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ABSTRACT In typical traffic scenarios such as non-signalized roads or shared spaces where vehicles and
pedestrians interact without clear separations. The interaction distance between objects is usually shorter
due to the simultaneous motion of road users. Pedestrian-crossing scenarios in these areas make the scenario
complex due to the unpredictability of the pedestrians intention and the need to balance between safety,
comfort, and time consumption. To address this collision avoidance(CA) problem, a novel strategy using
Social Force Model (SFM)-based adaptive parameters was proposed. The interaction system between the
ego vehicle and the pedestrian was simplified as a Markov process to adopt the SFM-based dynamic model,
and the validity of this simplification was demonstrated using real-world driving data. Based on the current
state of the interaction system that consists of vehicle and pedestrian, this research adopted the optimal
parameters that were generated by particle swarm optimization (PSO) to generate optimal parameters for
the SFM-based vehicle dynamic model, which helps the vehicle avoid pedestrians with random motion. The
proposed method was validated through bench testing, and the results showed that the proposed method
balanced the safety, comfort, and time consumption requirements during the CA process in the studied
scenario.

INDEX TERMS Collision avoidance, social force model, autonomous vehicle, pedestrian-vehicle
interaction.

I. INTRODUCTION
For intelligent control system or advanced driver assistance
systems (ADAS) that are equipped in highly automated
vehicles. Their main function are to maintain safer driving for
both drivers and pedestrians [1], [2], [3], especially on non-
signalized road. In some countries in Southeast Asia, electric
bikes are more and more involved in the interaction of traffic
flow due to their convenience and quickness [4]. Users of
this type of transportation blur the line between vehicles and
pedestrians, as all traffic participants can move freely in the
same space. At the same time, shared space, which is used
to increase the attractiveness of people traveling to public
spaces, is more and more mentioned in western countries
by urban design as an alternative to traditional designs [5],
[6]. The shared space, like mixed traffic, is a concept
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that promotes a sense of vigilance and responsibility by
reducing demarcations and any physical distinction between
the streets and pedestrian areas [7]. Facing this kind of traffic
section, such as a scenario shown in Fig. 1,which was a
video frame collected by Smart Mobility Research Center
(SMRC) [8], drivers need to carefully assess the collision
risk although driving speed is relatively low. And in such
non-signalized areas, the moving priority of pedestrians is
usually not very high, which means vehicles do not need
to completely stop to wait for the pedestrians to pass.
Therefore, when the motion of the pedestrian is certain,
or in other words the moment when the pedestrian-crossing
is stochastic from the perspective of drivers and taking
into account the need of saving commute time or quickly
passing through similar areas with uncertain risk, drivers or
control agents need to balance of keeping relative higher
velocity and ensuring proper safety distance during avoidance
process.
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FIGURE 1. Possible routes choice for the pedestrian.

Focusing on such collision avoidance(CA) problems,
a possible solution is to establish interaction relations
between pedestrians and vehicles. A lot of research has
been conducted to analyze pedestrian intention and vehicle-
pedestrian interaction [9], [10], [11]. In [12] and [29],
based on a statistical analysis of pedestrian behavior,
a statistical framework to assess the risk of passing a
non-signalized intersection for vehicles was established.
Also, a predictive risk metric when a pedestrian appears
was given quantitatively based on the pedestrian-aware risk
model. The prediction of the pedestrian’s motion was also
adopted in [37]. In [13], Long Short Term Memory (LSTM)
modules based recurrent neural networks were adopted to
make a pedestrian intent prediction. However, the prediction
was based solely on the motion trajectory of the pedestrian.
The above research mainly focused on the risk assessment
of pedestrian crossing road intention. However, it is still
difficult to indicate the pedestrian’s trajectory in the actual
vehicle-pedestrian interaction. Also, some research focused
directly on the pedestrian behavior or motion. And the
social force model (SFM) is the most used method for
modeling users of such shared space in micro-simulation
and has been continually improved and modified since its
first introduction [14]. Kretz et al. analytically solved the
SFM resultant equations for very simple cases and provided
helpful comments on model calibration [15]. Besides, not
all researches focus on the interactions among pedestrians.
Dias et al. explored the applicability of an SFM based
microscopic simulation model for personal mobility vehicles
and multiple pedestrians in mixed traffic [16]. Based on
fundamental patterns of multi-pedestrian interaction with a
low speed vehicle (front, back, and lateral interaction in
open space), Yang et al. proposed an SFM-based vehicle-
pedestrians interaction model, and this model was calibrated
by the genetic algorithm (GA) based on trajectory data of the
same vehicle-pedestrian interaction patterns from controlled
experiments [17].
At the same time, there are also some CA strategies

for vehicle controllers [18]. Some ADAS that aims to help
drivers avoid collision risks have been developed. One of
the main features of ADAS is the CA system. A sufficient

CA architecture usually encompasses threat assessment, path
planning, and path tracking strategies [19]. There are at least
two common types of CA design control architecture that
have been proposed and implemented. For example, a multi-
layer CA system [20], which contains both a trajectory
re-planning layer and a tracking layer [21], was proposed
for active CA. This is the usual type of CA implementation
and is also known as a guidance and navigation control
system [22]. Besides, optimization algorithms based on
different mathematical theories have also been proposed.
Cheng et al. proposed virtual flu-id-flow-model based
lane-keeping integrated with a collision avoidance control
system to realize the function of both lane-keeping and
collision avoidance [23]. The predictive nature and constraint
handling capabilities of model predictive control (MPC)
make it an attractive framework for leveraging these new
technologies. So, MPC was also adopted in CA [24], [25],
[38], [39]. A machine learning approach, such as the artificial
neural network [26], [41] and collision cone approach [27]
were also used for designing CA strategies. In addition,
MPC combined with the SFM-based pedestrian model to
create a more realistic interactive scenario was proposed by
Yang et at., which also showed the potential of extending
the method to address more complex vehicle-pedestrian
interaction situations [28]. Besides, in [30], Shen et al.
considered comfortable driving and proposed a control
framework for Connected and Automated Vehicles(CAVs)
to approach the signalized intersections with good driving
comfort. Besides, vehicle risk assessment methods were also
proposed to control a vehicle to keep the presented lane and
avoid a collision that may be caused by a road object [40].

