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ABSTRACT The software-defined wireless sensor network (SDWSN) has the potential to improve
flexibility, scalability, and network performance, but security and quality of service (QoS) are major
challenges due to attackers, poor network management, and inefficient route selection. Several existing
works for intrusion detection had drawbacks like poor security, inefficient network management, higher
energy consumption and latency, and lesser throughput. A modified honeycomb structure-based intrusion
detection system for SDWSN is proposed to address these challenges, which includes secure authentication
using the 3D cube algorithm, modified honeycomb-based network partitioning, clustering, reinforcement
learning-based intelligent routing with a transfer learning-based deep Q network (TLDQN), and a hybrid
intrusion detection system. The latter detects malicious nodes using a driver training-based optimization
(DTO) algorithm and intrusions with a bidirectional generative adversarial network (Bi-GAN). The results
show that the proposed system outperforms existing solutions in terms of security, network performance, and
efficiency. The simulation of this research is conducted byNS-3.26Network Simulator, and the performances
are evaluated based on various performance metrics (with respect to the total number of nodes) like energy
consumption, latency, throughput, packet delivery ratio, network lifetime, computation overhead, detection
accuracy, packet drop ratio, and control overhead, which proved that the proposed work achieves superior
performance compared to existing works. The evaluation also includes a total simulation period during
which the system’s real-time performance was conducted. Time-based metrics such as precision, recall, and
F1-score, as well as confusion matrices, are utilized to analyze the system’s effectiveness in real-time in
response to dynamic network threats.

INDEX TERMS SDWSN, 3D cube, intrusion detection, secure routing, modified honeycomb-based network
construction, authentication.

I. INTRODUCTION
Wireless sensor network (WSN) is a group of sensors placed
at various locations that monitor and record the environment
and physical conditions of the network through the internet.
The development of the Internet of Things (IoT) has increased
the possibilities for WSN demand, further refining the
continuing research in this field. WSN plays a vital role in
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the development of the IoT [1], which contains low-cost and
low-computing resources. As a result, it is limited by low
resource utilization and high energy consumption issues [2],
[3]. To overcome these issues, a software-defined network is
integrated with the WSN environment, which is known as
a software defined wireless sensor network (SDWSN). The
SDN provides scalable and flexible network management
that divides the network into four planes: the data plane,
the switch plane, the control plane, and the application
plane. Generally, the SDWSN faces many issues in terms
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of security, energy consumption, and latency. Hence, routing
is an essential process to reduce energy consumption and
latency [4], [5], [6], [7].

The optimal path is selected between the sender (sensor
node) and receiver (base station/sink). The existing works
used many optimization algorithms such as particle swarm
optimization (PSO), genetic algorithm (GA), artificial bee
colony optimization (ABCO) and butterfly optimization for
detecting the best routing path, which leads to a high
packet loss rate and low throughput due to inefficient route
detection [8], [9], [10]. To overcome this issue, reinforcement
learning (RL)-based methods are proposed for selecting
optimal routes that learn the environment automatically
and select the best route for data transmission. Security is
another important process in routing that helps increase the
delivery ratio. Hence, some systems perform secure routing
by considering the trust values for the next forwarder, which
provides secure data transmission, but the secure routing
process only preserves the network from outside attacks and
does not address the inside attackers that perform malicious
processes [11], [12], [13].

The intrusion detection system (IDS) is used to identify
abnormal behavior of sensor nodes in order to resolve
security issues in SDWSN [14]. The IDS includes two
types of intrusions, namely signature-based IDS (SIDS) and
anomaly-based IDS (AIDS). The SIDS detects known attacks
bymatching the flow features of the data packets, while AIDS
detects unknown attacks by validating the packet features of
the data packets. Existing works employ machine learning
(ML) algorithms, such as those used to detect intrusions;
however, they focus solely on malicious node detection
and do not validate message integrity, increasing security
breaches [15], [16], [17], [18], [19], [20]. Additionally, the
information stored in the centralized SDN controller leads
to a single point of failure and high complexity. For that
purpose, multiple controllers are placed in the environment
with the aid of blockchain; hence, all the transactions are
stored and retrieved with the help of blockchain, increasing
the security level of the network [21], [22], [23]. The
traditional blockchain has a linear structure, which increases
energy consumption and limits scalability [24]. Because
of the considerable consequences that they have for the
dependability, functioning, and safety of these networks,
security and quality of service (QoS) are of the utmost
importance in the context of SDWSN. When it comes to
SDWSNs, data protection, network functioning, resource
efficiency, and compliance with regulatory standards are the
top priorities for security and QoS. If these components
are ignored, it may result in severe repercussions such
as data breaches, service outages, and degraded system
reliability, which may have wider-reaching implications
for the dependability and efficacy of the SDWSN setup.
To overcome this issue, this research used hierarchical
multiple blockchains which increase scalability and lower
energy consumption due to their hierarchical structure.

A. MOTIVATIONS AND OBJECTIVES
The SDWSN environment faces many challenges, such as
poor security, low throughput, and high energy consumption,
which are addressed separately by the existing approaches;
however, the optimal solutions to these challenges are not
yet provided. The following challenges are addressed by this
research:
• Poor Security: Most of the existing works proposed
secure routing mechanisms for providing security that
do not address the intrusions in the network; in addition,
the trust value was considered for legitimacy and route
selection, which also increases security threats. The
secure table information and trust values were stored on
the centralized server without providing security, which
led to poor security.

• Inefficient Network Management: The existing work
placed the sensor nodes in a randommanner, which leads
to high complexity in network management due to its
unstable nature. Some existing works used centralized
controllers for network management, which results
in inefficient network management because it cannot
handle a large amount of data processing in a real-time
environment.

• High Energy Consumption and Latency: The sensor
node sends its data to the sink nodes or base station
directly, which increases energy consumption and
latency due to the long distances. An inefficient routing
process also increases the latency and energy consump-
tion due to the increasing number of hop counts.

• Low Throughput: The existing work considers only
limited parameters (energy, trust, and distance) for the
routing process, which leads to inefficient routing that
reduces the throughput ratio. In addition, insecure and
static routing also reduce the rate of throughput.

We are motivated by the aforementioned issues in order
to identify network intrusions with less latency and energy
consumption in the SDWSN environment [25], [26]. This
research addresses poor security, high energy consumption,
latency, and low throughput in the SDWSN environment.

The objectives of this research are listed as follows:
• To ensure the authenticity of the sensor nodes by per-
forming authentication, which protects against external
attacks.

• To perform efficient network management and reduce
energy consumption by performing network partitioning
and clustering.

• To increase throughput and reduce packet loss rate,
secure and intelligent routing is performed, which
protects against routing attacks.

• To improve security and increase delivery ratios
through multi-controller-based intrusion detection and
prevention.

• To increase security and scalability, hierarchical-based
multiple blockchains are utilized in the SDWSN envi-
ronment.
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B. RESEARCH CONTRIBUTIONS
This research mainly focuses on providing security by
identifying intrusions using blockchain and artificial intel-
ligence techniques in the SDWSN environment. The major
contributions of this research are listed as follows:
• A modified honeycomb structure-based IDS model or
architecture in SDWSN is developed and proposed,
as seen in Fig. 1, which includes four algorithms
in the data plane: the 3D cube, TLQDN, DTO, and
Bi-GAN.

• The 3D cube algorithm, which ensures secure authen-
tication by confirming the validity of sensor nodes and
users’ privately held information through the utilization
of blockchain technology, is developed.

• In order to improve network performance in real-time
environments, a modified honeycomb-based network
construction and clustering approach is implemented.

• The TLDQN algorithm is developed for secure and
optimal routing identification. It utilizes transfer learn-
ing to enhance the speed and efficiency of the DQN
algorithm.

• The behavior of sensor nodes is analyzed using the
DTO algorithm to identify any malicious nodes, thereby
strengthening security measures.

• The Bi-GAN algorithm is implemented and effectively
detects both signature-based and anomaly-based intru-
sions, resulting in a high level of security and minimal
packet loss.

• A comparison between our model and other similar
models is conducted to assess the progress achieved.
This assessment was based on the chosen parameters and
their impact on the results.

• By analyzing and evaluating these parameters, the study
was able to determine the extent of improvement made
by our model in relation to the others. The improvement
is that the proposed work, HieMulti-Block, has higher
performance compared to the existing works in terms
of energy consumption, latency, throughput, packet
delivery ratio, network lifetime, computation overhead,
and detection accuracy. The flowchart of the proposed
system model is given in Fig. 2.

C. PAPER ORGANIZATION
The remainder of this research is organized as follows:
Section II illustrates the existing works and their research
gaps or challenges which were solved by the proposed work.
Section III explains the detailed description of the proposed
methodology, algorithm, pseudocode, and mathematical
representation. Section IV provides a detailed explanation of
the experimental results, while also describing the simulation
setup, comparison analysis, and research summary. Section V
concludes this research. Section VI presents the future works
in IoT-enabled SDWSNs. Section VI provides a link for the
dataset, the main project code, and a simulation video for this
research.

II. LITERATURE REVIEW
This section explains the concepts and research gaps of the
existingworks. The research concept, algorithm, and research
gaps are listed in Table 1. And in Table 2, more comparisons
of the proposed model and the existing works are conducted
with respect to some of the topics mentioned in our work.

Rajan et al. [27] proposed an intrusion detection system
for a cloud-based WSN-IoT network. This research used
two levels of security for detecting network attacks. First,
authentication was proposed based on the trust level of the
nodes. The private keys for the routing nodes are validated by
string values. Here, the binomial algebraic expansion method
was used for generating false IDs for nodes. The second level
of security was used for verifying the false IDs of the nodes
using context-free grammar constraints. If the string values of
the nodes were matched with the already generated map, then
it would be considered a trusted node, otherwise, it would be
known as a malicious user.

Ramadan [28] proposed a specific method for intrusion
detection and prevention in the smart city-based WSN
environment. Initially, the network was divided into multiple
clusters, with the best cluster head (CH) chosen for each.
The messages were sent to the CH through the optimal route.
For that purpose, multipaths were detected based on modified
AODV protocols, in which the messages were sent to the sink
nodes by generating control messages that were verified by
the sink nodes, thereby determining whether the message was
altered or not. If the sink node detects a malicious message,
the CH notifies the network about intrusions to prevent it
from happening again. Another threshold-based method was
used in this research for identifying intrusions in the network.
In this case, the sink nodes performed intrusion detection,
resulting in high complexity and overhead messages in a
real-time environment because the sink node cannot process
large amounts of data in a given time.

Goyat et al. [29] proposed a secure localization method
using blockchain for the WSN environment. The proposed
work includes two methods: the first is trust calculation,
and the second is block generation. Here, both direct and
indirect trust were calculated for sensor nodes. The trust
calculation takes into account the following metrics: energy,
reputation, and integrity, with trust values being evaluated
based on weight factors. After that, the blockchain was
generated using a proof of work consensus algorithm. Every
block was generated by validating its legitimacy. Finally,
localization was performed based on the highest trust values.
The experimental results demonstrate that the proposed work
achieved better performance in terms of true positive rate,
accuracy, and false positive rate. Here, blockchain was used
for increasing security; however, the traditional structure
of blockchain leads to less scalability and higher energy
consumption due to its linear structure.

An ensemble optimization technique was proposed for
optimal routing in WSN [30]. The ensemble optimization
includes genetic and particle swarm optimization (PSO),
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FIGURE 1. Architecture of the proposed system model.

which performs optimal control node selection by consider-
ing distance and energy parameters. This research considered
both single and multiple sink nodes for communication. The
control nodes were elected from among the nodes present
in the network. The fitness values of the algorithm were
evaluated in order to select the best control nodes for routing.
Finally, the data packets were sent to the control server using
optimal routing. The simulation result demonstrated that the
proposedwork achieved good performance in terms of energy
and fitness. Here, optimal routing was performed based on

a genetic mutation-based PSO algorithm; however, it did
not consider the security metrics for routing that lead to
high-security threats and high information loss.

Haseeb et al. [31], proposed a secure and energy-based
routing using an optimization algorithm in WSN. This
paper includes two processes: the first is an artificial
intelligence-based secure routing, and the second is authentic
and secure routing using an encryption algorithm. Initially,
the heuristic algorithm calculated the weight values for
selecting the next forwarder based on direction. Then the
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FIGURE 2. Flowchart of proposed model.

data connectivity was evaluated for the selected forwarder.
Encryption was applied to the data to ensure security. Finally,
the route maintenance process was performed to reduce the
link failures. The experimental results show that the proposed
work achieved better performance in terms of throughput,
packet delivery ratio, energy consumption, end-to-end delay,
and communication overhead. Here, secure and energy-based
routing was performed; however, the limitation of hop counts
was not considered, which increased the latency and energy
consumption during data transmission.

Liu et al. [32] proposed a machine learning-based intrusion
detection system inWSN. This research proposed edge-based
intrusion detection using an improved k-nearest neighbors (k-
NN) algorithm. The Euclidean distance-based weight values
were used for classifying the normal and intrusion nodes in
the network. TheWSN environment has a resource constraint
problem, which is overcome by integrating edge computing
into the WSN, which detects intrusions using the proposed
algorithm. The performance of the proposed work was
evaluated in terms of accuracy, true negative rate, and true
positive rate compared to existing approaches.

