xh∥F

∥Xh − D(Yn,k
m )∥F , (1)

where ∥·∥F denotes the Frobenius norm, which is the
Euclidean norm of the matrix. Here, the estimator can
measure the error between recovered data and source dataset
from the received packets at time k , even when all packets
are not perfectly received due to packet loss. Our goal is to
minimize the L(D(Yn,k

m )) at mobile edge devices for all time
steps.

III. DATA DISSEMINATION FRAMEWORK
A. ENCODING WITH MATRIX DECOMPOSITION
In the proposed system, the data Xh is encoded based on
the NC performed in the field of real numbers (R). The
encoding algorithm is based on a matrix decomposition for

data splitting, which generates unitary matrices. A set of data
Xh at an edge server gh can be decomposed by SVD into

Xh = U3VT
=

N∑
j=1

λjujvTj , (2)

where U(∈ RN×N ) = [u1, · · · ,uN ] and V(∈ RL×N ) =

[v1, · · · , vN ] are both unitary matrices, and 3(∈ RN×N )
is a diagonal matrix with singular values. Here, the unitary
matrices satisfy UTU = VTV = I with identity matrix I, and
singular values satisfy λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0.

Given U, 3, and VT , the proposed encoding algorithm
generates the coding coefficient matrix Ch(∈ RN×N ) =

[cTh,1, · · · , cTh,N ]
T and the corresponding encoded data Yh(∈

RN×L) = [yTh,1, · · · , yTh,N ] as Ch = UT and Yh = 3 ×

VT . The encoded data Yh is then encapsulated as a packet
Zh with coding coefficient matrix Ch by appending each
row, i.e., Zh =

[
Ch Yh

]
, where Zh(∈ RN×(N+L)) =

[zTh,1, · · · , zTh,N ]
T . For simplicity, we assume that the link

capacity is a single packet size such that a server transmits
a single packet per unit of time [33].

In the design of packets, we can arrange the packet
Zh = [zTh,1, · · · , zTh,N ]

T in the order of priority because
singular values determined by SVD are in descending order.
Specifically, zh,1 is the most informative, i.e., it contains
most of the information of encoded data compared to zh,j
(j > 1). Therefore, the proposed algorithm can maximize the
decoding accuracy by simply receiving data packets from zh,1
to zh,N .

B. DECODING WITH LOW-RANK APPROXIMATION
For the broadcasted data packet zh,j that each mobile edge
device receives, an edge device decapsulates zh,j into ch,j
and yh,j. Let Cn,k

m =
⋃

j∈Jm c
T
h,j be the received set of

coefficient matrix elements. The decoded data D(Yn,k
m ) can

be recovered by low-rank approximation as D(Yn,k
m ) =

(Cn,k
m )−1

× Yn,k
m . Since the coding coefficient matrix is the

transpose of a unitary matrix, the inverse of Cn,k
m can be

simply obtained by its conjugate transpose, i.e., (Cn,k
m )−1

=

(Cn,k
m )T . This means that the data recovery does not require

computing the inverse of the matrix. Rather, the decoding
process can be significantly simplified as the transpose of the
matrix can be directly used for the matrix inverse. Finally,
the approximately decoded source dataset D(Yn,k

m ) can be
determined as

D(Yn,k
m ) =

∑
j∈Jm

ch,jyh,j =

∑
j∈Jm

λjujvTj . (3)

C. COMPLEXITY ANALYSIS
For the complexity analysis of the proposed algorithm,
we denote 1∗

en and 1∗

de as the computational complexity
associated with the encoding and decoding processes, respec-
tively. Since matrix decomposition is the main operation of
the proposed algorithm in the encoding process, the dominant
time complexity is incurred by the operations for SVD, which

VOLUME 12, 2024 1269



J. Kwon, H. Park: Data Dissemination Framework Using Low-Rank Approximation in Edge Networks

is given as 1∗
en = O(2N 2L + N 3

+ N + NL) under
the assumption of N ≪ L [34]. In the decoding process,
the proposed algorithm can decode the received data using
low-rank approximation with simple matrix multiplications.
Hence, the time complexity associated with the decoding
process is given by 1∗

de = O(N 2L). Then, the overall time
complexity associated with encoding and decoding processes
can be approximately expressed as

1∗
en + 1∗

de ≈ O(2N 2L + N 3
+ N + NL) + O(N 2L)

≈ O(3N 2L + N 3
+ N + NL).