However, the previous research that developed CA strate-
gies for autonomous vehicles may focus on the ego vehicle
itself too much, less considering the dynamic of obstacles.
For most research mentioned above, the motion of the
obstacle was known in advance, such as being fixed in one
position or moving along a predetermined trajectory by a
given speed profile. Although other research, such as [4]
and [28], adopted SFM for more realistic obstacle movement,
there was also no randomness in the proposed SFM, which
means the motion of obstacles can be predicted accurately
in such researches. But, when considering the individual
difference among pedestrians and the nuances of different
shared space (like ages of pedestrians or visibility of area),
the precise motion prediction of pedestrians is difficult to
achieve, which also can be found in the results of research
on modelings for similar mixed traffic scenarios, such
as [17]. Thus, in this paper, we considered the uncertainty
of pedestrians motion and proposed a novel SFM-based
adaptive parameters method to help ego vehicle make
avoidance without motion prediction of pedestrian, just by
the force balance. The main contribution of this work is as
follows:

• The Markov process was adopted to simplify the
vehicle-pedestrian interaction system. The rationality of
the simplification was illustrated by real driving data.
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• A novel SFM-based adaptive parameters CA method
for the ego vehicle was proposed when considering the
uncertain motion of the pedestrian.

The rest of this paper is organized as follows: the problem
formulation is presented in detail in section II. Section III
establishes both the SFM-based pedestrian and vehicle
dynamic model. Then the proposed method for vehicle’s safe
and quick passing is illustrated in section IV. A bench test
is carried out to verify the proposed method in section V.
Section VI is the conclusion.

FIGURE 2. The scenario modeling of Fig.1.

II. PROBLEM DESCRIPTION
A. SCENARIO
This paper addresses the scenario illustrated in Fig. 2, where
the ego vehicle moves forward in the same direction as a
pedestrian. In Fig. 2, the Cartesian coordinates are defined
by X and Y , respectively. Superscript 0 represents the initial
states or parameters and subscript ped is the abbreviate of
pedestrian where ev represents the ego vehicle. The future
motion of the pedestrian is qualitatively defined as the
following four possible realizations:

path 1: The pedestrian walks straightly without changing
direction. In this case, the ego vehicle does not need to take
on avoidance operation.

path 2 or 4: The crossing road behavior of the pedestrian is
too early (or too late), and the ego vehicle has not approached
yet (already passed). And in this case, the ego vehicle does not
need to take avoidance operation as well.

path 3: If the ego vehicle does not avoid the pedestrian in
time, the minimum distance between them will be smaller
than a threshold safety distance (defined as minDsafe in
the following sections) that indicates whether the collision
avoidance process is safe or not. In this case, the ego vehicle
must yield to avoid danger.

B. PROBLEM FORMULATION
With the above analysis, In the case of the pedestrian in
paths 1, 2, and 4, the ego vehicle just needs to follow the
initial trajectory and speed, which is considered the optimal
operation when facing a pedestrian with potential crossing
road intention. However, appropriate collision avoidance
maneuverings in the case of path 3 need to be further
discussed.

Considering reducing time consumption and maintaining
passenger comfort, the purpose of this paper is to provide

avoidance maneuvering for the ego vehicle under the
requirements of safety, quick passing, and slight steering.
As shown in Fig.2, the available information at time t is
listed as:

(1) The current velocity and position of the ego vehicle: vtev
and Ptev = [X tev,Y

t
ev];

(2) The current velocity, position and yaw angle of the
pedestrian: vtped, P

t
ped = [X tped,Y

t
ped] and δtped.

δtobs is the observation of δtped by vehicle sensors, which
is used for judgment of ego vehicle that which path the
pedestrian will choose:

δtobs

{
∈ [−δthrped, δ

thr
ped], path 1

≤ −δthrped, path2 - 4
(1)

Besides, the interaction between the ego vehicle and the
pedestrian is essential. As the ego vehicle and the pedestrian
are both the participants of traffic flow, the behavior of the
participants is not only determined by their own will, but is
usually influenced by the surrounding environment. Taking
the pedestrian that decides to cross the road currently as an
example, shown in Fig.3.

In Fig.3, the pedestrian, shown as green circle, is fixed
currently as the shown state

(
Pnowped , vnowped

)
. The ego vehicle,

shown as triangle, owns different possible states that follow:{ ∥∥∥Pnowped − P1ev
∥∥∥
2

<

∥∥∥Pnowped − P2ev
∥∥∥
2

v1ped < v2ped
(2)

Fig.3 gives the possible path choices for pedestrian-crossing
when the pedestrian faces the vehicle owning different states.
A pedestrian path that is with more time consuming, such as
the path with red color, means the pedestrian slows his speed
down for a safe crossing. When a pedestrian faces a closer or
faster oncoming vehicle, the pedestrian will change its future
his future behavior. Previous works proposed some methods
to describe this kind of interaction and most of them were
based on SFM [14], [15], [16], [17].

FIGURE 3. Possible path choices of pedestrian influenced by vehicle with
different state.

Therefore, the states of these two participants are
integrated as one system state which is written as:

St =

(
Stev, Stped

)
(3)
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where Stev =
[
Ptev, v

t
ev

]
and Stped =

[
Ptped, v

t
ped

]
are the

state of the ego vehicle and the pedestrian at current time t ,
respectively.
Assumption 1: The CA process of the interactive system

consisting of the ego vehicle and the pedestrian follows the
Markov process.

Generally, the whole CA process should be considered.
However, when the future trajectory of the pedestrian follows
an unknowable profile and is stochastic, the future state of the
interaction system can be described by a transition probability
matrix based on the current state, which is simplified as a
Markov process. And Markov process has been adopted by
many similar traffic processes [31], [32], [33], [34].

1) RATIONALITY OF ASSUMPTION 1 IN THIS STUDY
Although some previous research used the Markov process
to illustrate similar traffic processes, they rarely justified the
use of the Markov process.

To catch the key to improving safety driving by analyzing
the interaction of ego vehicle and other traffic participants,
some traffic data collected by our SMRC is adopted [8].
In this study, interaction events between pedestrians and

the ego vehicle on a non-signalized road are used for
illustration. The record signals include the following items:

• Video data containing cumulative frames and running
time during interactions on the non-signalized road;

• Time series of vehicle lateral acceleration ayev (·);
• Time series of lateral distance between ego vehicle and
the i− th pedestrian dy,iev2p (·).