A new approach was proposed for performing an intrusion
detection system in a WSN environment [33]. The proposed
work included three phases: the data collection phase, the
detection phase, and the response phase. Initially, the data
was collected from the environment. The analyzer analyzed
the collected data based on its traffic information. The
sequence backward-based feature selection method was then
proposed to reduce the traffic’s irrelevant features. Based on

the selected feature, the LightGBM algorithm was used to
perform attack detection, which detects and classifies the
packets into four classes: normal, gray hole, blackhole, and
flooding attacks. Here, intrusion detection was performed
based on LighGBM, however, it provides more complex trees
that increase overfitting, which reduces the performance of
intrusion detection.

A machine learning technique was proposed for detecting
DDoS attacks in an SDN environment [34]. The proposed
work includes two planes, namely the data plane and the
control plane. In the data plane, the detection trigger method
was deployed to analyze the traffic patterns of the node
through switches. For that purpose, the flow features were
extracted from the traffic patterns by calculating the rate of
traffic. If it exceeds the threshold, then it will be known as
an abnormal flow; otherwise, it is a normal flow. Here, k-NN
and K-means algorithms were used for feature extraction and
DDoS detection. A single SDN controller was used for DDoS
attack detection, which led to high control traffic overhead
during the large amount of data processing that increased
latency in DDoS attack detection.

Lakshmanna et al. [35] proposed a metaheuristic algorithm
for energy-efficient clustering and routing in WSN. Initially,
the nodes are randomly placed for communication and
information collection. After that, the improved Archimedes
optimization algorithm was proposed for performing clus-
tering by considering energy, distance, and node degree.
After completing clustering, routing was initialized using
a teaching-based optimization algorithm that performs
multi-hop routing to select the optimal route by considering
distance and energy. The simulation result demonstrates
that the proposed work achieved better performance in
terms of lifetime, energy consumption, latency, and packet
delivery ratio. Here, nodes are randomly placed in an
environment that increases complexity and inefficiency in
network management due to its unstable nature. Additionally,
routing was performed based on an optimization algorithm
without considering any security metrics that increase
security threats.

An authentication information exchange method was
proposed for detecting attacks in WSN-based IoT applica-
tions [36]. The main aim of this research is to mitigate
attacks in the IoT environment. The internal joint defense
method is proposed to verify whether the sensor node
is available or not. Additionally, it tracked the nature of
the sensor and was classified into three classes, such as
normal, compromised, and partially compromised. If the
mechanism detects the attacks, then it initiates a prevention
mechanism. If the node was normal, then the information was
exchanged between the sensor nodes. The experimental result
demonstrates that the proposed work achieved better security
by performing authentication-based information exchange.
Here, authentication was evaluated based on the nature of
the node, which leads to poor security because the attacker
can easily compromise the node and act as a legitimate node,
leading to high information loss.
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Bhatt et al. [37] proposed an optimization algorithm
for detecting capture attacks in WSN. The proposed work
analyzed the optimal sensor nodes using the fruit firefly
optimization algorithm. Initially, a key route matrix was
generated to define the relationship between the keys and
routes. The number of keys was evaluated based on the
key number matrix. After that, the vertex route matrix was
generated to evaluate the routes in the WSN. Here, capture
attacks were detected by calculating the energy consumption.
The simulation result demonstrates that the proposed work
achieved better performance in capture attack detection
compared to existing works.

Khan et al. [38] proposed a method for detecting abnormal
traffic in WSN. Initially, the data packets were captured
from the sensor nodes with the properties of source and
route information, size of packets, and arrival time. The
features are then extracted from the data packets in order to
detect DDoS attacks. Based on the extracted features, this
research performed attack detection. Finally, the proposed
Bayesian model classified the traffic into normal traffic or
DDoS traffic. The simulation results show that the proposed
work achieved better performance in terms of attack detection
rate, false negative rate, and false positive rate. Here, all
the nodes are considered legitimate and allowed to perform
data transmission that increases data traffic, which increases
complexity and reduces the accuracy of traffic prediction.

Jurado-Lasso et al. [39] proposed a new routing mech-
anism for reducing the control overhead in the WSN
environment. The proposed routing protocol reduced energy
consumption by selecting an optimal path with the least
amount of energy, increasing network reliability and lifetime.
Initially, the algorithm generated a tree structure for sorting
the information of sensor nodes, and then it selected the
shortest path from that tree structure. To reduce control
overhead, this research maintained the neighbor status and
calculated the checksum for all the routes in the routing
table. The experimental result demonstrated that the proposed
work achieved better performance in terms of lifetime, packet
delivery ratio, and control overhead.

Nguyen et al. [40] proposed a secure and energy-based
clustering using the red deer algorithm for the WSN
environment. Initially, nodes were randomly placed in the
network and data from neighbor nodes was collected for
clustering. After that, CH was selected by evaluating the
fitness function by considering the distance, node density,
and energy. Here, secure data transmission was performed
using blockchain. The experimental results show that the
proposed work achieved better performance in terms of
energy, throughput, lifetime, and packet delivery ratio. Here,
the red deer algorithm was proposed for clustering; however,
it leads to high latency and energy consumption due to its low
convergence.

Theodorou et al. [41] provided a solution for the IoT
environment using SDN architecture. The proposed work
includes three planes, namely the infrastructure plane, the

control plane, and the application plane. Initially, mobility
was addressed by considering mobility features that increase
the stability of the network. For that purpose, this research
generated policies for topology discovery, routing, and
flow rule establishment. After that, the mobility detector
detects the mobile nodes using the k-means algorithm. The
performance of this researchwas evaluated in terms of control
overhead and packet delivery ratio.

Bhayo et al. [42] proposed a strategy for detecting DDoS
assaults in an SDN-WISE IoT controller, which usedmachine
learning (ML) as its foundation. They have included a
detection module that is based on integrating ML into the
controller, and they have created a testbed setting to imitate
the creation of DDoS attack traffic. A loggingmethod that has
been introduced to the SDN-WISE controller is responsible
for capturing the traffic. This system sends network logs into
a log file that is then pre-processed and transformed into a
dataset. The ML DDoS identification part of the SDN-WISE
controller uses the Naive Bayes (NB), Decision Tree (DT),
and Support Vector Machine (SVM) classification methods
to properly sort SDN-IoT network packets.

Siddiqui et al. [43] investigated published research on
SDN-based architectures to handle IoT management con-
cerns in the fields of failure tolerance, energy administration,
scalability, load management, and safety-related service
provisioning inside IoT networks. It presents a complete
assessment of this research. By using Software Defined
Network (SDN) and blockchain technology in an IoT envi-
ronment, the study in [44] offers a monitored and transparent
access control policy management platform that hinders
the propagation of forged regulations and addresses the
complexity of policy administration, forgeries, propagation,
observing access control policies, automation, and central
administration of IoT nodes. A reliable solution for IoT
environment security is provided by the combination of SDN
and blockchain. They include an effective proof of concept
that proves the scalability of the suggested remedy, along
with an innovative, scalable approach for building immutable,
accessible, adaptable, and automatic access control rules for
IoT devices.

Alotaibi et al. [45] proposed a method for routing in
IoT-based WSN networks, involving multipath routing and
secure transmission. The research faced challenges such
as: not providing an optimal path due to limited feature
consideration, leading to increase latency and congestion;
using an optimization algorithm causing high latency and
energy consumption; allowing all nodes to transmit data,
increasing security breaches; and not providing full security
due to centralized storage and focusing only on routing
attacks, leaving the network vulnerable to intrusions.

A trusted-aware routing method using deep learning for
WSN environments was proposed in [46]. The aim is to
create a secure route, but the random placement of sensor
nodes affects network performance and increases packet loss.
The routing method enhances security but results in high
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TABLE 1. Summary of literature survey.

TABLE 2. Comparison of our proposed model with other existing works.

latency, reduced throughput, and inefficient management.
Storing information in a single linear blockchain also causes
high latency, increased energy consumption, and limited
scalability, adding complexity to secure routing in real-time
environments.

A reinforcement learning method for optimal routing in
SDWSN environments was proposed in [47], using the Q
learning algorithm. The study had two planes: the data
plane and the control plane. The main challenges were:
increased energy consumption and reduced throughput due
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to random sensor node localization; insufficient criteria for
optimal routing selection, leading to packet loss; a single
centralized controller causing complexity and inefficiency;
and routing tables maintained without security, increasing
threats and information loss. Additionally, the Q learning
algorithm caused high latency and energy consumption due
to its low convergence andmany iterations needed for optimal
routing selection.

The study in [48] proposed a machine learning algorithm
for intrusion detection in WSN using clustering and routing
processes. However, it faced several challenges: legitimate
nodes were identified based on trust values, affecting
throughput and packet delivery ratio; trust values were
insufficient for accurate attack detection and could be
compromised; the decision tree algorithm detected intrusions
but lacked prevention, leading to information loss and
degraded performance; and data collection and processing by
sink nodes or base stations which led to increased complexity
and energy consumption, and also reduced network lifetime.

A clustering and routing mechanism using a hybrid
optimization algorithm in a WSN environment was proposed
in [49]. The research focuses on two processes: cluster
routing and traversal path selection. The algorithm used
in this study considers cluster head (CH) selection and
base station (BS) sojourn locations, aiming to reduce
energy consumption and improve communication efficiency.
However, there are some challenges identified. Firstly, the
routing process performed by controller nodes does not
take into account trust values or security metrics, leading
to high vulnerabilities in the WSN environment and low
throughput. Secondly, the research employs the ABC-based
traversal path algorithm to find the shortest path for the
mobile BS, but it faces the discrete problem of the traveling
salesman problem (TSP). Lastly, the base station’s placement
in the controller plane results in high latency and energy
consumption, impacting the sensor nodes’ lifetime.

A. RESEARCH SOLUTIONS
In our work, the 3D cube algorithm is used for secure
authentication, where all of the sensor nodes register their
parameters such as ID, physical unclonable functions (PUF),
location, and random number to the trusted authority (TA)
to make the system more secure. In our work, the network
is partitioned based on a modified honeycomb structure
that places the sensor nodes on the edges of the hexagon,
which increases the performance of network management.
In our work, RL-based intelligent routing is performed,
which selects the optimal path with a minimum amount of
time by performing next forwarder selection and optimal
path selection by considering trust values and other routing
metrics. Furthermore, secure routing and hybrid intrusion
detection systems are used to detect both routing attacks
and intrusions in the network, increasing the security and
throughput of the SDWSN environment. In our work,
an intrusion is detected based on the bidirectional generative
adversarial network (Bi-GAN) algorithm by considering both

packet and flow-based features, which increases security;
in addition, optimal delegator-based intrusion prevention is
performed in this research, which protects the network from
the attackers efficiently. Edge-based sink nodes collect the
data from the sensor nodes and send it to the controller nodes,
which reduces complexity and energy consumption and
increases the network lifetime. In this research, hierarchical-
basedmultiple blockchains (HieMulti-Block) are used, which
reduces energy consumption and increases scalability. All
information is stored in HieMulti-Block, which makes
security better because blockchain is an unchangeable ledger
that cannot be hacked or changed by attackers.

III. SYSTEM MODEL
The foremost aim of this research is to detect intrusions with
less energy consumption and latency in the SDWSN environ-
ment. The proposed work includes four planes, namely the
application plane, control plane, switch plane, and data plane.
Users can access information on the application plane via IoT
devices. The control plane includes two types of controllers:
the primary controller and secondary controllers. The switch
plane includes a number of switches for generating flow
tables. The data plane includes several sensor nodes with
edge-assisted sink nodes. The Edge server includes three
types of agents: cluster agent, routing agent, and investigate
agent. Table 3 depicts the goals of the proposed work, and
Fig. 1 represents the architecture of the system model. This
research includes four main processes, which are:
• Secure authentication
• Modified honeycomb based network partitioning and
clustering

• RL-based intelligent routing
• Hybrid intrusion detection system

A. SECURE AUTHENTICATION
Initially, the sensor nodes must register their parameters with
the trusted authority (TA) to ensure their legitimacy. For the
sensor node, we have considered parameters like ID, physical
unclonable functions (PUF) [50], location, and random
information or number (the shuffle number of movements
used to construct a private key in the 3D cube algorithm and is
obtained by running random() without particular restrictions
rather than utilizing just the specified number of movements)
provided by the authenticated node during registration. For
the IoT user, we have to consider parameters like ID, PUF,
MAC, and location, which are registered to the TA and
stored in the HieMulti-Block in a hashed manner. After
completing registration, the TA provides a private key with
the aid of the three-dimensional cube (3D cube) algorithm
[51], which creates a private key based on symmetric key
encryption, in which the private key is generated based
on the deep neural network without sharing a pre-shared
key that increases the security and confidentiality. Fig. 3
depicts the architecture of authentication using the 3D cube
algorithm. On the receiver side, the 3D cube pattern is solved
to generate the private key. For solving the cube pattern,
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FIGURE 3. Authentication using 3D cube algorithm.

TABLE 3. Goals of the proposed model.

a deep neural network is implemented, which is an artificial
intelligence technique known as the ‘‘deep cube algorithm’’,
which provides intelligent cube patterns with high speed. For
generating the private key, the proposed algorithm verifies
the cube pattern is matched with the coordinates of the array,

whereas the cube shuffling order is defined as an arrangement
for solving the cube patterns and generating the private key
by mapping the resultant by performing an XOR process
on the direct value for every move in the cube. A WSN
requires a trusted authority capable of authenticating devices
and transactions. This is possible with private keys, which are
cryptographic keys that the user keeps concealed. A trusted
authority is able to issue private keys to devices and use
them for transaction authentication. The proposed deep cube
algorithm solves any cube pattern within 30 movements of
cube arrangements.