For comparison, we consider the computational complex-
ity of RLNC, which is a type of NC commonly used in
practice. The complexity of the encoding process in RLNC
is determined by matrix multiplication and expressed as
1en = O(N 2L). Since the decoding process is based on
the matrix inversion, which can be implemented by Gaussian
elimination, the corresponding complexity for the decoding
process is given by 1en = O(N 3L). Therefore, the overall
complexity of the RLNC can be approximately estimated by

1en + 1de ≈ O(N 2L) + O(N 3L) ≈ O(N 3L).

In summary, the proposed algorithm can reduce the compu-
tational complexity of not only the decoding process but also
the overall process, approximately from O(N 3L) to O(N 2L).

D. PROCEDURES OF PROPOSED EQUAL DATA
DISSEMINATION
The proposed data dissemination algorithm can be imple-
mented by the two procedures of network registration and
data dissemination.

1) NETWORK REGISTRATION
The network registration phase includes configuring groups
for data dissemination, where a group consists of one edge
server and several mobile edge devices. In this phase, the
edge server forms groups of mobile edge devices that are
within the transmission range. Hence, once the list of mobile
edge devices is set, the edge server does not change the list
of associated devices until the next network registration. The
edge device that completes the network registration is able to
receive the first packet without fail.

2) DATA DISSEMINATION
In the data dissemination process, the edge server dissemi-
nates the data to the edge devices. Each mobile edge device
then attempts to decode the data.

IV. ANALYSIS OF DECODING ACCURACY
In this section, we analytically study the decoding accuracy
by deploying the proposed system.

A. COMPARISON OF DECODING ACCURACY
We perform a comparison of decoding accuracy between the
proposed dissemination algorithm and typical broadcasting,

where k data are sequentially received at mobile edge devices.
In typical broadcasting, the mobile edge devices receive the
partial data of Xh as the edge server disseminates the data
unencoded. Let Ik be a diagonal matrix in which the diagonal
elements are equal to one at the indices corresponding to Jm,
while the rest of the elements are zero. We define the decoded
data packets with typical broadcasting at edge device dh(m)
by time k as Xk,k

m (∈ RN×L) = IkXh, where |Jm| = k .
Then, we denote the received data packets in the proposed
broadcasting and typical broadcasting at time k without any
packet loss as Yk,k

m and Xk,k
m , respectively. The singular value

of Xh is denoted as 3 = [λ1, · · · , λN ] and the singular value
of Xk,k

m is denoted as 3′
= [λ′

1, · · · , λ′
k ].

In order to demonstrate the superior decoding accuracy
of the proposed algorithm, we first present the error
performance in Lemma 1. Then, we verify that our algorithm
consistently outperforms the typical broadcasting at every
time step in Theorem 2.
Lemma 1: Given the packetsYk,k

m sequentially received by
time k, L

(
D(Yk,k

m )
)
in the proposed algorithm is the sum of

the singular values ofXh, excluding the first k largest values.
Proof: The partially decoded data D(Yk,k

m ) can be
expressed as D(Yk,k

m ) =
∑k

j=1 λjujvTj from (3). Then,
L
(
D(Yk,k

m )
)
is expressed as

L
(
D(Yk,k

m )
)

=
1

∥Xh∥F
∥Xh − D(Yk,k

m )∥F

=
1

∥Xh∥F

√
tr

((
Xh − D(Yk,k

m )
)(
Xh − D(Yk,k

m )
)T)

=
1√

tr(33T )

√√√√√tr
(( N∑

j=k+1

λjujvTj
)( N∑

j=k+1

λjujvTj
)T)

=

√∑N
j=k+1 λ2

j√∑N
j=1 λ2

j

=

√∑N
j=1 λ2

j −
∑k

j=1 λ2
j√∑N

j=1 λ2
j

.

□
Theorem 2: Given the packets Xk,k

m sequentially received
by time k in typical broadcasting, the proposed algorithm
consistently shows better decoding accuracy across all time
steps compared to typical broadcasting.
Proof: In typical broadcasting, the received subset data of

Xh is denoted asXk,k
m . Accordingly, the decoding accuracy of

the received data in typical broadcasting is given by

L
(
Xk,k
m

)
=

1
∥Xh∥F

∥Xh − Xk,k
m ∥F

=
1

∥Xh∥F

√
tr

(
(Xh − Xk,k

m )(Xh − Xk,k
m )T

)
(a)
=

1
∥Xh∥F

√
tr

(
XhXT

h + Xk,k
m (Xk,k

m )T − 2⟨Xh,X
k,k
m ⟩F

)
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(b)
=

1
∥Xh∥F

√
tr

(
XhXT

h + Xk,k
m (Xk,k

m )T − 2(Xk,k
m )(Xk,k

m )T
)