5 typical time series data sets consist of ayev (·) and dy,iev2p (·)

are selected and used for correlation analysis. The collected
data is shown in Fig.4. (In order to show concisely, here we
only give the image of one data set in the total 5 sets, because
their distributions are similar.)

FIGURE 4. The time series of vehicle lateral acceleration and
corresponding vehicle-pedestrian distance.

Fig. 4 shows some correlation in the time domain between
ayev and dy,iev2p. The cross-correlation sequence of two joint

stationary stochastic processes xn, yn was given by [36] as

follows:

R̂xy (m) =


N−m−1∑
n=0

xn+my∗n, m ⩾ 0;

R̂∗
yx (−m) , m < 0

(4)

where N is the length of time series data and ∗ denotes
complex conjugation. The Eq.(4) can only estimate the
sequence because, in practice, only a finite segment of one
realization of the infinite-length random process is available.
In general, the correlation function requires normalization to
produce an accurate estimate by the following equation:

R̂xy,coeff (m) =
1√

R̂xx (0) R̂yy (0)
R̂xy (m) (5)

FIGURE 5. Normalization correlation analysis of vehicle-pedestrian
interaction events.

And the results are shown in Fig.5. It shows that:
• As the correlation between the ayev and dy,iev2p increases
as the time delay decreases, it shows that the input
of lateral acceleration directly affects the vehicle-
pedestrian distance. The lateral acceleration is caused
by the vehicle steering wheel angle which is considered
system input, and the vehicle-pedestrian distance is
the system state. So, the vehicle-pedestrian interaction
system state of next time is transformed by the current
system state and the system input.

• The correlation between the two sets of data drops
sharply as the time delay increases, which means earlier
historical input of lateral acceleration has little influence
in the current state. This feature can be approximated as
a non-aftereffect.

And the above analysis shows the rationality of approxi-
mating the vehicle-pedestrian system as a Markov process.
Actually, from physical-view consideration, the future behav-
ior of pedestrians and drivers, such as crossing road or
accelerating/decelerating vehicles, is also mainly based on
the current positions and respective velocity.

According to Assumption 1, the transition function of the
interactive system could be established as: pev

(
St+1
ev

∣∣∣ St , . . . , S0
)

= pev
(

St+1
ev

∣∣∣ St
)

pped
(

St+1
ped

∣∣∣ St , . . . , S0
)

= pped
(

St+1
ped

∣∣∣ St
) (6)
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where pev and pped are the transition function of ego vehicle
and the pedestrian, respectively.

Furthermore, the accessible maneuver for the ego vehicle
during CA process is defined as a set of steering and
acceleration in x-direction:

mt
ev =

(
δtev, a

x,t
ev

)
(7)

where δtev is the steering wheel angle at time t and ax,tev
represents the acceleration in x-direction at time t . And the
velocity vtev, acceleration a

x,t
ev , and steering wheel angle δtev

are within the proper bounds:

vtev ∈
[
0, vmax

ev
]
, ∀t ∈ (t0, tend) (8)

atev ∈
[
−amax

ev , amax
ev

]
, ∀t ∈ (t0, tend) (9)

jtev ∈
[
−jmax

ev , jmax
ev

]
, ∀t ∈ (t0, tend) (10)

δtev ∈
[
−δmax

ev , δmax
ev

]
, ∀t ∈ (t0, tend) (11)

1δtev ∈
[
−1δmax

ev , 1δmax
ev

]
, ∀t ∈ (t0, tend) (12)

where jtev and 1δtev are the jerk of acceleration and steering
wheel angle at the current time, respectively. t0 and tend
are the time when CA process starts and ends, respectively.
Noticing that the lower bound of velocity is posed equally to
zero in order to avoid unwanted backward movements. The
bounds of atev and δtev are set to ensure that the trajectory of the
vehicle is within a reasonable range in the real world. At the
same time, the limits of change rates for the atev and δtev are
used to reduce impact.

Besides, some limits are added to the pedestrian for the
rationality of the movement as well:

vtped ∈

[
0, vmax

ped

]
, ∀t ∈ (t0, tend) (13)

atped ∈

[
−amax

ped , amax
ped

]
, ∀t ∈ (t0, tend) (14)

Considering the state St+1 is decided by St and the
maneuver mtev, the transition function is updated as:

p
(

St+1
∣∣∣ St

)
→ p

(
St+1

∣∣∣ St ,mt
ev

)
(15)

The choices of different maneuver for the ego vehicle bring
different transition possibilities based on the same current
state of the interaction system. As shown in Fig.6, (a) of
Fig.6 represents the current system state, that is defined as S0.
The pedestrian is shown as a circle while the ego vehicle is
simplified as a triangle. Considering two different maneuver
for the ego vehicle which are m1

ev and m2
ev, and in m2

ev,
the acceleration ax,2ev is larger than that of m1

ev. Then, the
possibility of reaching the next states S1 and S2 will be
different:  p

(
S1

∣∣∣ S0,m1
ev

)
≫ p

(
S2

∣∣∣ S0,m1
ev

)
p

(
S1

∣∣∣ S0,m2
ev

)
≪ p

(
S2

∣∣∣ S0,m2
ev

) (16)

The larger acceleration may bring farther moving distance
for vehicle and greater avoidance for pedestrian, whichmeans
the possibility of reaching state S2 in (c) of Fig.6 is larger
than that of S1 when taking maneuver m2

ev under the same

FIGURE 6. Different probabilistic state trajectories of the interactive
system based on different mt

ev.

initial state S0. However, there is still some possibility of
reaching S1 when taking m2

ev, such as ax,1ev is the upper limit
of current state S0. Fig.6 and Eq.(16) are just established to
explain that different maneuver taken by the ego vehicle may
lead to different interaction system states of the next time step,
and this is the reason for modifying the transition possibility
function as Eq.(15).