To provide a general overview of the steps involved
in solving, ordering, and key generation in the 3D cube
algorithm, the process is as follows:
• Cube pattern solving: Given an initial cube pattern, the
solver attempts to find a series of moves or transforma-
tions that will lead to a desired target pattern. This can
involve applying predefined methods to manipulate the
cube’s elements (e.g., rotating specific layers) until the
target pattern is reached.

• Cube pattern ordering: Once the cube patterns are
solved, they can be ordered based on a specific criterion.
Ordering can be done for various purposes, such as
optimizing the sequence of moves required to reach a
target pattern or analyzing the structure of the cube.

• Key generation: From the extracted arrangement or
ordered cube patterns, a private key can be generated.
The private key is typically a unique identifier or
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secret value derived from the cube pattern arrangement.
The process of generating the private key can involve
combining certain elements or attributes of the cube
patterns and applying cryptographic algorithms such as
hash functions to ensure uniqueness and security.

• Hashing: The generated private key is then hashed using
a secure hash function. Hashing is a one-way function
that transforms the private key into a fixed-size output,
known as the hash value or digest. The purpose of
hashing is to ensure the privacy and integrity of the
private key by generating a unique and irreversible rep-
resentation of it. The hash functions for cryptographic
purposes, such as generating private keys or ensuring
the integrity of data, include SHA-256 (secure hash
algorithm 256-bit). It produces a 256-bit hash value and
is widely used for cryptographic purposes.

The hashed private key and arrangement number are sent
to the sender side. If the sender indicates that the generated
secret key matches, the key generation process should be
terminated. Otherwise, proceed to the key matching process
from the first stage. Authentication should be performed
once the secret key generation process is complete. The final
pattern of the cube is generated based on the Monte Carlo
tree search (MCTS) algorithm. The search tree process begins
with the initial state and continues until it reaches the tree’s
termination node.

Every state is linked with memory, which stores many
variables such as the count of move b taken at state (εSt (b)),
the maximum value of move b at state (γSt (b)), the present
virtual loss (the loss that results from not searching the same
tree search state repeatedly prevents the asymmetric task from
pursuing the same route) of move b at state (δSt (b)), and
the probability of a predicted action from state (αSt (b)). The
MCTS policy solves the cube pattern and controls the move
for every step, which is explained as:

Ot = Argmaxb VSt (b)+ RSt (b) (1)

VSt (b) = dPSt (b)

√
6b

εSt (b′)
1+ εSt (b)

(2)

RSt (b) = γSt (b)+ δSt (b) (3)

δSt (Ot )← δSt (Ot )+ w (4)

The highest optimal value at child state (Ot ) is calculated
based on VSt (b) and RSt (b) with respect to time t . The
possibility of previous action is calculated based on the
number of move b in the cube shuffling state, and RSt (b) is
calculated based on considering virtual loss with respect to
the highest primary value at state St and the value of the
virtual loss is updated steadily by using w parameter. Once
the searching process is reached the lead node of the tree, the
minimum elements St and {O(St, b),∀b ∈ O} elements are
added to the search tree for expanding the state of the tree.
After completing tree expansion, the St ′ memory of every

child node is initialized as:

εSt (b)→ εSt ′ (·) = 0 (5)

γSt (b)→ γSt ′ (·) = 0 (6)

δSt (b)→ δSt ′ (·) = 0 (7)

ρSt (b)→ ρSt ′ (·) = ρSt ′ (8)

where ρSt ′ represents the network function Fϑ (St ′) policy
output. The cube pattern is solved by calculating the highest
policy value, and the optimal value of child state, which is
expressed as:

(wStð , σStð ) = Fϑ (St ′) (9)

The memory update occurring over time in 0 ≤ t ≤ σ can
be calculated using:

γSt (Ot )← max(γSt (Ot ),wStð ) (10)

εSt (Ot )← εSt (Ot )+ 1 (11)

δSt (Ot )← δSt (Ot )− w (12)

This type of calculation helps to solve the cube patterns
that provide the secret key by using the deep cube algorithm,
which is trained by the deep neural network (DNN)
algorithm, to solve the cube patterns and send them to the
sender side. The DNN is a type of artificial neural network
(ANN) that includes an input layer, a hidden layer, and output
layers that provide optimal secret key generation. To protect
against cyberattacks, the TA provides a private key with the
aid of the 3D cube algorithm. Here, authentication is done by
validating the secret key generated by the 3D cube algorithm.
After completing authentication, clone attack detection is
performed to increase network security. It is detected based
on identifying the same ID presented in different locations.
In this case, the random information or number is evaluated
and provided by the authenticated node during registration.
If it is valid, then the authenticated node is allowed to be
present in the network with other authenticated nodes.

B. MODIFIED HONEYCOMB-BASED NETWORK
PARTITIONING AND CLUSTERING
The major issue in WSN is high energy consumption and
latency during data transmission. To overcome these issues,
we build a network based on amodified honeycomb structure,
which increases both coverage and throughput. In this
research, we proposed a 2-dimensional honeycomb structure,
which includes a 2-dimensional hexagonal structure. In a
traditional honeycomb structure, the sensor nodes are placed
in the center of the hexagon, which covers a smaller number
of nodes. In this research, we placed the sensor nodes on the
edge and center of the hexagons, as seen in Fig. 4, which
increases coverage with an increased number of nodes.

Every hexagonal cell has six neighboring cells in all
directions. Every sensor node can communicate with all the
neighboring sensors that are placed on the adjacent edges
of the hexagon. Clustering begins after sensor placement
and network construction are completed. The sensor nodes
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FIGURE 4. Sensor nodes’ placement in a honeycomb structure.

are clustered based on a hexagonal structure based on
a 1/7 fraction, which means each cluster includes seven
hexagonal cells in the honeycomb. Here, clustering was done
by a cluster agent that was deployed on the sink node. The
total number of hexagons and deployed sensors are calculated
as:

Ksensor = c+
n∑
i=0

(K − i) (13)

where K represents the count of hexagonal layers essential
for coverage, c = 7, which is equal to the innermost layer
where the sensor count is 7. The total number of hexagons
in a single cluster is 7i2, and the number of clusters in the
environment is calculated as:

Cli =

{
7, if i = 1
7(i− 1), if i ≥ 2

(14)

Here, 7 hexagons are grouped to form a single cluster, and
the count of the sensor calculation of the cluster is defined as:

Sc = c× 7 (15)

After completing clustering, the cluster head (CH) is
selected based on node centrality (c), distance (d), energy (e),
and trust (t). The weight coefficients of the parameters are
calculated for selecting the optimal CH; if the CH has a high
weight value, then it is selected as the current CH. The CH
selection is expressed as:

WCH = 6(w1 × c)+ (w2 × d)+ (w3 × e)+ (w4 × t)

(16)

Each part of clustering has a weight coefficient
Wi(w1,w2,w3,w4) that shows how important it is to CH
selection and residual energy.

In modified honeycomb-based network partitioning and
clustering (MHPC), the weight coefficients (w1,w2,w3,w4)

for CH selection are typically determined based on various
factors and considerations (such as network lifetime, com-
munication efficiency, QoS, etc.), depending on the specific
implementation and objectives of the network.

The weight coefficients are usually assigned based on
their relative importance in the CH selection process. These
coefficients are used to calculate a composite metric or score
for each sensor node, and the nodes with higher scores
are chosen as cluster heads. The specific calculation of
the composite metric may vary, but it typically involves
combining multiple parameters to evaluate the suitability of
a node for being a cluster head.

Here is a general overview of the weight coefficients and
their potential significance in the CH selection process:
• w1 (remaining energy or battery power): This weight
coefficient represents the importance of the energy
level of a node. Nodes with higher energy levels are
typically preferred as cluster heads to ensure longer
network lifetime.w1 determines the relative significance
of energy in the overall CH selection process.

• w2 (distance to the base station): This coefficient
indicates the importance of the proximity of a node to the
base station or sink node. Nodes closer to the base station
may be preferred as cluster heads to minimize energy
consumption for data transmission. w2 determines the
relative significance of the distance in the CH selection
process.

• w3 (node degree or connectivity): This coefficient
reflects the significance of node connectivity or the
number of neighboring nodes. Nodes with higher
connectivity may be more suitable as cluster heads
to improve network coverage and routing efficiency.
w3 determines the relative importance of node connec-
tivity in the CH selection process.

• w4 (residual bandwidth): This weight coefficient rep-
resents the available bandwidth or capacity of a node
for data transmission. Nodes with higher residual
bandwidth may be preferred as cluster heads to handle
increased traffic or data aggregation tasks. w4 deter-
mines the relative importance of residual bandwidth in
the CH selection process.

It is important to note that the specific values assigned
to these weight coefficients can vary depending on the
specific network deployment and requirements. The values
can be determined through simulation studies, empirical
analysis, or optimization techniques based on the desired
network performance objectives, such as maximizing net-
work lifetime, minimizing energy consumption, or improving
data aggregation efficiency. With this method of network
partitioning and clustering, the network can be managed well
and use less energy.

C. RL BASED INTELLIGENT ROUTING
Routing is an important process in SDWSN to reduce network
congestion and increase throughput. It is performed for data
transmission between CH and cluster member (CM) by the
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route agent using transfer learning-based deep Q network
(TLDQN) [52], [53], which is under reinforcement learning,
as shown in Fig. 5, and its pseudocode is given inAlgorithm 1.
Traditional reinforcement learning faces a low learning rate
problem due to the need to learn several network parameters.
To overcome this issue, we have applied transfer learning
to the RL to improve learning efficiency and speed. Here,
we perform two processes for intelligent routing: first, the
optimal next forwarder is selected based on trust, distance,
link quality, and energy; second, the optimal route is selected
based on the number of hops, link stability, packet delivery
ratio, and throughput. This routing process was performed
by the routing agent deployed on the edge server. The state
of TLDQN, like other deep Q-network variants, includes
parameters that are learned through the training process.
These parameters capture the knowledge and policies learned
by the network. In this research, the actions of TLDQN are
to first perform optimal forwarder selection and then optimal
route selection by considering optimal next forwarders. The
benefit of using RL TLDQN is an increased throughput and
packet delivery ratio. The reward function is an essential
component of reinforcement learning algorithms, including
TLDQN. It represents the feedback or evaluation of the
network’s state after an action is taken. The reward guides
the learning process, allowing the network to learn from the
consequences of its actions and adjust its policy accordingly.

In the TLDQN algorithm, the Q-value represents the
estimated value of taking a particular action in a specific state.
TheQ-value is a crucial component in reinforcement learning
algorithms, particularly in Q-learning and its deep learning
variants.

In the context of TLDQN, the Q-value is typically
represented by a neural network, where the input is the
state of the environment and the output is the Q-value for
each possible action in that state. The Q-value function can
be denoted as Q(s, a), where s represents the state and a
represents the action.

During the training process of TLDQN, the Q-values are
learned and updated based on the observed rewards and the
estimated future rewards. The goal is to approximate the
optimal Q-values for each state-action pair, which indicate
the expected return or cumulative reward that can be achieved
by taking a specific action in a given state. The Q-values are
updated iteratively using the Bellman equation or its variants.
This equation defines how the Q-values are updated based
on observed rewards and the estimated future rewards. The
Bellman equation [54] is defined as:

Q(s, a) = (1− α) · Q(s, a)+ α · (r + γ ·max
a′

Q(s′, a′))

(17)

where:
• Q(s, a) represents the Q-value of taking action a in
state s.

• α (alpha) is the learning rate that determines the weight
given to new information compared to the existing
Q-values.

• r is the observed reward received after taking action a in
state s.

• γ (gamma) is the discount factor that determines the
importance of future rewards. It represents the weigh-
tage given to future rewards compared to immediate
rewards.

• s′ represents the next state observed after taking action
a in state s.

• a′ represents the action selected in the next state when
updating the Q-value for the current state-action pair in
the Bellman equation.

• maxa′ Q(s′, a′) is the maximum Q-value among all
possible actions a in the next state s.

The proposed TLDQN maintains an experience replay
for storing and extracting the batch samples from the
replay buffer database. TLDQN, similar to other DQN (deep
Q-network) variants, utilizes an experience replay mech-
anism. It stores past experiences (state-action-reward-next
state tuples) in a replay buffer database and samples batches
of experiences randomly for training. Experience replay helps
to break the correlation between consecutive samples and
stabilize the learning process.

The DQN includes two neural networks that contribute to
training stability. One network, known as the Q-network or
the online network, is responsible for estimating Q-values
for state-action pairs. The other network, called the target
network, is used to generate target Q-values for updating the
Q-network. During training, the Q-network is periodically
updated using a loss value calculated based on the difference
between the estimated Q-values and the target Q-values,
which guides the adjustment of the neural network’s weights.

Here is a brief explanation of the statement above:
• Q-network (Online network): TheQ-network is a neural
network that approximates the Q-values for each state-
action pair. It takes the current state of the environment
as input and produces estimatedQ-values for all possible
actions in that state. The Q-network is updated during
the training process to improve its accuracy in estimating
Q-values.

• Target network: The target network is another neural
network used to generate target Q-values. It is a copy of
the Q-network that provides the desired Q-values used
as targets during the training process. The target network
is kept fixed or updated less frequently compared to the
Q-network, which helps stabilize the learning process.