=
1

∥Xh∥F

√
tr

(
XhXT

h − Xk,k
m (Xk,k

m )T
)

=
1√

tr
(
33T )

√
tr

(
33T − 3′(3′)T

)

=

√∑N
j=1 λ2

j −
∑k

j=1 λ
′2
j√∑N

j=1 λ2
j

,

where ⟨·⟩F denotes the Frobenius inner product. In the
above steps, for (a), we used the fact that tr(Xh,Xk,k

m ) =

tr(Xk,k
m ,Xh) = ⟨Xh,Xk,k

m ⟩F , and for (b), we used
⟨Xh,Xk,k

m ⟩F = Xk,k
m (Xk,k

m )T .
Since 3 are the singular values of Xh and 3′ are the

singular values of theXk,k
m fromwhich rows ofXh are deleted,

it is obvious that λj ≥ λ′
j ≥ λj+1, (∀j), leading to

∑k
j=1 λ2

j ≥∑k
j=1 λ

′2
j [35]. Therefore, by combining Lemma 1, the

proposed algorithm always satisfies L
(
D(Yk,k

m )
)

≤ L
(
Xk,k
m

)
,

implying that the proposed algorithm can achieve more
accurate data recovery from the received packets. □
The channel packet loss rate of broadcasting can generally

be modeled as dropping packets with equal probability inde-
pendently at all times [36]. Therefore, the decoding accuracy
performance can be simply calculated by multiplying the
packet loss probability [37]. The decoding accuracy under
such scenarios is quantitatively verified through several
illustrative simulations in Section V-D.

B. UPPER BOUND OF DECODING ACCURACY
In order to study the worst-case performance of the
proposed algorithm, we investigate the upper bound of
the L(D(Yk,k

m )) for the proposed algorithm. To specifically
evaluate L(D(Yk,k

m )) based on the characteristics of the data,
we assume that the source dataset Xh is sampled from
zero-mean Gaussian random variables with variance σ 2(1 +

0h), i.e., Xh ∼ N
(
0N ,L , σ

2(1 + 0h)
)
. Here, 0N ,L denotes

(N × L) zero matrix, and 0h denotes diagonal matrix with
variance weights as 0h = diag(0h,1, · · · , 0h,N ), where the
weights are arranged in descending order. In this assumption,
it is well known that the contribution of0h,j to singular values
is significant only if 0h,j > 1

√
α
with α =

N
L (< 1), and is

negligible otherwise [38], [39]. Specifically, if

0h,1 > · · · > 0h,S >
1

√
α

> 0h,S+1 > · · · > 0h,N ,

then the singular values estimated from the variance weights
from 0h,S+1 to 0h,N can be approximated by the singular
values estimated from the variance σ 2. This means that
0h,S+1, . . . , 0h,N = 0, and only S variance weights,
0h,1, . . . , 0h,S , need to be considered [38]. This allows us
to consider only S effective variance weights. As a result,
the upper bound of the decoding accuracy estimated from the
variance weights is stated in the Theorem 3.

Theorem 3: For a source dataset Xh consisting of S
effective variance weights, the decoding accuracy of the
proposed method, represented by L

(
D(Yk,k

m )
)
, is bounded by

L
(
D(Yk,k

m )
)

≤
σ 2

√
αN

√
1 −

α

Aσ 2

∫
∞

φ∗

φf (φ)dφ, (4)

where α =
N
L , A = α(N − S) + NS(1 +

√
α), f (φ) denotes

asymptotic spectral density of XhXT
h eigenvalues, and φ∗ is

such that
∫

∞

φ∗ f (φ)dφ =
k
N .

Proof: Under Lemma 1, we confirm that L(D(Yk,k
m )) is

composed of the sum of singular values of Xh. To analyze
the singular values, we adopt eigenvalue analysis using the
Wishart ensemble matrix W = XhXT

h [40], [41]. Let 8 =

[φ1, · · · , φN ] be the eigenvalues of W. Then the zero-mean
data that the singular value 3 of Xh can be expressed
with eigenvalues of W as

√
8.2 Therefore, we can express

L
(
D(Yk,k

m )
)
as

L
(
D(Yk,k

m )
)

=

√∑N
j=k+1 λ2

j√∑N
j=1 λ2

j

=

√∑N
j=k+1 φj√∑N
j=1 φj

, (5)

where the eigenvalues are assumed to be arranged in
descending order of absolute value. By defining the sample
mean of each top k eigenvalues as 8k =

1
k

∑k
j=1 φj, we can

rephrase (5) as

L
(
D(Yk,k

m )
)

=

√
N × 8N − k × 8k√

N × 8N

. (6)

L
(
D(Yk,k

m )
)
can then be represented by the subtraction of the

sample mean of the eigenvalues.
To identify the sample means in (6), we consider the

sampled eigenvalue spectrum for the statistics ofL
(
D(Yk,k

m )
)
.