Furthermore, for the system state St , we aim to find the
optimal maneuver m∗,t

ev that is accessible currently to reach
the optimal state S∗,t+1. So, a reward function is established
to evaluate the currently chosen maneuver mtev:

r
(
St ,mt

ev, St+1
)

= −(wref

∥∥∥Pt+1
ev − Pref,t+1

ev

∥∥∥
2

+ wv

∣∣∣vX ,t+1
ev − vX ,∗,t+1

ev

∣∣∣
− wped

∥∥∥Pt+1
ev − Pt+1

ped

∥∥∥
2
) (17)

where Pref,tev is the reference path for the ego vehicle, and
vx,∗,t
ev represents the optimal speed of the ego vehicle in
the X -direction at time t . wref,wv and wped are the weights
of evaluation indexes, respectively. This reward function
requires the ego vehicle to balance tracking the reference
path, tracking optimal velocity and keeping away from the
pedestrian. And the purpose is to maximize this reward at
every time step.
When the initial state S0 is determined, the purpose is

to find the optimal policy π∗ that could maximize the
expect future reward V ∗

(
S0

)
from the following system state

S1, . . . , Stend by selecting the optimal maneuverm∗
ev ∈ Mev at

each time step for ego vehicle, which could be considered as
a Markov decision process(MDP):

V ∗

(
S0

)
= max

π∈5
E

[t=tend∑
t=t0

[
γ tr

(
St ,mt

ev, St+1
)∣∣∣ π]]

(18)
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where γ ∈ (0, 1) is a discount factor. Generally, the Bellman
Optimal Equation is adopted to solve the MDP:

V ∗
(
St

)
= max

mev
(r

(
St ,mt

ev, St+1
)

+ γ
∑

St+1∈Sall

p
(

St+1
∣∣∣ St ,mt

ev

)
V ∗

(
St+1

)
)

(19)

And the initial states of the ego vehicle and pedestrian are
set as:

δ0ped = δ0ev = 0 rad (20){
vx,0ped = 1.2 m/s

vy,0ped = 0 m/s
(21)

a0ped = a0ev = 0m
/
s2 (22)

DY ,0
ev2p = Y 0

ped − Y 0
ev = 2m (23)

whereDY ,0
ev2p is the Y -direction deviation distance between the

ego vehicle and pedestrian at the initial time. The minimum
safe distance, which is defined as minDsafe, is set as 1.5m
in this paper. Considering the ego vehicle is approaching
a pedestrian with stochastic moving, a 0.5m offset is
added to DY ,0

ev2p. The X -direction deviation distance DX ,0
ev2p is

unspecified, or in other words, it can be any reasonable value
for ego vehicle to successfully complete the CA process.
Namely, the previous state of the vehicle is supposed to be
cruising with a initial velocity v0ev.
However, a fundamental problem with MDP is that the

size of the state space S and the size of the action space
M both can grow quickly due to the high dimension of the
space, or due to increasingly fine-grained discretization to
approach a continuous representation. Which is referred to
as the curse of dimension by Bellman [35]. For the MDP
problem addressed in this paper, noticing the reference path
in the proposed scenario maintains a straight line, and the
optimal speed profile vx,∗ev in Eq.(17) is inaccessible during the
solution, the reward function r

(
St ,mtev, St+1

)
at each time

step is replaced by a R that defines the total reward of the
whole CA process for simplification:

R = Wrefdmin
ev2ref +Wvv̄Xev −Wpeddmin

ev2ped (24)

where

dmin
ev2ref = min

{∣∣∣Y tev − Y ref
ev

∣∣∣∣∣∣ t ∈ (t0, tend)
}

(25)

v̄Xev =

∑end
i=1 v

X ,i
ev · Ts

tend − t0
(26)

dmin
ev2ped = min

{∥∥∥Ptev − Ptped

∥∥∥
2

∣∣∣ t ∈ (t0, tend)
}

(27)

where Ts is the sampling time. And when the initial state S0

is determined, the V ∗
(
S0

)
is approximated to the maximum

value of R:

V ∗

(
S0

)
= maxR (28)

Then, instead of searching the optimal policy π∗, it is
possible to directly obtain the optimal maneuver profile m∗

ev
by the total reward R. Combining Eq.(24)- Eq.(28), the first
item of function R, which is from Eq.(25), requires the ego
vehicle to follow the reference path that is corresponding
to the requirement of slight steering. The second item,
which is from Eq.(26), gives the average X -direction vehicle
speed during the CA process that is corresponding to the
requirement of quick passing. And the final item, which is
from Eq.(27), is corresponding to the requirement of safe
passing.

Due to the above assignments, it is possible to define a
feasible profile δtev and a

x,t
ev as follows:

Definition 1: Curves δtev and ax,tev are feasible if they are
l−1-continuity and satisfy conditions (8) - (14). The set of
feasible δtev and a

x,t
ev are written as Fδ and Fa, respectively.

In summary, this paper addressed the following maneuver
planning problem:
Problem 1: Given the determinate initial state S0 and

reward function R to calculate the optimal maneuver profile
m∗,t

ev , ∀t ∈ [t0, tend ] which satisfies:

m∗
ev = argmax

mt
ev∈(Fδ∩Fa)

R

s.t. Equ.(8) − (14) (29)

Considering the vehicle-pedestrian interaction has been
thoroughly researched, this paper makes the following
assumption:
Assumption 2: Considering S0 follows conditions

(20)-(23) and mt
ev ∈ (Fδ ∩ Fa) is a finite set, the transition

function p
(
St+1

∣∣ St ,mt
ev

)
is approximated by an explicit

equation that describes a system state St+1 that reaches from
St by ego vehicle taking a specific maneuvermt

ev:

St+1
= fenv

(
St ,mt

ev
)

(30)

The following section III gives a modified SFM to
approximate the dynamic function fenv, and section IV gives
the solution of optimal maneuver profile m∗

ev which is known
as Problem 1.

III. SFM-BASED DYNAMIC MODEL
As the target scenario is not complex, a explicit dynamic
equation fenv is used to approximate transition possibility
function p, which is defined asAssumption 2. It is convenient
to calculate the total reward R of Eq.(24), which is essential
for solving Problem 1, after establishing fenv.In the following
part, the method of establishing fenv will be introduced in
detail.

A. SFM-BASED PEDESTRIAN MODEL
In previous researches, when considering vehicle-pedestrian
interaction during CA process, the movement of pedestrians
was usually considered to be uniform or moving according
to given profiles of speed and trajectory. However, in actual
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scenarios, pedestrian movement will be affected by different
external factors. In complex urban scenarios, behavior of a
pedestrian is affected by various types of traffic participants,
which inmost cases are surrounding pedestrians and vehicles.