• Loss value: The difference between the estimated
Q-values (from the Q-network) and the target
Q-values (from the target network) is used to calculate
a loss value. The loss value quantifies the discrepancy
between the predicted Q-values and the desired
Q-values. By minimizing this loss, theQ-network learns
to better approximate the optimal Q-values.

During training, the Q-network is updated using back-
propagation or backward propagation of errors (it is a key
algorithm used in training artificial neural networks. It is a
method for calculating the gradient of the loss function with
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FIGURE 5. Architecture of TLDQN.

respect to the weights and biases of the neural network) and
gradient descent to minimize the loss between the estimated
and target Q-values. The target Q-values are generated using
the Bellman equation (17), which incorporates the rewards
and future Q-values to update the Q-values iteratively.
In the TLDQN algorithm, The loss function measures the

discrepancy between the predicted Q-values and the target
Q-values. It computes the squared difference between the
predicted and target Q-values for each state-action pair and
then averages the squared differences over the entire batch of
training samples.

The objective of the training process is to minimize this
loss function by adjusting the neural network’s parameters
(weights and biases) through backpropagation and opti-
mization algorithms. Minimizing the loss function helps
the network improve the accuracy of its Q-value estimates,
leading to better performance and decision-making in rein-
forcement learning tasks.

The formula for calculating the loss function, specifically
the mean squared error (MSE) loss function, is defined as:

Loss =
1
N

N∑
i=1

(Qpredicted(si, ai)− Qtarget(si, ai))2 (18)

where:

• Qpredicted(si, ai) represents the predicted Q-value for
state si and action ai based on the current neural
network’s output.

• Qtarget(si, ai) represents the targetQ-value for state si and
action ai, which is usually calculated using (17) or its
variants.

• N represents the total number of state-action pairs in the
training batch. The division by N in the loss function
formula ensures that the loss is normalized by the
number of samples in the batch. This normalization
allows for a fair comparison of loss values across
different batch sizes.

In DQN, the stochastic gradient descent (SGD) method is
commonly used to update the weights and reduce the loss
function. The updated weight values are obtained through the
iterative adjustment of the weights based on the gradients of
the loss function with respect to the network’s parameters,
multiplied by the learning rate. The learning rate determines
the step size in each iteration, controlling the rate at which the
weights are updated.

The SGD update equation is defined as:

Wnew = Wold − η · ∇L (19)

where:
• Wnew represents the updated weights.
• Wold represents the current weights.
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• η represents the learning rate (step size).
• ∇L represents the gradient of the loss function with
respect to the weights.

The gradient of the loss function ∇L with respect to the
weights is computed using backpropagation. The specific
equations depend on the architecture of the neural network
and the loss function used. For the mean squared error (MSE)
loss, the gradient can be calculated as:

∇L =
1
N

N∑
i=1

2 · (Qpredicted(si, ai)

− Qtarget(si, ai)) · ∇Qpredicted(si, ai) (20)

where:
• N is the total number of state-action pairs in the training
batch.

• Qpredicted(si, ai) represents the predicted Q-value for
state si and action ai.

• Qtarget(si, ai)) represents the target Q-value for state si
and action ai.

• ∇Qpredicted(si, ai) is the gradient of the predicted
Q-value with respect to the weights.

Here is an explanation of each term and its function in
Algorithm 1:
• Learning rate η: Controls the step size for updating the
Q-network weights during training.

• Exploration parameter ϵ: Balances exploration and
exploitation in action selection during training.

• Discount factor γ : Determines the importance of future
rewards compared to immediate rewards.

• Replay memory D: Stores recent transitions for experi-
ence replay to improve learning stability.

• Target network update frequency C : Determines how
often the target Q-network weights are updated.

• Maximum number of episodes: Sets the limit for the
number of training iterations.

• Q-network: Neural network approximatingQ-values for
state-action pairs.

• Bellman equation: Updates Q-values based on current
estimates and future rewards.

• Loss function:Measures the error between predicted and
target Q-values.

• Updated weights: New weights of the Q-network after
each parameter update step.

• Current weights: Current weights used to estimate
Q-values during training.

• Gradient: Direction and magnitude of steepest ascent of
the loss function for weight updates.

• Online Q-network (θonline): Neural network updated
during training to estimate Q-values.

• Target Q-network (θtarget ): Separate network with
periodic weight updates, used for calculating target
Q-values.

• Mini-batch: Small random sample of transitions used for
training the Q-network in each iteration.

Algorithm 1 Pseudocode for TLDQN Algorithm
1: Inputs: Learning rate η, Exploration parameter ϵ,

Discount factor γ , Replay memory D, Target network
update frequency C , Maximum number of episodes

2: Output: Trained Q-network with transferred knowledge
3: procedure TLQDN(inputs)
4: Initialize the Q-network with randomweights: θonline
5: Transfer Learning:

6:

• Pretrain the Q-network on the weights:
Wsource

• Transfer the pretrained weights to the
online Q-network: θonline = Wsource

7:

Initialize the target Q-network with the same
weights as the online Q-network: θtarget =

θonline

8: for each episode in 1 to max_episodes do
9: Initialize the current state: s
10: for each time step in the episode do

11:
Use epsilon-greedy method to select
an action: a

12:
Execute the selected action and
observe the reward and next state: r, s′

13:
Store the transition (s, a, r, s′) in
replay memory D

14:
Sample a mini-batch of transitions
from replay memory D: minibatch

15: for each transition in minibatch do
16:

Calculate the target Q-value using the
Bellman equation (17):

17: Qtarget (s, a) = r + γ ·maxa′ Q(s′, a′)

18:
Compute the predicted Q-value using
the online Q-network:

19: Qonline(s, a) = Q(θonline, s, a)
20: Compute the loss function using (18).

21:

Compute the gradient of the loss
with respect to the online Q-network
parameters: ∇L

22:
Update the online Q-network weights
using the learning rate η:

23: θonline = θonline − η · ∇L

24:
Every C steps, update the target
Q-network weights: θtarget = θonline

25: end for
26: Set the current state to the next state: s = s′

27: end for
28: end for
29: end procedure

D. HYBRID INTRUSION DETECTION AND PREVENTION
SYSTEM
Secure routing does not provide security to the SDWSN
environment because it does not detect intrusions. Hence,
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we perform hybrid intrusion detection, which includes two
stages of intrusion detection, which are explained next.

1) MALICIOUS NODE DETECTION
The sensor nodes send their data through the controller, where
the secondary controllers perform malicious or compromised
node detection with the help of the investigate agent. This
agent monitors and records the behaviors of the sensor nodes
to increase security. The secondary controller detects the
malicious nodes by collecting the investigated information
and considering energy consumption, packet delivery ratio,
and packet loss ratio using the driver training-based
optimization (DTO) algorithm 2. The secondary controllers
are monitored and controlled by the primary controller. The
initial position of driving learners and instructors is randomly
initialized, which is expressed:

Z =



Z1
...

Zi
...

Zn


n×1

=



Z11 . . . Z1j · · · Z1n
...

. . .
...

. . .
...

Zi1 . . . Zij . . . Zin
...

. . .
...

. . .
...

Zm1 . . . Zmj . . . Zmn


m×n

(21)

zi,j = BLj + Rand.
(
BUj − BLj

)
(22)

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, Z represents the
population DTO, Zi represents the solution of i-th candidate,
ZI ,j represents the j-th variable value which is fixed based
on the solution of i-th candidate, m represents the population
size of DTO, and n represents the problem variable count,
and Rand is a random number with the range of [0, 2],
BUj and BLj are the variables representing the upper and
lower bounds, respectively. The objective function of every
candidate solution is calculated as:

OF =



OF1
...

OFi
...

OFn


n×1

(23)

where OF represents the objective functions, and OFi rep-
resents the objective function of i-th candidate. Candidates’
solutions are obtained through three phases: training of a
learner driver, learner driver patterning, and learner driver
practice. The population initialization of driving instructors
is defined as follows:

ID=



ID1
...

IDi
...

IDn


n×1

=



ID11 · · · ID1j · · · ID1n
...

. . .
...

. . .
...

IDi1 . . . IDij · · · IDin
...

. . .
...

. . .
...

IDnID1 · · · znIDj · · · ZnIDn


nID×n

(24)

where ID represents the driving instructor matrix, Ii,j
represents the i-th driving instructor of i-th dimension, nID =
[0.1n(1 − q/Y )] represents the driving instructor count, q
represents the present iteration, and Y is the highest count
of iterations. The current position [55] of every member is
calculated as follows:

zP1i,j =

{
zi,j + Rand ·

(
IDki,j − Rand1 ·zi,j

)
, OFIDki < OFi

zi,j + Rand ·
(
zi,j − IDki,j

)
, otherwise

(25)

Zi =

{
ZP1i , OP1Fi < OFi
Zi, otherwise

(26)

where zP1i,j represents the current position of the candidate
solution in the first process of DTO, OP1Fi represents the
value of objective function, Rand is a random number with
the interval of [0, 1], Rand1 is a random number with the
interval of [1, 2], ID is the driving instructor matrix, and ki
is a number which is randomly selected from {1, 2, · · · , nID}
driving instructors. In the second process, the learner driver
replicates the patterns of the instructor, and the driver tries
to perfect all the activities during driving using the skills of
the instructor. The current position of every member with an
instructor is calculated as:

zP2i,j = P · Zi,j + (1− P) · IDki,j (27)

Zi =

{
ZP2i , OP2Fi < OFi
Zi, otherwise

(28)

where zP2i,j represents the current position of the candidate
solution in second process of DTO,OP2Fi is a value of objective
function, P represents the index of new patterning, which is
calculated as:

P = 0.01+ 0.9
(
1−

q
Y

)
(29)

The third DTO process is based on each driver’s personal
training to improve its driving skills. In this stage, every
member is permitted to find the best position based on a local
search and its present position. The random position of the
member is calculated as:

zP3i,j = zi,j + (1− 2 Rand ) ·
(
1−

q
Y

)
· zi,j (30)

Zi =

{
ZP3i , OP3Fi < OFi
Zi, otherwise

(31)

where ZP3i represents the current position of the candidate
solution in third process of DTO, OP3Fi , is a value of objective
function, and Rand represents the random value with the
interval of [0, 1]. After identifying and updating the members
based on the three processes, the iteration of DTO is
complete. The best candidate solution is detected during
implementation execution. Here, the best candidate solution
is defined as the malicious node which is isolated from the
network. The DTO pseudocode is given in Algorithm 2.
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Algorithm 2 Pseudocode for DTO
1: Input: Investigate information
2: Output: Malicious node detection
3: Correct n and Y
4: Initialize the agent for interacting environment.
5: Initialize the population position of DTO and estimate
OF

6: for q = 1 to Y do
7: for i = 1 to n do

8:

Step 1 ‘‘Driving instructor training’’: Deter-
mine ID based on the value of objective
function Randomly select ID from the matrix;
Compute the current position of DTO mem-
ber using (25); Update the current position of
DTO member using (26).

9:

Step 2 ‘‘Learning driver patterning’’: Com-
pute the index of patterning P using (29);
Compute the current position of DTO mem-
ber using (27); Update the current position of
DTO member using (28).

10:

Step 3 ‘‘Learning driver practice’’: Com-
pute the current position of DTO member
using (30); Update the current position of
DTO member using (31).

11: end for
12: Update the best candidate solution
13: end for

2) INTRUSION DETECTION
Somemalicious nodes act like legitimate nodes, but they have
malicious data; hence, we ensure the integrity of the message.
The integrity of the data was evaluated by performing
intrusion detection. Here, we detect both signature-based and
anomaly-based intrusions. The secondary controller performs
signature-based intrusion detection based on flow-based fea-
tures (SrcIP, DstIP, SrcPort, DstPort, etc.) and anomaly-based
intrusions are detected by evaluating packet-based features
(type of packet, type of response, connection, etc.). In this
case, bidirectional generative adversarial network (Bi-
GAN) detects both signature- and anomaly-based intrusions
and classifies the packets as normal or malicious. Fig. 6
depicts the architecture of the Bi-GAN, which is a modified
version of the GAN created by adding an encoder to the
traditional GAN model. The pseudo-code for Bi-GAN is
given in Algorithm 3.
In a typical GAN system, the generator and discriminator

neural networks compete with one another in a game-like
setting, where the gains of one agent are offset by the losses
of the others. Each new data sample is produced by the
generative network (or generator) and then evaluated by the
discriminative network (or discriminator). Another way of
putting it is that the generator is trained to map random noise

into a representation of the ‘‘real data’’ distribution, and the
discriminator learns to tell the difference between the new
datasets created by the generator (which are considered ‘‘fake
data’’) and the genuine data distribution [56], [57].

The proposed Bi-GAN is able to learn themapping concept
from real data to the hidden space, thereby providing better
support for the fake dataset.

In a Bi-GAN, the generator (G) and encoder (E) networks
are trained simultaneously but have distinct objectives. The
generator’s objective is to generate realistic samples, while
the encoder’s objective is tomap real samples to a compressed
latent space representation. The discriminator (D) network’s
role is to distinguish between real and fake samples.

During training, the generator and encoder networks
collaborate to deceive the discriminator. The generator
generates fake samples from random noise, and the encoder
compresses real samples into the latent space representation.
The discriminator then attempts to correctly classify whether
samples are real or fake.