Let Ŵ =
1
N

∑N
j=1 xh,jx

T
h,j be the sample covariance matrix of

source dataset. With a sufficiently large number of samples,
the asymptotic spectral density f (φ) of Ŵ can be used
to derive the sample mean of eigenvalues [38], which is
expressed as in (7), shown at the bottom of the next page.

Here, δ(·) denotes the Dirac delta function and H(t)
represents the unit step function. The asymptotic spectral
density f (φ) includes parameters φmax and φmin, which
are the maximum and minimum eigenvalues determined
by the non-effective variance weights, and φu(0h,j), which
is determined by the effective variance weights. Then, the
eigenvalues are defined as

φmax =
1
α

σ 2(1 +
√

α)2,

φmin =
1
α

σ 2(1 −
√

α)2,

φu(0h,j) = σ 2(1 + 0h,j)(1 +
1

α0h,j
), (8)

2The multiplicity of a singular value is the multiplicity of eigenvalues of
Wishart ensemble matrix.
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where φu(0h,j) ≥ φmax ≥ φmin. Then, the sample mean of
8k can be expressed as 8k =

N
k

∫
∞

φ∗ φf (φ)dφ, where φ∗

is such that
∫

∞

φ∗ f (φ)dφ =
k
N . Therefore, we can rephrase

L
(
D(Yk,k

m )
)
in (6) with the sample distribution as

L
(
D(Yk,k

m )
)

=

√∫
∞

0 φf (φ)dφ −
∫

∞

φ∗ φf (φ)dφ√∫
∞

0 φf (φ)dφ

. (9)

Before deriving the upper bound of NRMSE, we note that
both the NRMSE and the singular values are non-negative
real numbers. Consequently, the decoding accuracy of the
proposed algorithm exhibits a decreasing convex function
with respect to time k . Hence,

L
(
(1 − β)D(Yk1,k1

m ) + βD(Yk2,k2
m )

)
≤ (1 − β)L

(
D(Yk1,k1

m )
)

+ βL
(
D(Yk2,k2

m )
)

and

L
(
D(Yk1,k1

m )
)

≥ L
(
D(Yk2,k2

m )
)

for β ∈ [0, 1] and k1, k2 ≥ 0. The maximum of L
(
D(Yk,k

m )
)

can be achieved if (5) linearly decreases with respect to k .
This occurs when eigenvalues are all equal with non-negative
real numbers. Eigenvalues are determined by the value of
variance weight 0h,j as shown in (8). The maximum value
of L

(
D(Yk,k

m )
)
is then attained when the maximum effective

variance weight, 0h,1, approaches the minimum value of
1

√
α
+. This ensures that all effective variance weights 0h,j for

j ≤ S are equal. Hence,

L
(
D(Yk,k

m )
)

≤ lim
0h,1→

1
√

α
+

L
(
D(Yk,k

m )
)

(10)

= lim
0h,1→

1
√

α
+

√∫
∞

0 φf (φ)dφ −
∫

∞

φ∗ φf (φ)dφ√∫
∞

0 φf (φ)dφ

.

From (7), the integration of φf (φ) over the range of [0, ∞],
which is the denominator of (9), can be reformulated as∫

∞

0
φf (φ)dφ =

∫ φmax

φmin

φf (φ)dφ +

∫ 0h,1

φmax

φf (φ)dφ

=

∫ φmax

φmin

φf (φ)dφ +

S∑
j=1

φu(0h,j). (11)

The integration of the first term can be simplified as∫ φmax

φmin

φf (φ)dφ

=

(
1 −

S
N

)
×

α

2πσ 2 ×

∫ φmax

φmin

√
(φ − φmin)(φmax − φ)dφ

=

(
1 −

S
N

)
×

α

2πσ 2 ×
π (φmax − φmin)2

8
=

(
1 −

S
N

)
σ 2

(12)

as φmax − φmin =
4σ 2
√

α
in (8). Since S effective variance

weights equals to 1
√

α
(i.e., 0h,1 = · · · = 0h,S =

1
√

α
) as 0h,1

approaches to 1
√

α
, the second term of (11) can be simplified

as
S∑
j=1

φu(0h,j) =
Sσ 2

α
(1 +

√
α)2 (13)

by substituting 1
√

α
for 0h,j in (8). Therefore, we can

reformulate (10) by substituting each terms with (11)–(13)
as

lim
0h,1→

1
√

α
+

√∫
∞

0 φf (φ)dφ −
∫

∞

φ∗ φf (φ)dφ√∫
∞

0 φf (φ)dφ

=
σ 2

√
αN

√
1 −

α

Aσ 2

∫
∞

φ∗

φf (φ)dφ, (14)

where A = α(N − S) + NS(1 +
√

α). □
The further theoretical validation of the upper bound of

decoding accuracy is discussed in the Appendix.