FIGURE 7. SFM-based pedestrian model.

Fig. 7 shows a simple illustration of SFM-based model
for pedestrian 1. The pedestrian 1 is affected by surrounding
elements which lead to his changing of the path to the
destination. These effects can be viewed as some force
exerting on the pedestrian 1, such as a repulsive force from
vehicle Fev2p, a repulsive force from other pedestrian 2 Fp2p
and an attractive force from destination Fdes2p. However, the
interaction force is only based on the current states of the
traffic participants which means the historical data is ignored.
To some extent, the SFM-based CA process is Markov-like
process. So, based on Assumption 1, SFM-based dynamic
model is suitable in the proposed scenario.

Pedestrians are regarded as a point mass in the social force
model, whose dynamic is defined as:

Ẋped = vXped (31)

Ẏped = vYped (32)

v̇Xped = aXped =

FX ,t
ped

mped
(33)

v̇Yped = aYped =

FY ,t
ped

mped
(34)

where superscript [X ,Y ] are the components of Cartesian
coordinates that belong to the world axis frame. FX ,t

ped , F
Y ,t
ped

are the total force imposing on pedestrian at current time t in
lateral and longitudinal axles, respectively. mped represents
the mass of pedestrian. The total force Ftped at time t , that is

formed by FX ,t
ped and FY ,t

ped , is the summation of multi-source
effect:

Ftped = Ftev2p + Ftp2p + Ftdes2p + Ftnoise (35)

where Ftev2p represents the force from interaction with
vehicle. Ftdes2p is the force from destination which is

simplified in this study as the pedestrian’s willingness to
keep the initial speed constant. Ftp2p is pedestrian-pedestrian
interaction force. As this study mainly focuses on designing
CA avoidance strategies for vehicle, and the scenario
given by Fig. 2 only contains one pedestrian. So, the
pedestrian-pedestrian interaction force Ftp2p is ignored in this
study. Besides, the force cannot fully generalize all factors
that may affect the target pedestrian, therefore a Gaussian
distribution-based noise Ftnoise is added to SFM-based
pedestrian model for simulating uncertainty.

And components of Ftped are defined as:

Ftev2p = fexp
(
d tev2p,Aev2p,Bev2p

)
Asin

(
φtev2p, λev2p

)
(36)

Ftdes 2p = βev2p · κdes 2p ·

(
vtped − v0ped

)
(37)

Ftnoise = κnoi · χ, χ ∼ N (µ, σ ) (38)

where κdes2p is a feedback gain for the destination force, κnoi
is a gain for Gaussian based white noise (where µ = 0 and
σ = 1). The other parameters of each force are described as
following:

fexp = Aev2p · e

(
−Bev2p·d tev2p

)
(39)

This function represents a decaying function that the
magnitude of force F⃗ tev2p decreases monotonically as the
distance between the ego pedestrian to the target agent
increases. d tev2p is a variable representing the distance
between the ego pedestrian and the target agent, and
Aev2p,Btev2p are parameters adjusting the characteristics of the
decaying relationship:

Asin = λev2p +
(
1 − λev2p

) 1 + cos
∣∣∣φtev2p∣∣∣
2

(40)

This function represents anisotropy function that its
output is a scalar ranging from 0 to 1, representing how
the influence attenuates as the angle between pedestrian’s
walking direction and his direction to the target agent
increases. φtev2p ∈

[
−π π

]
is a variable representing the

interaction angle and λev2p is the parameter adjusting the
anisotropy characteristics [17].

βev2p = max

{
min

{
d tev2p − d swiped

d swiped

}
, 0

}
(41)

This item represents a switch function which allows the
pedestrian to switch from mainly focusing on reaching
the destination to avoiding the collision with vehicle. d swiped
denotes the switch distance for pedestrian. Besides, the
method for calibrating parameters of SFM-based pedestrian
model are established in [17].

B. SFM-BASED VEHICLE MODEL
Similar as the definition of SFM-based pedestrian model, the
SFM model could also be adopted for a point-mass vehicle
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dynamic model, which is a modified version of SF based
pedestrian model, shown as Fig.8. It is defined as:

Ẋev = vXev (42)

Ẏev = vYev (43)

v̇Xev = aXev =
FX ,t
ev

mev
(44)

v̇Yev = aYev =
FY ,t
ev

mev
(45)

FIGURE 8. Mass point model.

where FX ,t
ev and FY ,t

ev are the components of the total force Ftev
exerted on ego vehicle in [X ,Y ] direction.

Ftev = Ftp2ev + Ftdes2ev + Ftbrake (46)

In SFM-based vehicle model, the definition of F⃗ tp2ev is similar
with that of pedestrian, and the force from destination F⃗ tdes2ev
could be considered as the force that requires vehicle to track
the reference trajectory,which are established as following:

Ftp2ev = fexp
(
d tp2ev,Ap2ev,Bp2ev

)
Asin

(
φtp2ev, λp2ev

)
(47)

Ftdes2ev = βdes2ev · κdes2ev · ωv
(
vtev − vtref4ev

)
· ωY

(
Y tev − Y 0

ev

)
(48)

where vtref4ev is the reference speed for current time t. ωv and
ωY are the weight of tracking current reference speed and
the weight of tracking reference path, respectively. As the
reference trajectory of ego vehicle in this scenario is a line
with constant Y - coordinate, only the current Y - coordinate
of ego vehicle is under consideration in tracking reference
path. These two types of force are considered as raw force of
SFM-based vehicle model.

The new added item Ftbrake is used to provide a force that
is generated by vehicle controller to indicate ego vehicle
to operate optimal obstacle avoidance maneuvers, which is
established as

Ftbrake = f
(
Flag,DX ,t

ev2p

)
(49)

Flag is a Boolean using to judge whether the pedestrian is
now crossing the road and DX ,t

ev2p is the X-direction distance
between the pedestrian and the ego vehicle. This force is
considered an artificially applied force.