In summary, Bi-GAN involves training the generator and
encoder networks together, each with their own objectives.
The generator aims to generate realistic samples, the encoder
aims to map real samples to a compressed representation,
and the discriminator aims to correctly classify real and fake
samples. By optimizing these objectives through adversarial
training, Bi-GAN facilitates the generation of realistic
samples and the mapping of real samples to a compressed
latent space.

Here are the mathematical expressions for the discrimina-
tor network (D), generator network (G), and encoder network
(E) in more detail:

DISCRIMINATOR NETWORK (D)
The discriminator network takes as input a network traffic
sample x and outputs a probability score indicating the
likelihood of the input being real or fake. It consists of
multiple layers with learnable parameters (weights and
biases) that transform the input and produce the final
output. Let’s denote the intermediate representations in the
discriminator network as hd , and the weights and biases as θd
and bd , respectively. The output of the discriminator network
is computed as follows:

hd = activation(θd · x + bd )

D(x) = σ (Wd · hd + b′d ) (32)

where:
• x is the input network traffic sample.
• θd represents the weights of the first layer in the
discriminator network.

• bd represents the biases of the first layer in the
discriminator network.

• activation() is an activation function applied element-
wise to the intermediate representation hd , such as a
ReLU (rectified linear unit).

• Wd represents the weights of the final layer in the
discriminator network.
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• b′d represents the bias of the final layer in the discrimi-
nator network.

• σ () or sigmoid() is the sigmoid activation function
applied to the final layer’s output to obtain the proba-
bility score.

GENERATOR NETWORK (G)
The generator network takes as input a random noise vector
z and generates a fake network traffic sample xfake. It also
consists of multiple layers with learnable parameters that
transform the input noise and produce the synthetic output.

Let us denote the intermediate representations in the
generator network as hg, and the weights and biases as θg
and bg, respectively. The output of the generator network is
computed as follows:

hg = activation(θg · z+ bg)

G(z) = xfake = Wg · hg + b′g (33)

where:
• z is the input random noise vector.
• θg represents the weights of the first layer in the
generator network.

• bg represents the biases of the first layer in the generator
network.

• activation() is an activation function applied element-
wise to the intermediate representation hg, such as a
ReLU.

• Wg represents the weights of the final layer in the
generator network.

• b′g represents the bias of the final layer in the generator
network.

ENCODER NETWORK (E)
The encoder network takes as input a network traffic sample x
and computes a compressed latent space representation zreal.
It also consists of multiple layers with learnable parameters
that transform the input and produce the compressed
representation. Let us denote the intermediate representations
in the encoder network as he, and the weights and biases as
θe and be, respectively. The output of the encoder network is
computed as follows:

he = activation(θe · x + be)

E(x) = zreal = We · he + b′e (34)

where:
• x is the input network traffic sample.
• θe represents the weights of the first layer in the encoder
network.

• be represents the biases of the first layer in the encoder
network.

• activation() is an activation function applied element-
wise to the intermediate representation he, such as a
ReLU.

• We represents the weights of the final layer in the
encoder network.

• b′e represents the bias of the final layer in the encoder
network.

Here are the mathematical expressions that captures the
training objectives in a Bi-GAN:

DISCRIMINATOR OBJECTIVE

loss_D = max
D

Ex∼pdata(x)[log(D(x))]

+ Ez∼p(z)[log(1− D(G(z)))] (35)

GENERATOR OBJECTIVE

loss_G = min
G

max
D

Ez∼p(z)[log(D(G(z)))] (36)

ENCODER OBJECTIVE

loss_E = min
E

max
D

Ex∼pdata(x)[log(D(x))]

+ Ex∼pdata(x)[log(1− D(G(E(x))))] (37)

where:
• G represents the generator network.
• D represents the discriminator network.
• E represents the encoder network.
• p(z) represents the probability distribution of the random
noise vector z.

• pdata(x) represents the probability distribution of the real
network traffic samples x.

• The objective is to minimize the generator and encoder
objectives and maximize the discriminator objective
through iterative optimization.

The generator objective aims to generate samples G(z)
that are classified as real by the discriminator (D). The
encoder objective aims to produce compressed latent space
representations E(x) that can generate samples G(E(x))
classified as real by the discriminator (D). The discriminator
objective aims to correctly classify real samples x from the
data distribution and fake samples G(z) generated by the
generator.
In the Bi-GAN algorithm, a ‘‘concatenate()’’ function is

typically used in the discriminator network. The purpose
of the concatenation function is to combine the features
extracted from both the real samples and the reconstructed
samples before passing them through the subsequent layers
of the discriminator.
This function is used to merge the feature representations

obtained from the encoder network (E) for the real samples
and the generator network (G) for the reconstructed samples.
This allows the discriminator (D) to compare and distinguish
between the real and fake samples based on the combined
information.
After completing the intrusion detection system,we initiate

the intrusion prevention system, which helps protect the
network from cyber-attacks.Â For that purpose, an optimal
delegator is selected to notify the network about intrusions.
The optimal delegator is selected based on factors such

as high network active time, trust, high throughput, and
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FIGURE 6. Architecture of Bi-GAN.

energy. This type of prevention increases the performance
of intrusion detection and prevention. The Bi-GAN model is
superior in terms of its ability to identify network intrusion
attacks while requiring less time and effort to train. This
model allows both the generator and the discriminator to be
trained without the need for their training iterations to be
performed in sync. By reducing the dependency between the
generator and the encoder working together, we have more
accurate synthetic network activity samples. This allows us
to do so without having to incur excessive training overheads
for the discriminator. This model is very efficient for the
generator to use in order to build a synthetic network traffic
sample that may make a contribution to the detection of
abnormal network traffic.

E. HIEMULTI-BLOCKCHAIN
In this research, HieMulti-Blockchain is proposed for
increasing security. Here, two types of blockchains are
presented, namely the main chain and the side chains,
in which the main chain controls the side chains and the main
chain, in this system, is used to control the entire blockchain.

A subset or partition of the overall blockchain network
is known as a ‘‘shard’’ [58]. It is a technique used to
improve scalability and enhance network performance in
blockchain systems. A shard is created by dividing the
blockchain network into smaller, independent units called

Algorithm 3 Pseudocode for Bi-GAN
Input: Real network traffic samples x
Output: Trained Bi-GAN model: Generator network G,
Encoder network E, and Discriminator network D
Initialize the generator network G, the encoder network E,
and the discriminator network D with random weights.
Begin
1: Set the learning rate α and the number of training

iterations N
2: for iteration = 1 to N do
3: Train the discriminator network
4: for k = 1 to K do
5:

Sample a batch of real network traffic sam-
ples x from the data distribution

6:
Sample a batch of random noise vectors z
from the noise distribution.

7: Compute the generator objective:

8:
loss_G = −mean(log(D(G(z)))) by optimiz-
ing (36)

9: Compute the encoder objective:
10: x_reconstructed = G(E(x))

11:
loss_E = −mean(log(D(x)))−mean(log(1−
D(x_reconstructed)))

12: Update the discriminator network:

13:
Concatenate the feature representations from
real and reconstructed samples.

14:
concatenated_features = concatenate(E(x),
G(z), axis=1)

15:
loss_D = mean(log(D(x))) + mean(log(1 −
D(G(z)))) by optimizing (35)

16:
Update weights of D using gradient descent
with learning rate α

17: end for
18: Train the generator and encoder networks

19:
Sample a new batch of random noise vectors
z from the noise distribution.

20:
Sample a new batch of real network traffic
samples x from the data distribution.

21: Compute the generator objective:
22: loss_G = −mean(log(D(G(z))))
23: Compute the encoder objective:
24: x_reconstructed = G(E(x))

25:
loss_E = −mean(log(D(x)))−mean(log(1−
D(x_reconstructed))) by optimizing (37)

26: Update the generator and encoder networks:

27:
Update weights of G and E using gradient
descent with learning rate α

28: Output the training progress
29: if iteration % output_interval == 0 then

30:
print(‘‘Iteration:’’, iteration, ‘‘Generator
Loss:’’, loss_G, ‘‘Encoder Loss:’’, loss_E,
‘‘Discriminator Loss:’’, loss_D)

31: end if
32: end for

shards. Each shard operates as a separate chain with its own
set of validators and storage. Sharding allows for parallel
processing of transactions, as different shards can process
transactions concurrently.
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The purpose of introducing shards in the main blockchain
is to increase the network’s capacity to handle a larger
number of transactions and improve throughput. By dividing
the workload among multiple shards, the overall scalability
of the blockchain network can be enhanced. Each shard is
responsible for maintaining a subset of the blockchain’s data
and validating transactions related to that subset.

1) MAIN CHAIN
The main chain, also known as the mainnet or parent chain,
is the primary and original blockchain where the majority
of transactions and blocks are recorded. It represents the
core blockchain network that establishes the fundamental
consensus and security mechanisms.

Miners in the main chain network validate and append
new blocks to the main chain by following a consensus
mechanism, typically using a process such as Proof of Work
(PoW) or Proof of Stake (PoS) [59]. The process involves
miners or validators performing computations (e.g., solving
a cryptographic puzzle in PoW) to verify the validity of
the new block. Once the validation is successful, the new
block is appended to the main chain, ensuring the integrity
and consistency of the blockchain network. The main chain
equation is defined as:

MC[n] = f (MC[n− 1], b[n]) (38)

where:

• MC[n] represents the updated state of the main chain
after adding block b[n].

• The function or algorithm f is used to validate and
append the new block to the main chain.

• MC[n − 1] represents the previous state of the main
chain. It takes the previous state of the main chain
(MC[n− 1]) and the newly added block (b[n]) as inputs
to produce the updated state of the main chain (MC[n]).

The main chain in a sharded blockchain typically serves
as the overarching chain that coordinates and validates the
state changes made in each shard. However, it does not
directly merge the state changes or execute the current state
of each shard. In a sharded blockchain, each shard operates
independently and maintains its own state and transaction
history. The main chain primarily acts as a coordinator and
validator for the shards, ensuring the consistency and integrity
of the overall blockchain network.

The main chain typically contains metadata, headers,
or summaries of the state and transactions of each shard.
It verifies and validates the transactions and state changes
happening in the shards through a consensus mechanism.
The main chain’s role is to reach consensus on the order and
validity of shard transactions and maintain the global state of
the blockchain.

Here, all the transactions are stored in a hash format, which
is defined as:

hash[n] = H (tr,Nc) (39)

where:
• hash[n] represents the hash value calculated for a
specific block or data set in the blockchain.

• The hash function H takes the transaction data (tr) and
the nonce (Nc) as inputs and produces the resulting hash
value.

2) SIDE CHAINS
The proposed HieMulti-Chain includes many side chains
pairs to collect all transactions into blocks and connect them
together using a cryptographic hash function. This is done
by making sure that the hash value of the current block is
added to the next block. Because of this structure and the
cryptographic hash function, the blockchain cannot be altered
or reset. Every side chain includes a sequence of segments,
and every segment forms a side chain block.

A conceptual grouping of blocks within the side chain
is called a segment. It is typically defined based on block
height, time interval, or some other criteria. The equation for
a segment ‘‘Se[n]’’ is defined as:

Se[n] = {b[i] : n1 ≤ i ≤ n2} (40)

where:
• Se[n] represents the segment of the side chain, and it
consists of blocks b[i].

• n1 and n2 define the range of block indices included in
the segment. The values of n1 and n2 will depend on the
specific criteria used to define the segment, such as block
height or time interval.

If we define a segment Se[n] based on block height, we can
have:

Se[n] = {b[i] : h1 ≤ block height(b[i]) ≤ h2} (41)

where:
• h1 and h2 represent the block height range for the
segment.

• blockheight(b[i]) refers to the height of block b[i].
For a specific form of segment within a side chain,

Se[n] = b[ni + 1], b[ni + 2], . . . , b[ni + j] (42)

where:
• Se[n] represents the segment of the side chain, and it
consists of a series of blocks starting from block b[ni+1]
and continuing up to block b[ni + j].

• ni represents the index of the starting block within the
side chain.

• j represents the number of blocks included in the
segment.

The equation selects a consecutive sequence of blocks from
the side chain based on their indices.

The hash value of the side chain block is expressed as:

hashside[n] = Hside(tr,Nc, prevHash[n, i],

timestamp, otherParams) (43)
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where:

• The hash function Hside takes the transaction data tr and
the nonce Nc as inputs and produces the resulting hash
value.

• prevHash[n, i]: The hash value of the previous block in
the side chain (block [n− 1, i]) that this block is linked
to. It ensures the integrity and continuity of the chain.

• timestamp: The timestamp indicating the time when the
block is created or added to the side chain. It helps in
establishing the chronological order of the blocks.

• otherParams: Additional parameters may include any
specific requirements or metadata associated with the
side chain block, such as block height, block version,
or any custom-defined parameters.

The side chain records multiple different transactions
that are processed and validated independently from the
main chain, allowing for increased transaction capacity and
specialized functionality. The main chain in a blockchain
system is typically responsible for maintaining the complete
and immutable record of all transactions and data. It is
designed to store the entire transaction history and provide
the highest level of security and decentralization. As a result,
HieMulit-Blockchian offers greater scalability and lower
energy consumption than traditional blockchain.

IV. EXPERIMENTAL RESULTS
The experimental results displayed in Fig. 1 are explained in
this section. This section is divided into three subsections,
namely simulation setup, comparison analysis, and research
summary. The experimental results demonstrate that the pro-
posed HieMulti-Block model achieves superior performance
compared to previous works.