V. SIMULATION RESULTS
A. SIMULATION SETUP
This section presents the evaluation of the proposed algorithm
against several existing data dissemination approaches both
on synthetic and real-world datasets. The network size, the
area of the bounded region for mobile edge devices, is set to
324 km2. The mobile edge devices are randomly distributed
with a node density of 40 [devices/km2], and edge devices
that are fixed in position are distributed with a node density
of 10 [devices/km2]. The mobility of mobile edge devices
is implemented according to a two-dimensional Gaussian
random walk model with a mean of 60 km/h and variance
of 1 for the x-axis and y-axis. In this paper, we consider the
experimental environment in [42] of 5G broadcasting, which
has been standardized in Release 17 of the 3rd Generation
Partnership Project (3GPP). The environmental parameters of
5G broadcasting are shown in Table 2. Here, the performance
of the data channels of standards is evaluated when the target
data rate is 10 Mbps. We conduct simulations with several

f (φ) = (1 − α)H(1 − α)δ(φ) +
1
N

S∑
j=1

δ
(
φ − φu(0h,j)

)
H(α − 0−2

h,j ) +

1 −
1
N

S∑
j=1

H(α − 0−2
h,j )


×

α

2πφσ 2

√
max(0, (φ − φmin)(φmax − φ)) (7)
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TABLE 2. Environmental parameters of 5G broadcasting.

algorithms using synthetic datasets. In the simulations, the
data size for broadcasting is set to 300 KByte. The default
encoding number is set as N = 25, and the default length
of encoded data is set as L = 200. In the simulations,
we conduct 1, 000 trials for each algorithm while varying
the encoding number and the data length. We report on the
average performance of these 1, 000 trials. We consider two
datasets as below.

1) Synthetic dataset:Xh is generated from a standard mul-
tivariate normal distribution (i.e., Xh ∼ N (0N ,L , I)).

2) Real-world dataset: Xh is a collection of thermal data
from South Korea ASOS Dataset in 2022 [43].

We compare the performance of the proposed algorithms
with that of the following NC algorithms:

• RLNC: Simple yet powerful encoding scheme that
transmits random linear combinations of the packets.
It requires high computation complexity because of the
Gaussian elimination process in the decoding.

• Sliding NC [26]: Packets are generated using a sliding
window of original data packets to avoid long decoding
delay.

• Vandermonde echelon fast coding (VEFC) [25]: Com-
bine the packets while distinguishing between the
real-time requirements of different packets. It reduces
the dependency problem of NC such that increases the
decoding accuracy.

• Sparse NC [27]: Encode packets using sparse coding
coefficient matrix. This lowers computational com-
plexity by reducing the number of nonzero coding
coefficients.

• Fulcrum non-systematic sliding window (FNSW) cod-
ing [28]: Consider subsets of the coefficient matrix
while partially overlapping the coefficient matrix. This
algorithm substantially reduces the in-order packet
delay.

For typical broadcasting without applying NC, we also
consider state-of-the-art algorithms as follows:

• Data importance aware (DIA) scheduling [44]: Transmit
important data without using NC. It takes into account
the informativeness of data samples, besides communi-
cation reliability.

• Top-k with retransmissions (Top-k) [15]: To avoid
packet loss, it systematically integrates model

compression and retransmission towards Federated
Learning. It reduces communication traffic and ensures
model accuracy. In the simulations, we only broadcast
the top 80% of the original data.

• Repeated transmission (RT) [14]: To avoid wasting
wireless resources, packet-by-packet parallel processing
is conducted in the wireless access networks, supporting
the RT technique with individual feedback.

In this simulation, we evaluate the performance of the
proposed algorithm in terms of decoding accuracy and time
delay. We measure the averaged decoding accuracy among
the registered mobile edge devices at time k , defined as

L
(
D(Yn,k

m )
)

=
1

|M|

∑
m∈M

L
(
D(Yn,k

m )
)
, ∀n,

where |M| denotes the number of devices registered in the
edge server. For time delay evaluation, we consider the
transmission delay required to disseminate the entire dataset.
All the results presented in this section are obtained in
MATLAB implementation on the system with Intel Core
i7-4770 3.40GHz CPU, 8.00GB RAM, and Windows
10 Pro.