C. PROBLEM 1 RECONSTRUCTION
The mass point model is adopted for ego vehicle to reduce
the influence of its profile on the interaction force as well as
simplifying the calculation, which is defined as:

Ẋ tev = vx,tev cosϕ − vy,tev sinϕ (50)

Ẏ tev = vx,tev sinϕ + vy,tev cosϕ (51)

mevaY ,t
ev = FY ,t

ev (52)

mevaX ,t
ev = FX ,t

ev (53)

where ϕ is the yaw angle, and the resultant force on the
vehicle tires should satisfy the friction circle constraint:(

aX ,t
ev

)2
+

(
aY ,t
ev

)2
≤ (kµg)2 (54)

where µ is the road friction coefficient and k ⩽ 1 is a gain to
limit saturation of tire friction.
Considering that SFMmodel generates force that is exerted

on vehicle and causes the changing on vehicle’s trajectory,
and the force is continues. Therefore, the optimal maneuver
m∗

ev is regarded to be determined by initial system state S0

and the optimal force set F∗
ev according to the definition

of SFM-based vehicle model Eq.(42)-(46) and (52), (53).
Noticing initial system state S0 is predetermined and the force
F∗
ev is determined by related SFM parameters, the solution

of m∗
ev could be transformed into the optimization of those

parameters, which is written as 8∗
ev, in SFM-based vehicle

model with the same constraints Eq.(8)-(14).
As the definition of original SFM-based model (39)-(41)

and modified destination force (48), there are 8 parameters
that could be optimized which are
(1) Parameters Ap2ev, Bp2ev of function fexp in force from

pedestrian Ftp2ev. Ap2ev mainly provides the magnitude of
Ftp2ev and Bp2ev indicates rate of decaying in distance;
(2) Parameter λp2ev of function Asin in Ftp2ev, it mainly

indicates rate of decaying in direction;
(3) Parameter κdes2ev of force from destination Ftdes2ev,

it provides the magnitude of Ftdes2ev;
(4) Parameter d swiev of function β ip2ev in Ftdes2ev,

it determines the switch distance;
(5) Parameters ωv, ωY and vtref4ev of force from destination

Ftdes2ev, which give the tracking weights and the reference
velocity, respectively.

However, if the force from pedestrian Ftp2ev is equal to
zero, the vehicle will keep the initial speed and operate no
turning maneuver. It means the ego vehicle maintains the
reference trajectory in this research, which results in the force
from destination Ftdes2ev will also be zero. So, the decisive
parameter that needs to be optimized is Ap2ev which mainly
provides the magnitude of Ftp2ev. Therefore, in this research,
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the optimal A∗

p2ev and v
X ,∗
ref4ev are the only two parameters that

need to be searched for simplification:

8∗
ev =

[
A∗

p2ev, v
X ,∗
ref4ev

]
(55)

while other parameters are set as defaults. The calibration
and corresponding analysis of all SFM-based vehicle model
parameters were elaborated by our another work [42].
So, the initial Problem 1 is transformed from directly

calculating optimal maneuver m∗
ev to searching the optimal

parameters series 8∗
ev for SFM-based vehicle model.

IV. PROPOSED METHOD
A. ANALYSIS OF AVOIDANCE PROCESS
Firstly, the new added artificially applied force, which comes
from controller(or strategy) Ftbrake, in SFM-based vehicle
model is ignored. The following part describes the optimal
raw parameters of SFM-based vehicle model at various
vehicle-pedestrian distances. Considering that the initial
conditions (defined by Eq.(20)-(23)) of the target scenario do
not specify the initial X-direction vehicle-pedestrian distance
DX ,0
ev2p. So, firstly, a PSO-based optimization is employed to

determine the relation between 8∗
ev and various DX ,0

ev2p.
A test scenario is shown by Figure 9. Fixing the initial state

S0
ev of vehicle and the Y-direction deviation distance between

the ego vehicle and the pedestrianDY ,0
ev2p. When the pedestrian

chooses different X-position (defined as X iped) to cross road,

it leads to different DX ,i
ev2p. And this scenario simulates the

sudden crossing of a pedestrian under varying DX ,0
ev2p when

the vehicle is cruising.

FIGURE 9. Random choices of pedestrian crossing road point.

1) PSO-BASED OPTIMIZATION
PSO is a global search algorithm based on random search that
simulates natural biological activities and swarm intelligence.
It is well-suited for finding the (near)-optimal solutions to
complex systems because it has no special requirements
for the continuity of the optimization problem. During the
parameters optimization in this study, Simulated Annealing
(SA) and adaptive weights/learning rates were adopted based
on the basic PSO, which may benefit in overcoming the local
minima problem.

A swarm 2i = (2i1, 2i2) , i = 1, 2, . . . ,N with an initial
random speed vi = (vi1, vi2) , i = 1, 2, . . . ,N is defined

for PSO initialization to traversal the whole CA process.
the performance of each particle 2i is evaluated by a cost
function. And when iterations of traversal is reached the
upper limit or the cost of value function is acceptable, it is
considered that the current set2 is the solution set2∗, shown
as Figure 10.

FIGURE 10. Optimization process of SFM parameters and speed for ego
vehicle.

In addition, lower bounds and upper bounds were added to
2i, which Aip2ev ∈ [0, 6000] and viref4ev ∈ [0, 10] to ensure
that in the process of calibration, the parameters are not set to
unrealistic values. Additionally, the total number of particles
in the PSOwas set to 40, which is sufficient for the calibration
process.

The loss function is defined as

J (2i) = qPSO ·
1

vmeanv,iev
+ rPSO ·

1

dmin,i
ev2p

+ pPSO · dmax,i
ev2Yini

(56)

where {
rPSO = rPSO, dmin,i

ev2p ≥ minDsafe

rPSO = L · rPSO, dmin,i
ev2p < minDsafe

(57)

dmin,i
ev2p = min

{
d i,tev2p

∣∣∣ t ∈ (t0, tend )
}

(58)

dmax,i
ev2ref = max

{
d i,tev2ref

∣∣∣ t ∈ (t0, tend )
}

(59)

This loss function aims for the ego vehicle to pass
pedestrians with minimal steering and deceleration, ensuring
a safe avoidance. The rPSO is a very small constant when
the dmin,i

ev2p is larger than minDsafe, which means the ego
vehicle needs a series of optimized parameters to achieve a
higher passing speed when the distance is deemed safe. L is
a large constant that provides a sufficient cost that the ego
vehicle maintains an acceptable, safe distance away from the
pedestrian.
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FIGURE 11. The optimal Ap2ev and vev under different DX
ev2p.