A. SIMULATION SETUP
The simulation of the proposed HieMulti-Block model is
performed Network Simulator 3 (NS3). The simulation of
this work involves the following processes on the data
plane: honeycomb-based network partitioning and clustering,
RL-based intelligent routing using the TLQDN algorithm,
malicious node detection using DTO, and a hybrid intrusion
detection system. On the controller plane, we have HieMulti-
Block, which communicates with the primary controller
and later controls the secondary controllers. Bi-GAN is for
classifying data packets as normal or malicious packets.
On the application plane, IoT users communicate with the
cloud server. Table 4 shows the system configuration, and
Table 5 depicts the parameter configuration of the proposed
HieMulti-Block model.

Here are explanations of how these parameters are chosen:

1) Area of Simulation (1000m × 1000m): The choice of
the simulation area depends on the scale of the network
intended to be modeled. A 1000m × 1000m area is
suitable for modeling a moderate-sized network.

2) Modules (IPV4, Wi-Fi, Internet): The modules are
chosen based on the network components we want

TABLE 4. System configuration.

TABLE 5. Network parameter configuration.

to simulate. IPV4, Wi-Fi, and Internet modules are
selected to model an IPv4-based Wi-Fi network
connected to the global internet.

3) Initial Energy (100 J): Initial energy levels are set
to 100 J, which is the starting energy for the nodes in
our wireless sensor network. This value depends on the
energy capacity of the sensor nodes we are modeling.

4) Simulation Time (600 s): Setting the simulation
duration to ensure that the desired behavior and
performance metrics are captured. Longer simulations
can provide more statistically significant results. The
simulation time is set to 600 seconds, which is the
duration of the simulation.

5) Transmission Range (150 m): The transmission range
represents the maximum distance over which nodes
can communicate. In our case, it is set to 150 meters,
reflecting the wireless range of the nodes.

6) Packet Size (64, 128, . . . , 1024 bytes): Multiple packet
sizes are chosen to investigate how different packet
sizes impact network performance. This allows us to
study the effects of packet size on throughput, latency,
and other metrics.

7) Channel Bandwidth (100 MHz): The channel band-
width represents the available frequency spectrum for
communication. A 100 MHz bandwidth is selected,
which is a common choice for Wi-Fi networks.
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8) Traffic Type (TCP/IP, UDP): Both TCP/IP and UDP
traffic types are selected. This choice allows us to
study how different transport protocols affect network
performance.

9) Packet Data Rate (100 Mbps): The packet data rate
represents the transmission speed of data packets.
A rate of 100 Mbps is chosen, which is a typical setting
for high-speed communication.

10) Packet Count (1000): The packet count is set to 1000,
indicating the number of packets to be transmitted
during the simulation. This parameter helps us evaluate
network behavior under various traffic loads.

11) Transmission Power (0.005 watts): Transmission
power determines the signal strength of transmitting
nodes. A value of 0.005 watts is selected, reflecting a
specific power level for our nodes.

12) Mobility Model (Random Waypoint): The mobility
model defines how nodes move within the simulation
area. A Random Waypoint is chosen, which simulates
nodes moving randomly from one point to another.

B. IMPLEMENTATION PLAN
The network is built based on a modified honeycomb
structure and consists of 100 sensor nodes, 1 trusted authority
(TA), 10 IoT users, 4 edge-assisted sinks, 4 switches,
1 primary controller, 2 secondary controllers, 3 blockchain
nodes, and 1 cloud node. Initially, the TA registers the sensor
nodes by considering parameters like ID, PUF, location,
and random information or numbers. It also registers the
user by considering parameters like ID, PUF, MAC, and
location. Next, the TA provides a private key with the aid
of the 3D cube algorithm and performs the authentication.
After completing authentication, clone attack detection is
performed to increase network security.

Next, the sensor nodes are clustered based on a hexagonal
structure based on a 1/7 fraction, which means each cluster
includes seven hexagonal cells in the honeycomb. After
completing clustering, the CH is selected based on node
centrality, distance, energy, and trust. Here, we consider
w1+w2+w3+w4 = 1 and 0 ≤ Wi ≤ 1, ∀i, 1 ≤ i ≤ 4 . In a
hexagon honeycomb structure, where all the weight values
are equal, it means that each criterion or parameter used
for CH selection carries equal importance. In this case, the
weight coefficients assigned to each criterion would be equal.
Since we have four criteria (w1,w2,w3,w4) and all weights
are equal, we assign each criterion aweight coefficient of 0.25
(1/4), we have: w1 = w2 = w3 = w4 = 0.25. And the sum
of the four weight values should be equal to one.

Next, select the route between CH and CM for data
transmission by using a TLDQN.

Then, perform hybrid intrusion detection, which consists
of two stages of intrusion detection, namely malicious
node detection using the DTO algorithm and intrusion
detection using Bi-GAN, which classifies packets as normal
or malicious as seen in Fig. 7.

FIGURE 7. Normal and malicious node detection. On the left, we have the
Python data visualization with information running through the network.

Select an optimal delegator to notify the network about
intrusions, and open the NetAnimator to get the simulation
of the system model as seen in Fig. 8.

C. EXPLANATION OF THE CONFIGURATION SETTING FOR
EACH RESULT
The performance of this research is evaluated based on the
following metrics:
• Energy Consumption
• Latency
• Throughput
• Packet Delivery ratio (PDR)
• Network Lifetime
• Computation Overhead
• Detection Accuracy
• Packet Drop Ratio
• Control Overhead
• Time-Based Metrics and Confusion Matrix Analysis

1) ENERGY CONSUMPTION’S CONFIGURATION SETTING
Here are detailed steps on how to measure the energy
consumption in NS3:
• Select an energy model: The energy model for this
simulation is BasicEnergySource.

• Configure energy parameters such as initial energy.
• Enable energy tracking: With NS3, allows the energy
consumption is monitored and recorded during the
simulation.

• Setting up intrusion detection systems, event triggers,
and response mechanisms.

• Run the simulation: Execute the NS3 simulation by
defining the network topology, applications, and traffic
patterns.

• Collect energy consumption data.
• Analyze the results: After collecting the energy con-
sumption data, perform analysis to calculate various
metrics, such as total energy consumed by using IDS.

• Code 1 shows how the energy consumption is calculated.
Here are techniques used to identify or introduce illegit-

imate nodes (they are identified based on the behavior of
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FIGURE 8. NS3-NetAnimator result for the network based on a modified honeycomb structure.

Code 1. Energy consumption measurement code in NS3.

the sensor nodes, which is done by the DTO algorithm that
increases security):
• Node cloning: Illegitimate nodes are introduced by
cloning legitimate nodes. Attackers may copy the
hardware and software configuration of a legitimate
node to create unauthorized replicas that appear to be
legitimate. These cloned nodes can then be deployed in
the network to disrupt its operations or launch attacks.

• Wireless spoofing: Attackers can impersonate legiti-
mate nodes by spoofing their identities or emulating
their communication protocols. By masquerading as

legitimate nodes, the attackers can gain unauthorized
access to the network, intercept communications,
or inject malicious data.

• Signature-based IDS: Signature-based IDS involves
comparing the behavior or characteristics of nodes
with predefined signatures of known illegitimate nodes.
These signatures can be generated based on prior
knowledge of malicious nodes or attacks. If a node’s
behavior matches a known signature, it can be classified
as illegitimate.

• Trust-based IDS: Trust-based detection involves evalu-
ating the trustworthiness or reputation of nodes based
on their past behavior or interactions with other nodes.
Nodes with low trust levels or poor reputation scores
may be considered illegitimate.

• Behavior-based IDS: Illegitimate nodes may exhibit
abnormal or malicious behavior compared to legitimate
nodes. By monitoring and analyzing the behavior of
nodes, deviations from normal patterns can be detected.
Suspicious activities or anomalies, such as abnormal
power consumption, unusual data transmission patterns,
or deviation from expected node behavior, can be
indicators of illegitimate nodes.

2) LATENCY’S CONFIGURATION SETTING
Latency measurement is done through NS3. Here are detailed
steps on how to measure latency in NS3:

• A network topology is set up by creating an NS3 script
to define the network topology and specify the sensor
nodes, their positions, and other relevant parameters.
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Code 2. Latency measurement code in NS3.

• The application layer protocols, such as user datagram
protocol (UDP), are defined and will generate traffic in
the network.

• NS3 has the time module, which can be used to measure
latency. In the NS3 script, timestamps are attached to the
packets at the source node, and at the destination node,
the reception time is recorded using the time module.

• The latency is calculated by subtracting the timestamp
at the source node from the reception time at the
destination node.

• Code 2 shows how the LatencyMeasurement
function calculates the latency in milliseconds (ms) and
prints it. The average latency is then calculated and
printed at the end of the simulation.

In NS3, the average or total latency can vary for each
simulation run, even with the same number of nodes.
This variability is due to the inherent stochastic nature of
network simulations and factors such as network conditions,
traffic patterns, channel characteristics, and random events.
NS3 incorporates randomness in various aspects of the
simulation, such as packet transmission times, channel noise,
routing decisions, and network congestion. Additionally,
the simulation environment itself may introduce variability
due to factors like central processing unit (CPU) load,
memory allocation, or other system-level effects. As a result,

Code 3. Throughput measurement code in NS3.

running the same simulation multiple times with the same
configuration can yield different latency values in each run.

3) THROUGHPUT’S CONFIGURATION SETTING
Here are detailed steps on how tomeasure throughput in NS3:
• Data collection: Ensure that data packets are generated
and transmitted from source nodes to destination nodes.

• Data reception: On the receiving node (destination),
keep track of the number of data packets received within
a specified time period. This can be done by counting
incoming packets or using NS3’s built-in counters.

• Time measurement: The simulation time is recorded
upon starting and stopping measuring throughput.

• Calculate throughput: After the simulation, calculate
throughput by dividing the total amount of received data
(in bits) by the time taken (in seconds).

• Code 3 shows how the ThroughputMeasurement
function calculates the total received data in bytes and
prints it.

4) PACKET DELIVERY RATIO’S CONFIGURATION SETTING
In NS3, the PDR can be measured by utilizing the built-in
tracing and logging features of the simulator.

Here are general steps on how to measure PDR in NS3 for
a network with 20 to 100 nodes:
• Setting up the network by configuring the network
topology and node placement in NS3, ensuring that the
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Code 4. Packet delivery ratio measurement code in NS3.

required number of nodes (20 to 100 nodes) are placed
as required, using NodeContainer.

• Define the network topology.
• Set up data transmission using UDP. Create a simple
sender (node 0) and receiver (node 1) to measure the
packet delivery ratio.

• Measure the packet delivery ratio by comparing the
number of packets sent and received.

• Run the simulation by executing it in NS3 with the
specified duration and network settings.

• Calculate the PDR at the end of the simulation by retriev-
ing the values from the packet counters and calculating
the PDR by dividing the number of successfully received
packets by the total number of packets sent.

• Code 4 is updated to a specific simulation sce-
nario, including setting the packetReceived and
packetsSent variables accordingly.

5) NETWORK LIFETIME’S CONFIGURATION SETTING
Here are general steps on how to measure network lifetime in
NS3 for a network with 20 to 100 nodes:
• Network topology: Design the network layout and
connectivity of nodes.

Code 5. Network lifetime measurement code in NS3.

• Energy model: Choose an energy model to simulate
node energy consumption.

• Traffic generation: Define how nodes generate and
exchange data within the network.

• Routing protocol: Select and configure a suitable
routing protocol like ad-hoc on-demand distance vector
(AODV) for the network.

• Performance metrics: Determine metrics to evaluate
network lifetime, such as energy consumption and
connectivity.

• Simulation configuration: Set simulation parameters in
NS3, including the simulation duration, packet loss
models, and mobility (if applicable).

• Run simulation: Execute the simulation and let it run for
the specified duration.

• Data analysis: Collect and analyze simulation data to
calculate network lifetime and identify failing nodes.

• Repeat and validate: Repeat the simulation with dif-
ferent parameters to obtain reliable results and validate
findings.

• The result is stored in the networkLifetime vari-
able as shown in Code 5.

• The NS_LOG_COMPONENT_DEFINEmacro is used to
print the network lifetime to the console.

6) COMPUTATION OVERHEAD’S CONFIGURATION SETTING
Here are general steps on how to measure computation
overhead in NS3 for a network with 20 to 100 nodes:
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Code 6. Computation overhead measurement code in NS3.

• Packet Processing time measurement: The timestamp is
recorded when a packet is received and when the IDS
finishes processing it.

• Calculation of overhead: Calculate the processing time
for each packet by subtracting the timestampwhen it was
received from the timestamp when it was processed.

• Average computation overhead: Calculate the average
computation overhead by taking the mean of the
processing times for all packets.

• The ComputationOverhead function, in Code 6,
is used to measure the computation overhead of the IDS
for each packet. It calculates the time taken to process a
packet by subtracting the receive time from the process
time.

7) DETECTION ACCURACY’S CONFIGURATION SETTING
Here are steps on how to measure the detection accuracy in a
network with 20 to 100 nodes:
• Determine the desired labels for events or conditions
being detected, such as normal or attack scenarios.

• Run the simulation by setting up the NS3 simulation
environment, including network topology, protocols,
and detection mechanisms, to generate simulation
results.

• Collect simulation results by gathering relevant data
from the simulation run, such as packet traces or log
files, to analyze the detected events or conditions.

• Analyze the results by comparing the simulated out-
comes with the expected outcomes to determine the
number of TP, TN , FP, and FN cases.