B. PERFORMANCE EVALUATION
To verify the performance of the proposed algorithm,
we examined the decoding and delay performance based
on packet loss rates. In this section, we evaluated the
performance using synthetic data. The first row of Fig. 2
shows the results of the proposed algorithm with varying
encoding rates. Fig. 2a and Fig. 2b show the decoding
performance if encoding number (N ) is relatively small
(N = 10) and is relatively large (N = 50), respectively.
While average decoding accuracy shows a similar pattern
regardless of the encoding number, a wide distribution of
the maximum and minimum decoding error is observed
with the smaller encoding number. With larger encoding
numbers, the variance of the distribution of maximum and
minimum decoding errors becomes smaller. This implies
that the decoding performance can be more stable as more
packets are encoded together (i.e., a larger encoding number).
At the cost of stable decoding error performance, however,
more time is required for transmission as shown in Fig. 2c.
Fig. 2c shows the time delay where the delay increases if we
continuously increase the value of N . This is a clear trade-off
between decoding accuracy and time delay.

Alternatively, Fig. 2d-2e show the decoding accuracy for
the length of encoded data (L). While decoding accuracy
is stable with small L (e.g., L = 100), the distribution of
NRMSE becomes wide as L increases (e.g., L = 1, 000).
This is because the amount of data lost from the decoding
failure may become large with lengthy data encoded, thereby
leading to a longer burst decoding error. However, more
time is required with larger encoded data length as shown
in Fig. 2f, which again implies a trade-off between decoding
accuracy and time delay.
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FIGURE 2. The average NRMSE and time delay (msec) performances of the proposed algorithm across different packet loss rates. The top row indicates
the performance when varying the encoding number (N), while the bottom row reflects performance changes with variations in the length of encoded
data (L).

C. THE IMPACT OF DATA CORRELATION
ON DECODING ACCURACY
In this section, we verify the impact of data correlation on
decoding accuracy using synthetic and real-world datasets.
In this simulation, we assume that there is no packet loss
during the data transmissions. As shown in Fig. 3, the
proposed algorithm outperforms all other methods in all time
periods including the worst-case scenario (synthetic data).
In the case of RLNC, VEFC, and sparse NC, the NRMSE
values remain at their maximum until all the data packets
are received. This is because those algorithms can start the
decoding process only when the N number of the encoded
packets has arrived. The proposed algorithm also outperforms
the other real-time NC algorithms (sliding NC and FNSW
coding), typical broadcasting (TB), DIA scheduling, and Top-
k .3 Not only real-time decoding but also a larger amount
of information transmission at the beginning of the data
dissemination stage of the proposed algorithm can lead to
outperformance.

It is also observed that the proposed algorithm shows
significantly superior performance with real-world data sets

3RT algorithm behaves the same as TB if there is no packet loss. Thus, the
RT algorithm is omitted in this simulation.

than with synthetic data sets. This is because real-world data
is much more correlated than synthetic data, which leads to
higher variance and singular values.

D. PERFORMANCE COMPARISON WITH PACKET LOSS
In this section, we compare the decoding and time
delay performance of the proposed algorithm with state-
of-the-art algorithms especially where there is packet
loss. We assume that packet loss may occur due to
the broadcasting channel state and the mobility of edge
devices.

We first compare the decoding accuracy and delay
performance of our algorithm with other data dissemination
algorithms in a broadcasting environment without a retrans-
mission mechanism. In this scenario, for a fair comparison,
we consider real-time decodable algorithms, which are
TB, DIA scheduling, FNSW, sliding NC, RT, and DR.
In algorithms that consider redundant packet transmissions or
retransmissions, the maximum additional transmission ratio
is limited to 20% of the original packet transmission to avoid
broadcast storm problems.

Fig. 4a shows the average decoding accuracy performance
of the stationary edge mobiles that remain fixed in the
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FIGURE 3. The decoding accuracy of each algorithm with no packet loss.

edge server, taking into account. As the positions of the
edge devices are stationary, packet loss occurs due to the
channel conditions. It can be observed that the proposed
algorithm outperforms other algorithms even at a lower
carrier-to-noise ratio (CNR) than the required CNR. If the
broadcasting protocol considers dissemination with data
importance (i.e., the proposed algorithm, DIA scheduling,
and Top-k algorithm), the performance tends to improve with
higher levels of data correlation.