Fig. 11 shows the optimized value of Ap2ev and vXev under
different DX ,i

ev2p. The maneuver of the ego vehicle in different

DX ,i
ev2p can be obviously separated to two cases, as shown in

Figure 12.

FIGURE 12. Two different avoidance maneuvers of ego vehicle.

2) ANALYSIS OF AVOIDANCE MANEUVERS
When the pedestrian is crossing the road and the
vehicle-pedestrian distance is larger than a specific value,
which is defined as mutation distanceDX ,mut

ev2p , the ego vehicle
will be required to decelerate and wait for the pedestrian
passing firstly, as shown in Fig. 12. However, when the
current interaction distance is extreme short (< DX ,mut

ev2p ), the
optimal strategy for the ego vehicle to avoid the crossing
road pedestrian is to keep a relative higher speed and operate
a slight steering maneuver, shown as Fig. 11. Because in
such case, the benefits of maintaining high-speed passing are
greater than the cost caused by slight steering. This is easily
explained when we associate the actions of human drivers in
real situations. When the driver finds a pedestrian is crossing
road with a distance far from the vehicle, they generally tend
to slow down and wait for pedestrian to cross road firstly.
Conversely, when the drive approaches a pedestrian who does
not have an unpredictable crossing intent, the drive tends to
operate turning maneuver with a relative high speed to avoid
potential dangers and completes the CA process in a short
period of time.

Based on the results from Fig. 11, if it is assumed that a
pedestrian is equally likely to cross the road in the future
during the approaching process of the ego vehicle, the optimal
strategy is to follow the optimal A∗

p2ev and vX ,∗
ev based on

Fig. 11. The A∗

p2ev and vX ,∗
ev are piece-wise polynomial

fitted as:

v∗ev = ffit.v(DXev2p) (60)

A∗

p2ev = ffit.A(DXev2p) (61)

However, noticing there is mutation for both v∗ev and A
∗

p2ev

in mutation distance DX ,mut
ev2p . Forces can be mutated but not

the velocity in the reality. So, when DX ,t
ev2p is around D

X ,mut
ev2p ,

which could also be roughly considered as the the distance
between these two participants decreases from ‘long distance’
to ‘short distance’ in Fig. 12, there are two choices for ego
vehicle:

(1) Following strategy: the ego vehicle keeps deceleration
and following the pedestrian until the pedestrian has crossed
the road.

However, if

−δthrped ≤ δtped ≤ δthrped, t ∈ [t0, inf) (62)

which means pedestrian keeps walking straightly. However,
when tend = inf, the time consumption is unreasonable.

(2)Overtaking strategy: the ego vehicle keeps unchanged
speed or accelerates to overtake the pedestrian. However,
this approach is somewhat risky as it resembles a gambler’s
strategy. A sudden crossing caused by a careless pedestrian
could result in an irreversible collision.

B. PROPOSED METHOD
So, based on the above analysis, the whole CA process is
separated into two processes which are approaching process
and yielding process, shown as Fig. 13. For convenient, the
switch distance here is the same as d swiev , which function is
similar as d swiped in Eq.(41).

FIGURE 13. Segmentation of CA process.

In approaching process, the ego vehicle will decelerate to
a reference longitudinal speed:

vX ,t
ref4ev = vX ,∗,t

ev = ffit.v
(
DX ,t
ev2p

)
(63)

Noticing that DX ,mut
ev2p < d swiev , the mutation of velocity

is avoided in approaching process. In other worlds, the
Following strategy is adopted in approaching process.

In yielding process, the reference longitudinal speed keeps
a constant which is the same as that of switch distance d swiev :

vX ,t
ref4ev

(
DX ,t
ev2p ≤ d swiev

)
= vX ,∗,swi

ev = ffit.v
(
d swiev

)
(64)
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If the pedestrian does not cross road, this constant speed
vX ,∗,swi
ev for the ego vehicle in yielding process helps to avoid
the problem caused by Following strategy.

However, when facing with danger caused by overtaking
strategy, it is necessary to calculate a safe speed for the ego
vehicle when the pedestrian suddenly crosses the road.

1) PROPOSED METHOD 1 FOR YIELDING PROCESS
In this method, it is assumed that the pedestrian is now
crossing the road and will not yield to the ego vehicle,
as shown in Fig. 14. In other words, the pedestrian here
is considered as a ‘careless’ individual that the force from
the ego vehicle F⃗ tev2p will be ignored by the pedestrian.
The pedestrian is considered as a circle whose radius is the
minimum safe distance minDsafe with ego vehicle. Besides,
S represents the X -direction distance between outlines of
this two participants, which is named safe vehicle-pedestrian
distance in X -direction.

FIGURE 14. Boundary longitudinal speed for ego vehicle.

Then, there are two case for the ego vehicle to yield the
pedestrian without turning:

(1) the longitudinal speed of the ego vehicle is fast
enough that it has already finished the CA process when
the pedestrian reaches the collision point, as shown in
Figure 14(a).

(2) the longitudinal speed of ego vehicle is slow enough
that the pedestrian has already passed the ego vehicle when
the ego vehicle reaches the collision point, as shown in
Fig. 14(b).

According to the above analysis, the boundary longitudinal
speed could be established as:

∗20cvev,1 =
S1 + 2 · minDsafe

Tped,1
or vev,2 =

S2
Tped,2

(65)

where Tped,1, Tped,2 is the time to collision point (TTC) of
the pedestrian in case (1) and case (2), respectively. S1, S2
are the moving distance of ego vehicle in case (1) and case
(2), respectively. vev,1 is the lower boundary of longitudinal
speed in case (1) and vev,2 is the upper boundary of case (2),
as shown by Fig. 15.

FIGURE 15. Safe longitudinal speed for ego vehicle.