• Calculate detection accuracy by using (47) to measure
the detection accuracy based on the values obtained in
step 4, representing a value between 0 and 1 or as a
percentage.

Code 7. Detection accuracy measurement code in NS3.

• The CalculateDetectionAccuracy function,
in Code 7, takes TP, TN , FP, and FN counts as input
to calculate detection accuracy. The main function
initializes NS3, retrieves the counts from simulation
results, calls the CalculateDetectionAccuracy
function, and prints the resulting detection accuracy.

8) PACKET DROP RATIO’S CONFIGURATION SETTING
Here are steps on how to measure the packet drop ratio in a
network with 20 to 100 nodes:
• Initialize NS3 and Enable Logging. Import the necessary
NS3 modules and enable logging for the PacketSink
application.

• Create a function called PacketDrop to handle packet
drops. This function will be called whenever a packet is
dropped.

• By using NodeContainer, create a network with
20 to 100 nodes.

• By using PacketSinkHelper, set up a packet sink
(receiver) and configure it to listen to a specific port.

• Install the packet sink application on the second node
in the network (receiver). This node will receive and
monitor incoming packets.

• Create a sender node (in this case, the first node) and a
socket for sending packets.

• Set up a trace connection for the socket to the
PacketDrop function, which will be called when a
packet is dropped during transmission.

• Set up a UDP echo client on the sender node. This
application will generate and send UDP packets to the
receiver.

• Install the UDP echo client application on the sender
node, configure its start and stop times, and specify the
server IP address and port.

• Run the Simulation. Set the simulation duration and run
the NS3 simulation.
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Code 8. Packet drop ratio measurement code in NS3.

• Code 8 incorporates the PacketDrop function, which
is connected to the sender’s socket for handling dropped
packets and logging relevant information. Throughout
the simulation, occurrences of dropped packets will
activate the PacketDrop function, thereby recording
details about the dropped packets. This mechanism
enables the measurement and analysis of packet drops
in the network.

9) CONTROL OVERHEAD’S CONFIGURATION SETTING
Here are steps on how to measure the control overhead in a
network with 20 to 100 nodes:
• Create a network with 100 nodes in NS-3. This can be
done by creating a NodeContainer and using the
Create method to generate the nodes.

• Define the network topology.
• Set up control message generation and reception. Define
the message size and the interval between sending
control messages.

• Create a function to send control messages periodically
using the Simulator::Schedule method. In this
case, messages are sent every second.

• Create a function to count received control messages.
This function will be invoked when a control message
is received by the destination node.

• Set the simulation stop time and run the simulation.
This will allow control messages to be exchanged and
received.

• After the simulation is complete, calculate the control
overhead in messages per second. Divide the total

Code 9. Control overhead measurement code in NS3.

number of received control messages by the simulation
time.

• Code 9 shows thecontrolOverhead variable, which
represents the control overhead in messages per second,
and by using NS_LOG_COMPONENT_DEFINE, that
variable is printed.

D. COMPARISON ANALYSIS
The performance of the HieMulti-Block model is evaluated
based on various performance metrics by comparing it with
its existing works namely PSO-ABC [49], OL-RL [47] and
RBP-DT [48] models. The comparison is conducted by con-
sidering the energy consumption, latency, throughput, packet
delivery ratio, network lifetime, computation overhead,
detection accuracy, packet drop ratio, and control overhead.
The results prove that the proposed HieMulti-Block model
has a superior performance compared to existing works.
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FIGURE 9. Comparison of energy consumption.

1) IMPACT OF ENERGY CONSUMPTION
This metric is used to calculate the overall energy consumed
by the system to complete the routing process, since routing
is an important to reduce energy consumption. The energy
consumption is calculated by subtracting the remaining
energy from the total energy.

Fig. 9 represents the evaluation of energy consumption
with respect to the number of nodes. The evaluation or
comparison result shows that the proposed work achieves
less energy consumption when compared to other existing
approaches because the number of illegitimate sensor nodes
was reduced, which reduces energy consumption by only
considering legitimate sensors and user data rather than
all the data for transmission. The number of illegitimate
sensor nodes identified is 10% with respect to number
of nodes. Illegitimate nodes in a WSN refer to nodes
that are unauthorized or malicious, and their presence can
compromise the overall security and performance of the
network.

For reducing energy consumption, we performed modi-
fied honeycomb-based network partitioning and clustering,
which reduces energy consumption and latency during data
transmission because of its efficient network management.
In addition, we used the TLDQN algorithm for routing,
which reduces the learning efficiency problem by using
transfer learning, which also increases training and testing
speeds compared to traditional reinforcement learning. In the
proposed HieMulti-Block model, we used an edge assisted
sink node, whereas the edge server provides additional
resources for the sink node, which reduces high energy
consumption. The previous works include both legitimate
and illegitimate nodes for data transmission, which increases
energy consumption. In addition, the entities are placed in a
random manner, which leads to poor network management
and high energy consumption. The OL-RL model routed
using Q-learning, which takes a long time to generate
Q-values, increasing energy consumption. But in our

FIGURE 10. Comparison of latency.

research, the number of iterations improves the Q-value
generation in the TLQDN algorithm.

2) IMPACT OF LATENCY
Latency inWSNs refers to the amount of time it takes for data
or a message to transit from a source node to a destination
node inside the network. The effective system must have
low latency; otherwise, it does not provide efficient results.
Fig. 10 represents the experimental result of latency for both
proposed and existing models with respect to the number of
nodes.

The comparison result proved that the proposed HieMulti-
Block model achieves low latency compared to existing
models. In this research, we deployed an edge-assisted
sink node to reduce overloading and latency during data
transmission. In addition, we proposed a high convergence
algorithm for authentication, routing, and intrusion detection
that reduces energy consumption due to its speed.

The existing models such as OL-RL, and PSO-ABC
used slow convergence algorithms like Q-learning and
optimization (i.e., particle swarm optimization and artificial
bee colony) which increase latency and energy consumption.
In our work, we construct the network based on a modified
honeycomb structure, which increases network management
and reduces latency during data transmission. In existing
works, the network is constructed in a randommanner, which
increases latency due to its inefficient management.

3) IMPACT OF THROUGHPUT
Throughput refers to the amount of data successfully
transmitted over the network within a given time period.
It represents the efficiency of the network in terms of
data transfer. The mathematical expression of throughput is
defined as:

Throughput =

∑
Data transferred∑

Time taken for transmission
(44)
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FIGURE 11. Comparison of throughput.

where ‘‘
∑

Data transferred’’ refers to the number of data
packets that were successfully delivered to the destination
node without any errors or losses during transmission. The
‘‘
∑

Time taken for transmission’’ represents the duration
from the start of data transmission until the completion
of the last successfully received packet. Fig. 11 shows
the experimental results for throughput for both proposed
models and models that already exist, based on the number
of nodes. The experimental results show that the proposed
HieMulti-Block achieves the highest throughput compared
to existing models. In this research, we select an optimal
CH based on node centrality, distance, energy, and trust
that increases throughput. Furthermore, we use the TLDQN
algorithm to performRL-based intelligent routing, which first
selects an optimal forwarder and then selects optimal and
secure routing by taking into account various parameters such
as hop count, link stability, throughput, and packet delivery
ratio. This type of intelligent routing increases throughput and
reduces the rate of packet loss. The proposed HieMulti-Block
identifies both malicious nodes and information nodes using
DTO and Bi-GAN, respectively, which increases security,
therefore increasing throughput and reducing packet loss
rate. The existing PSO-ABC model selects the shortest
path for data transmission, which reduces the throughput
because it does not consider any security measures during
routing. EnhancedQoSmanagement made possible by higher
throughput ensures that crucial packets encounter less delay
and are less prone to being lost. By managing congestion
more effectively, and sending data more quickly, SDWSNs
with higher throughput are better able to deal with the
transfer of data and have lower packet loss rates. The existing
OL-RL model selects the optimal path based on distance
and energy, which are not sufficient for the optimal path
selection that leads to less throughput. In addition, in the
existing model, all the transactions are stored in a centralized
manner without providing any security, which leads to poor
throughput.

4) IMPACT OF PACKET DELIVERY RATIO
The packet delivery ratio (PDR) is the ratio of successfully
transmitted packets by the sender (source node) to the total
number of packets received by the receiver (destination node).
Its mathematical expression is:

PDR =

∑
Number of packet received∑
Number of packet sent

× 100% (45)

Note that the Bi-GAN algorithm is a deep learning model
that can be trained to detect anomalous behavior or attacks
in a network and potentially improve the PDR in a larger
network. Bi-GAN can contribute to achieving a higher PDR
in larger networks by aiding in the detection of anomalous
behavior or attacks.

Here are more detailed explanations of how Bi-GAN can
help in larger networks and improve the PDR:
• By utilizing Bi-GAN for anomaly detection, administra-
tors can detect anomalies or attacks at an early stage.
Early detection enables swift response and mitigation
measures to be taken, reducing the impact of the
anomalies on the network. By addressing anomalies
promptly, the network’s overall performance, including
PDR, can be better preserved.

• Bi-GAN helps identify and mitigate potential attacks
or malicious activities in the network. By accurately
detecting and responding to such incidents, the net-
work’s security is enhanced. A more secure network
reduces the likelihood of disruptions, unauthorized
access, or malicious interference, which can positively
impact the PDR.

• Bi-GAN detects anomalous behavior or attacks, pro-
viding insights into network abnormalities. This infor-
mation optimizes resource allocation strategies by
addressing issues in specific nodes or sets of nodes.
Measures like adjusting transmission power, reallo-
cating resources, or rerouting traffic can be taken to
improve performance. These optimizations enhance the
PDR by ensuring efficient resource utilization and
avoiding areas with degraded network performance.

However, for the OL-RL model, by optimizing power allo-
cation and data transmission decisions through reinforcement
learning, the article aims to enhance the overall performance
and efficiency of SDWSNs. Improving these aspects can
indirectly impact the PDR by ensuring more reliable and
successful packet delivery within the network. The rein-
forcement learning algorithms, such as Q-learning and deep
Q-learning, help in making informed decisions based on
environmental conditions and network requirements, which
can potentially lead to an improvement in the PDR.

The PSO-ABC approach could potentially increase PDR
based on the nature of these algorithms:
• Optimal cluster head selection: The improvement of CH
selection can potentially lead to enhanced packet routing
and reduced packet loss, thereby increasing PDR.

• Communication overhead reduction: By optimizing the
routing paths and reducing unnecessary transmissions,
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FIGURE 12. Comparison of packet delivery ratio.

these algorithms can improve network efficiency. This
reduction in overhead can result in more available
resources for transmitting actual data packets, thereby
increasing the likelihood of successful packet delivery
and consequently improving PDR.

• Network performance enhancement: PSO-ABC
approach improve network performance by optimizing
clustering, enabling better load balancing, improved
coverage, and efficient resource allocation. These
enhancements create a robust network, minimizing
packet loss and ensuring successful data packet delivery,
ultimately positively impacting PDR.

Fig. 12 shows the packet delivery ratio with respect to the
number of nodes. Based on the comparative result, it is clear
that the proposed work has a higher PDR than the existing
work. The proposed HieMulti-Block model performs secure
authentication in an initial stage, which increases security
and PDR by eliminating illegitimate entities. In addition,
we perform clone attack detection by validating random
numbers, which also increases the PDR. Effective network
construction and management also lead to a high PDR. The
optimal and secure clustering and routing process increases
the PDR. In this research, with all parameters of the sensor
nodes registered by the TA to ensure the legitimacy of the
sensor nodes, the blockchain stores all the information with
a private key provided by the TA. This process increases the
security of our network and increases the PDR. In existing
models, the sensor nodes are deployed in a random manner,
which leads to poor network management and a lower PDR.
The existing work does not perform optimal and secure
clustering and routing, which increases the packet loss ratio
and reduces the PDR. Lack of optimal security also reduces
the PDR.

5) IMPACT OF NETWORK LIFETIME
This metric is utilized to evaluate the lifetime of the sensor
nodes. The sensor lifetime is defined as the amount of time a
sensor node remains active to survive in the environment. The

FIGURE 13. Comparison of network lifetime.

longest lifetime of the sensor node increases the performance
of the system. Fig. 13 depicts the comparison of network
lifetime with respect to the number of nodes. The results of
the figures showed that the proposed HieMulti-Block model
outperformed previous works in terms of network lifetime.
The proposed HieMulti-Block model achieves high network
lifetime because it deploys a sensor node in a modified
honeycomb-based network structure, which increases net-
work management and reduces energy consumption; hence,
it achieves high network lifetime. Here, an edge-based sink
is proposed for performing clustering, routing, and inves-
tigation, which reduces overload and energy consumption
in a real-time environment and increases network lifetime.
We propose a high convergence algorithm, which increases
processing speed and reduces waiting time and energy
consumption; hence, it increases network lifetime. In existing
works, sensor nodes are deployed in a randommanner, which
increases energy consumption and reduces network lifetime.
Inaccurate clustering and CH selection also reduce network
lifetime due to re-clustering and CH selection; thus, the
proposed HieMulti-Block model considers multiple metrics
for optimal CH selection, whereas previous works consider
only a few metrics for clustering and CH selection, which
reduce network lifetime.