Fig. 4b and Fig. 4c show the average decoding accuracy
performance over the network that includes both mobile edge
devices and stationary edge devices. As shown in Fig. 4b,
the proposed algorithm shows a superb performance in the
early data dissemination stage. This is more highlighted when
real-world data is considered. However, the decoding accu-
racy degrades because subcarrier spacing 1.25kHz against
the Doppler effect causing inter-carrier interference (ICI) in
mobile environments [42], [45]. In this case, FNSW shows

the worst performance because of the ICI and singularity
issues in the coefficient matrix.

Fig. 4c shows the distribution of L
(
D(Yn,N

m )
)
. While

the proposed algorithm shows slightly lower NRMSE
performance with synthetic data sets, performance is similar
to TB and DIA scheduling. However, the proposed algo-
rithm achieves a significantly lower NRMSE (0.1741) with
real-world data sets than the FNSW (0.9933), sliding NC
(0.8009), TB (0.6575), DIA scheduling (0.5767), and Top-
k (0.7171). Hence, it can be concluded that the proposed
algorithm can be practically adopted in data dissemination
networks and be robust against packet losses.

In a broadcasting protocol that permits additional packet
transmissions or retransmissions, the decoding performance
can vary accordingly. Fig. 5 illustrates the performance
comparison where NC algorithms transmit additional pack-
ets, while Top-k and RT utilize retransmissions within the
broadcasting. As shown in Fig. 5a and Fig. 5b, when the
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FIGURE 4. The average NRMSE of each algorithm with packet loss under both synthetic data (syn) and real-world data (real) in broadcasting without
retransmission and additional packet transmission mechanisms. (a) is simulated in a network with stationary edge devices, and the average NRMSE was
measured as a function of the CNR. (b) and (c) is simulated in a network with both stationary and mobile edge devices.

FIGURE 5. The performance comparison in broadcasting that permits additional packet transmissions or retransmissions.

system is allowed to send additional packets, we observe an
enhancement in the performance of other NC algorithms as
well as the Top-k and RT algorithms. Thus, the proposed
algorithm, which consistently outperformed others when
not considering retransmissions and additional packets,
experiences a shift in NRMSE performance relative to other
algorithms when the CNR crosses the 20 dB threshold.
However, when considering time delay, it can be observed
that the proposed algorithm transmits data very efficiently
even at CNR levels above 20 dB. As shown in Fig. 5c,
when TB is the lower bound of the transmission delay, the
proposed algorithm outperforms other algorithms regardless
of CNR. This is because NC algorithms consistently transmit
additional packets, resulting in higher transmission delays
compared to the proposed algorithm. On the other hand,
although Top-k and RT exhibit lower time delays than NC
algorithms at CNR values above 20 dB, they experience
higher delays and even indirectly encounter broadcast storms

at CNR values below 20 dB. Therefore, it can be concluded
that the proposed algorithm is the most efficient and
reliable for disseminating data in a broadcasting environment
compared to state-of-the-art algorithms.

E. COMPLEXITY COMPARISON WITH NETWORK
CODING ALGORITHMS
Fig. 6 shows the complexity results of NC algorithms,
measured by the execution time for the different numbers
of encoding numbers. It can be clearly shown that the
complexity of the encoding process in our algorithm is higher
compared to other algorithms, while the decoding process
is significantly less complex. Specifically, as detailed in
Section III-C, Fig. 6b shows that the proposed algorithm
reduces the decoding complexity by approximately 90%
compared to RLNC. This implies that the proposed algorithm
shifts the complexity burden of the decoding process to
the encoding process. Hence, most of the computational
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FIGURE 6. Execution time over the encoding number.

operations can be performed in the edge server while reducing
them in the mobile edge devices, making it an appropriate
solution for data dissemination with power-limited edge
devices.

VI. CONCLUSION
In this paper, we propose a reliable data dissemination
framework in edge networks using the NC technique with
low-rank approximation. In the considered edge networks,
data packets are broadcasted without retransmission, so that
mobile edge devices may fail to receive the entire data
packets. We propose a data dissemination framework where
the edge server broadcasts encoded data using matrix
factorization. Edge devices decode this data based on low-
rank approximation, even when only a partial set of data
is received. We demonstrate analytically that the proposed
algorithm provides higher decoding accuracy than typical
broadcasting, and this result is also validated through
our experiments. Moreover, we verify that the proposed
algorithm shows superior decoding accuracy performance
even in environments where packets are lost. Furthermore, the
proposed algorithm can reduce computational complexity by
shifting the burden of computation from edge devices to the

TABLE 3. Description of notations.

server, thus mitigating the issue of high complexity for the
decoding process of NC in mobile edge devices.

APPENDIX A
VALIDATION OF UPPER BOUND
To verify the limit of decoding accuracy is the upper
bound, we demonstrate that the decoding accuracy with
0h,1 →

1
√

α
is always upper than the other decoded data.

Let Yk,k
m be the encoded data from the source data Xh,

where Xh ∼ N
(
0N ,L , σ

2(1 + 0h)
)
with S effective variance

weights 0h,1, · · · , 0h,S . Here, we assume 0h,1 →
1

√
α
. For

comparison, we define Ŷk,k
m as the encoded data from the

source data X̂h, where each element X̂h ∼ N
(
0N ,L , σ

2(1 +

0̂h)
)
with S effective variance weights 0̂h,1, · · · , 0̂h,S . The

sampled eigenvalue distribution of Xh can be represented by
f (φ), while the sampled eigenvalue distribution of X̂h can be
represented by f̂ (φ). Then, we show thatYk,k

m always satisfies
L

(
D(Yk,k

m )
)

≥ L
(
D(Ŷk,k

m )
)
. The notations are summarized in

Table 3.
Let F(k) =

∫
∞

φ∗ φf (φ)dφ, F(N ) =
∫

∞

0 φf (φ)dφ,
F̂(k) =

∫
∞

φ∗ φ f̂ (φ)dφ, and F̂(N ) =
∫

∞

0 φ f̂ (φ)dφ. Table 4
summarizes F(k), F(N ), F̂(k), and F̂(N ). Then the difference
between L

(
D(Yk,k

m )
)
and L

(
D(Ŷk,k

m )
)
can be written as

L
(
D(Yk,k

m )
)
− L

(
D(Ŷk,k

m )
)

=

√∫ φ∗

0 φf (φ)dφ√∫
∞

0 φf (φ)dφ

−

√∫ φ∗

0 φ f̂ (φ)dφ√∫
∞

0 φ f̂ (φ)dφ

=

√
F(N ) − F(k)

√
F(N )

−

√
F̂(N ) − F̂(k)√

F̂(N )

=

√
F̂(N )

(
F(N ) − F(k)

)
−

√
F(N )

(
F̂(N ) − F̂(k)

)√
F(N )F̂(N )

, (15)

where φ∗ satisfies
∫

∞

φ∗ f (φ)dφ =
∫

∞

φ∗ f̂ (φ)dφ =
k
N for given

S. If F̂(N )
(
F(N ) − F(k)

)
− F(N )

(
F̂(N ) − F̂(k)

)
≥ 0, then√

F̂(N )
(
F(N ) − F(k)

)
−

√
F(N )

(
F̂(N ) − F̂(k)

)
≥ 0 since

all the integrals of sampled eigenvalue distribution are real
numbers and greater than or equal to 0.
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TABLE 4. The integrals of sampled eigenvalue distribution.

In case of k ≤ S, (15) can be expressed as follows by
considering (12) and (13):

lim
0h,1→

1
√

α
+

F̂(N )
(
F(N ) − F(k)

)
− F(N )

(
F̂(N ) − F̂(k)

)
= lim

0h,1→
1

√
α
+

F(N )F̂(k) − F̂(N )F(k)

=
1

kSN 2

σ 2

α
(1 +

√
α)2

1
k

k∑
j=1

φu(0̂h,j) −
1
S

S∑
j=1

φu(0̂h,j)


+

(
1 −

S
N

)
σ 2

 k∑
j=1

φu(0̂h,j) − k
σ 2

α
(1 +

√
α)2

 ≥ 0,

(16)

where the equality is achieved when S = N . The result fol-
lows by noting that the 1

k

∑k
j=1 φu(0̂h,j)− 1

S

∑S
j=1 φu(0̂h,j) ≥

0 for k ≤ S as φu(0̂h,j) is arranged in descending order.
Furthermore,

∑k
j=1 φu(0̂h,j) − k σ 2

α
(1 +

√
α)2 ≥ 0 as

φu(0̂h,j) > σ 2

α
(1+

√
α)2 ∀j. Therefore, we can conclude that

L
(
D(Yk,k

m )
)
is a upper bound ofL

(
D(Ŷk,k

m )
)
for k ≤ S, where

0h,1 is close to 1
√

α
.

In case of k > S, we can also find that L
(
D(Yk,k

m )
)
is a

upper bound of L
(
D(Ŷk,k

m )
)
by substituting F̂(k) and F(k)

in Table 4. Therefore, we can conclude the proof of the
validation.
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