6) IMPACT OF COMPUTATION OVERHEAD
The computation overhead is stated as the time taken
for a sensor node to process the packets. It should be
determined from the time the packet is completely received
to the time it is completely processed by the sensor node.
The mathematical formulation of computation overhead is
defined as:

Computation Overhead =
RT
CT
× 100% (46)

where RT represents the response time of packets and CT
is the completion time of the sensor node. Fig. 14 depicts
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FIGURE 14. Comparison of computation overhead.

comparison between proposed and existing works in terms
of computation overhead for a certain number of nodes.

The result shows that the proposed work achieves lower
computation overhead compared to existing models. The
reason for lower computation overhead is a reduction of
illegitimate nodes, efficient clustering and routing selection,
and accurate detection of malicious nodes and informa-
tion detection. In addition, we used a high-convergence
and fast-executing algorithm, which reduces computation
overhead. For instance, the 3D cube algorithm is proposed
for private key generation and generates the key within
a minimum amount of time using the DNN algorithm,
which reduces computation overhead. Effective network
management reduces the computation overhead. In this
research, we proposed secondary and primary controllers
for network management, which reduce the overhead in
the environment. Previous works used a single controller,
which does not effectively manage the environment and
is unsuitable for a real-time environment due to the high
overhead caused by the massive amount of task processing.

Sensor nodes carry out simple processing activities like
collection, filtration, and fundamental information process-
ing since computation overhead is negligible. The cost of
computing per node is quite low. In an SDWSN, sensor
nodes frequently interact with nearby nodes to transmit and
combine information. Reduced processing overhead may
allow for less information to be transferred between sensor
nodes, lowering communication costs.

7) IMPACT OF DETECTION ACCURACY
This metric is applied when determining how accurate an
intrusion detection system is in an SDWSN environment. The
accuracy is calculated by dividing the sum of true positive
and true negative by the sum of total samples. The following
formula can be used to calculate the detection accuracy:

Detection Accuracy =
TP + TN

TP + TN + FP + FN
(47)

FIGURE 15. Comparison of detection accuracy.

where TP represents true positive, TN is true negative, FP is
false positive, and FN represents the false negative. Fig. 15
shows the comparison of detection accuracy with respect to
the number of nodes. The comparison result demonstrates
that the proposed HieMulti-Block model achieves high
detection accuracy. In this research, 3D cube algorithm-based
authentication is performed to increase security, which also
reduces misclassification due to the presence of external
attackers. Here, a malicious node is identified by using
the DTO algorithm. Intrusion is identified by considering
both flow-based features and packet-based features using
Bi-GAN, which helps detect the intrusion accurately. For
intrusion detection, existing works only consider flow-based
or packet-based features, which leads to misclassification
and lower detection accuracy. Furthermore, existing work
does not take into account malicious nodes, which leads to
lower detection accuracy because legitimate nodes may be
compromised by attackers; thus, malicious node detection is
also important.

8) IMPACT OF PACKET DROP RATIO
Packet drop ratio, also known as packet loss ratio, is a network
performance metric that measures the proportion of data
packets that are lost or discarded during data transfer in a
computer network or communication system. It is expressed
as a ratio or percentage and is an important indicator of
network reliability and quality. Packet loss can occur for
various reasons, including network congestion, hardware
failures, or errors in the transmission process. The packet drop
ratio is typically calculated as:

Packet Drop Ratio =
Number of Packets Dropped
Total Number of Packets Sent
× 100% (48)

Each packet in a network typically has a specific deadline
or an expected time framewithinwhich it should be delivered.
In cases where a packet cannot meet its deadline, network
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FIGURE 16. Comparison of packet drop ratio.

schedulers or protocols make efforts to minimize the number
of packets that are dropped due to deadline expiration. This is
crucial for maintaining network reliability and ensuring that
as many packets as possible reach their destinations without
being discarded.

The packet drop ratio can affect the accuracy of intrusion
detection within the network. If a significant number
of packets are dropped, it may result in incomplete or
inconsistent data being analyzed by the IDS. This can lead
to false positives or false negatives in intrusion detection,
potentially reducing the security of the network.

Fig. 16 illustrates a comparison of the packet drop ratio in
relation to the total number of nodes. In the proposed method,
which employs reinforcement learning-based routing, efforts
are made to minimize data losses during transmission. The
use of RL-based routing assists in reducing the occurrence
of losses by optimizing the selection of routes. By mitigating
node failures and optimizing route creation, the base station
is able to receive a higher volume of data packets, ultimately
improving the overall network performance.

9) IMPACT OF CONTROL OVERHEAD
The control overhead in a network is represented by
the average number of control messages sent during a
specific time period, such as a network round or a given
operation, and it is measured in messages per second
(mps). A lower control overhead is desirable because it
minimizes the energy consumption associated with sending
control messages. Additionally, reducing control overhead
can enhance network stability and alleviate congestion, as it
reduces the non-essential data traffic in the network.

Control overhead is associated with the management,
communication, and coordination required to maintain and
control network operations. Each network node (such as
routers, switches, or devices) generates control traffic for
tasks like routing updates, address resolution, and network
management.

FIGURE 17. Comparison of control overhead.

FIGURE 18. Time-based metrics analysis.

When there are fewer nodes in a network, there are fewer
devices that need to communicate with each other for control
purposes. This results in reduced control overhead because
there is less control traffic and fewer control messages
being exchanged. In contrast, a high number of nodes,
especially in a complex and large network, will generally
generate more control overhead due to the increased need
for coordination and communication among these nodes. This
additional control overhead can affect network performance
and efficiency.

Fig. 17 shows the comparison of control overhead
with respect to the number of nodes. The comparison
result demonstrates that the proposed HieMulti-Block model
achieves lower control overhead than other models, and this
results in better network performance.

10) MODELS’ TIME-BASED METRICS AND CONFUSION
MATRIX ANALYSIS
To evaluate the performance of the system, key time-based
metrics such as precision, recall, and F1-score were measured
and confusion matrices generated. These metrics were
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FIGURE 19. Confusion matrix visualization.

calculated throughout the 600-second simulation period to
assess the system’s real-time effectiveness in identifying and
responding to network intrusions.

It is recommended to do the following in order to
gain a deeper understanding of each model’s performance:
calculation of time-based metrics and confusion matrix
visualization.

The precision is the ratio of true positives (correctly
identified intrusions) to the total number of instances that
the model predicted as positive (true positives plus false
positives). It measures the accuracy of positive predictions.
A high precision indicates that the model predicts positive
results. The recall is the ratio of true positives (correctly
identified intrusions) to the total number of actual positive
instances (true positives plus false negatives). It assesses
the ability to identify all relevant positive instances. A high
recall indicates that the model is good at capturing positive
instances. The F1-score is the harmonic mean of precision
and recall, providing a balance between making accurate
positive predictions (precision) and capturing all relevant
positive instances (recall). It is useful for assessing the overall
real-time performance of the IDS system. Table 6 shows the
formulas for precision, recall, and F1-score. And Fig. 18
shows the evaluation of the key time-based metrics for all the
models throughout the 600-second simulation period.

The confusion matrix [60] is a visual representation
of the performance of an IDS model. It consists of a

TABLE 6. Formulas for Precision, Recall, and F1-Score.

2 × 2 matrix where each cell represents one of four
categories: TP, TN , FP, and FN . The confusion matrix helps
in understanding the model’s performance by showing how
many intrusions were correctly detected (TP), how many
non-intrusions were correctly identified (TN ), how many
non-intrusions were incorrectly flagged as intrusions (FP),
and how many intrusions were missed (FN ). Visualizing
the confusion matrix and labeling its cells provides insights
into the model’s ability to make accurate predictions and
distinguish between intrusions and non-intrusions. Fig. 19
shows the confusion matrix visualization for all the models.

E. RESEARCH SUMMARY
This section depicts a summary of the proposed HieMulti-
Block model’s experimental results. The comparison results
demonstrated that the proposed HieMulti-Block model has
better performance in terms of energy consumption, latency,
throughput, packet delivery ratio, network lifetime, compu-
tation overhead, detection accuracy, packet drop ratio, and
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TABLE 7. Numerical analysis of proposed and existing works.

control overhead, which are shown in Figs. 9, 10, 11, 12,
13, 14, 15, 16 and 17. The performances are achieved by
performing secure authentication, honeycomb-based network
partitioning and clustering, RL-based intelligent routing, and
a hybrid intrusion detection system. The time-based metrics
evaluation for the proposed model and other models was
also conducted, as shown in 18. This evaluation also proved
that HieMulti-Block has better real-time performance in
comparison to other models. Table 7 depicts the average
numerical values of the performance metrics for both
proposed and existing approaches.

This study’s most important findings are as follows:
• For increasing security, we use the 3D cube algorithm
for secure authentication. This algorithm generates the
private key using a DNN, which makes the system more
secure and reduces energy consumption.

• For reducing energy consumption and increasing net-
work management, we perform honeycomb-based net-
work partitioning and clustering, which provides better
coverage and throughput.

• For reducing packet loss ratio and increasing throughput,
we perform RL-based intelligent routing using the
TLDQN algorithm, which detects optimal and secure
paths with the minimum amount of time due to applying
transfer learning to the RL method.

• For enhancing security, we perform a hybrid intrusion
detection and prevention system in which the malicious
node is detected based on the DTO algorithm and
intrusions are detected based on the Bi-GAN algorithm,
which successfully detects both signature- and anomaly-
based intrusions.

V. CONCLUSION
The proposed work aims to identify the intrusions for
providing security with high accuracy, throughput, and packet
delivery ratio. Initially, all the sensor nodes and users
are authenticated by a trusted authority to ensure their
legitimacy using the 3D cube algorithm. To increase network
management and reduce energy consumption, we construct
the network based on a modified honeycomb structure, which
also increases communication efficiency. For providing a
high packet delivery ratio and throughput, we perform
RL-based intelligent routing using TLDQN, which selects
optimal and secure routing for data transmission and reduces

the packet loss rate. Finally, a malicious node is identified
by the DTO algorithm by monitoring the behavior of
the sensor nodes, and both signature- and anomaly-based
intrusions are detected by using the Bi-GAN algorithm,
which considers both flow-based features and packet-based
features for intrusion detection. The detection of both
malicious nodes and intrusions leads to high security. After
completing intrusion detection, prevention is initiated to
increase security. Taking into account different metrics, the
best delegators are chosen to let the environment know
about network intrusions, which increases security. The
simulation for this research is done by NS-3.26 network
simulator, and the performances are evaluated based on
various performance metrics, which show that the proposed
work achieves better performance compared to state-of-
the-art works. The proposed approach can be deployed in
critical infrastructure sectors like energy, healthcare, and
transportation. It can also enhance security in industrial
automation systems to protect against cyber-physical attacks.
The suggested system can potentially be implemented in
an edge-assisted SDWSN environment; however, there are a
number of problems to overcome. It needs a comprehensive
approach, rigorous preparation, and significant resources.
Before beginning a task like this, it will be crucial to do
a feasibility assessment, handle technical issues, and take
into account pragmatic concerns. Furthermore, partnering
with professionals in cybersecurity, wireless networking, and
artificial intelligence may greatly increase the probability of
success.

VI. FUTURE WORKS
The future work of this research project focuses on the
development and implementation of two novel algorithms
for IDS in IoT-enabled SDWSNs. These algorithms are
expected to significantly enhance the efficiency and accuracy
of intrusion detection in this context. The first algorithm will
serve as a feature selection algorithm, and the second one
will be used for feature extraction. These algorithms aim
to address the challenges associated with processing large
datasets in IoT-enabled SDWSNs and improve the overall
performance of intrusion detection.

In addition to algorithm development, the research will
also involve practical implementation and testing. The
proposed work will include extensive experimentation using
real-world data from IoT devices in SDWSNs, specifi-
cally the https://www.unb.ca/cic/datasets/nsl.htmlNSL-KDD
dataset, to evaluate the effectiveness of the two novel
algorithms in selecting and extracting relevant features for
intrusion detection. These algorithms will be fine-tuned to
ensure optimal performance and efficiency in the IoT envi-
ronment, which often operates under resource constraints.
Furthermore, the research will explore the integration of an
advanced deep learning model as an anomaly detector in IDS,
aiming to improve the accuracy of intrusion detection while
conserving energy resources. By leveraging the advanced
deep learning model’s capacity to process and analyze
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data locally on sensor nodes, this approach can enhance
security without compromising efficiency. The research will
investigate the trade-offs between detection accuracy and
computing complexity. Ultimately, the research aims to
deliver a comprehensive intrusion detection solution for IoT-
enabled SDWSNs, incorporating two novel algorithms and
an advanced deep learning model, with a focus on generating
timely alerts to notify the users of potential security threats.

Another future work, we aim to develop an efficient com-
munication protocol for SDWSNs that leverages advanced
queuing techniques, including priority queues and weighted
fair queues, to enhance QoS. Additionally, we intend to
enhance security and privacy while keeping costs low by
integrating 5G communication technology with attribute-
based fog/edge-assisted signcryption and quantum encryp-
tion systems. Signcryption is a cryptographic technique that
combines both digital signature and encryption operations
into a single operation. Fog/edge-assisted signcryption is
a concept that suggests the integration of signcryption
techniques within fog or edge computing architectures
to enhance data security and privacy in decentralized,
distributed systems. This concept can involve signing and
encrypting data at the edge of a network, such as on IoT
devices or sensors, and may have advantages in terms of
reducing the overhead associated with transmitting data to a
centralized cloud server.

APPENDIX
Our dataset associated with this paper can be accessed online
at DOI: https://figshare.com/articles/dataset/SDWSNIDS_
Dataset_zip/24118626
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