As the definition of S,

S t = Dtev2p − minDsafe (66)

When the pedestrian starts crossing the road in current
Dtev2p, the maximum safe speed vSmax is less than the current
speed vtev as we consider that acceleration is unreasonable.
The ego vehicle needs to decelerate to keep the average
longitudinal speed no lager than vSmax. Here we assume accel-
eration is counter-intuitive for simplification. The following
function is established to obtain ax,∗ev :

v0t1 −
1
2
at21 + vt1 (t − t1) = S (67)

vt1 = v0 − at1 (68)

the vtev, S t and ax,∗ev is rewritten as v0, S and a for
simplification, t1 is the deceleration time, vt1 is the final speed
after deceleration and t is the time when S = 0. As the current
initial longitudinal speed is relatively small, the effect of jerk
of acceleration could be ignored so that it is not under take
into consideration for simplification. For pedestrian comfort,
a minimum deceleration a is required for ego vehicle:

min a =
S − v0t
1
2 t

2
1 − tt1

s.t. vt1 ≥ 0;

0 ≤ t1 ≤ t (69)

For obtaining minimum a, the derivation of a is

a′
=

(v0t − S) (t1 − t)(
1
2 t

2
1 − tt1

)2 (70)

And in this equation,

(t1 − t) ≤ 0 (71)

v0t−S = v0t − vSmaxt > 0 (72)
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So,

(v0t − S) (t1 − t) ≤ 0 (73)

which means a is a non-increasing function.
About the limitation factors, the first limitation is vt1 ≥ 0,

which can be transformed into a ≤
v0
t1
, which is also equal to

S − v0t
1
2 t

2
1 − tt1

≤
v0
t1

(74)

and can be simplified as t1 ≤
2S
v0
.

As t =
S

vSmax
, the second limitation 0 ≤ t1 ≤ t can be

rewritten as 0 ≤ t1 ≤
S

vSmax
.

So, the limitation factors are final equal to the following
form:

0 ≤ t1 ≤ min
(
2S
v0

,
S

vSmax

)
(75)

Considering a is a non-increasing function,

a = min a when t1 = min
(
2S
v0

,
S

vSmax

)
. (76)

And the relation between the optimal deceleration and safe
vehicle-pedestrian distance S is shown by Fig. 16.

FIGURE 16. Optimal deceleration under different safe distance.

From Fig. 15, When S < S ′, v0 > v1ev always holds, so

min a
(
S < S ′

)
= 0 (77)

Besides, as the maximum deceleration speed amax
dec is set as

5m
/
s2,

min a
(
S ∈

(
S ′, S ′′

))
> amax

dec (78)

which means if pedestrian chooses to cross road in this range
of distance, deceleration for ego vehicle can not meet the
target of avoidance for ego vehicle. The turning is necessary
in this case. The final optimal aX ,∗

ev is established as:

aX ,∗
ev =

{
0, 0 ⩽ S < S ′′

min a, S ⩾ S ′′
(79)

The reason of aX ,∗
ev = 0, S ∈

[
S ′, S ′′

)
is that the force

−→
F p2ev also owns function of decelerating the ego vehicle.

So, when calculating the the optimal A∗

p2ev in the range of

S ∈
(
S ′, S ′′

)
, the aX ,∗

ev is set to zero for simplification.
The optimal A∗

p2ev in SFM-based vehicle model is obtained
by balancing the yield speed and deviation distance by PSO
with the same loss function Eq.(56). And the results are
shown in Fig. 17.
As the turning option for ego vehicle is the only choice

when the deceleration is lager than the upper limited, the
effective range for Ap2ev is when the relative distance belongs

to
(
DX

′

ev2p,D
X ′′

ev2p

)
, where:{
DX

′

ev2p = S ′
+ minDsafe

DX
′′

ev2p = S ′′
+ minDsafe

(80)

And a fifth order polynomial is used to fit the optimized
Ap2ev,

A∗

p2ev = ffit.A
(
DXev2p

)
· Flag,DXev2p ∈

[
DX

′

ev2p,D
X ′′

ev2p

]
(81)

as the red dot line that is shown in Fig. 17, where Flag is a
Boolean that Flag = 1 (or Flag = 0) means the pedestrian is
(or is not) crossing road now, respectively.

FIGURE 17. Optimal Ap2ev under different vehicle-pedestrian distance.

Besides, the optimal deceleration should be transformed
into a brake force in SFM-based vehicle model, which is
defined as:

F∗,t
brake =

{
0, DX ,t

ev2p > d swiev(
aX ,∗
ev · massev−F⃗ tdes2ev

)
· Flag, DX ,t

ev2p ≤ d swiev

(82)

where massev is the mass of the ego vehicle. Because the
calculated aoptdec is the final optimal deceleration of the ego
vehicle during the yielding process, the effect of destination
force Ftdes2ev should be excluded.

2) PROPOSED METHOD 2 FOR YIELDING PROCESS
In method 1, a consideration was given to a selfish pedestrian
who will not yield to the oncoming vehicle during road
crossing.When the interaction between the two participants is
considered in the yielding process, the optimal operation will
be different for ego vehicle. In other words, the pedestrian
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here is consider as a ‘careful’ individual that the force from
the ego vehicle F⃗ tev2p will not be ignored by the pedestrian.
The operation of approaching process for the ego vehicle

in this method is the same as method 1. In yielding process,
if considering Ftev2p, the solution of ax,∗ev will be highly
complicated. So, it is transformed into directly search an
optimal series of F∗

brake by PSO. The cost function is the same
as Eq.(56). The solution here owns two dimensions, and the
particle swarm is defined as

2i
′
=

[
Aip2ev,F

i
brake

]
(83)

Similarly, lower bounds and upper bounds are added to2i
′:{

Aip2ev ∈ [0, 3000]

Fibrake ∈ [0, 4000]
(84)

The boundaries are used to ensure that the parameters do
not exceed unrealistic values during the calibration process.
Besides, the total number of particles in the PSO is set to 40,
which is sufficient for the calibration. The optimized F⃗brake
and Ap2ev under different interaction distance DXev2p is shown
in Fig. 18.

FIGURE 18. Optimal Ap2ev and Fbrake under different vehicle-pedestrian
distance.

The fitting of A∗

p2ev and F⃗
∗

brake is written as

A∗

p2ev =

 f ′
fit.A

(
DXev2p

)
· Flag, DXev2p ∈

[
X ′

m2,X swi
m2

]
0, DXev2p /∈

[
X ′

m2,X swi
m2

]
(85)

F∗

brake =

 ffit.F
(
DXev2p

)
· Flag, DXev2p ∈

[
X swi
m2 , d swiev

]
CF , DXev2p ∈

[
0,X swi

m2

]
(86)

where X swi
m2 is a certain distance that when DXev2p ⩾ X swim2 , ego

vehicle is only required to deceleration. CF is a constant used
to balance the force Fdes2ev.

The control logic given by method 2 is similar to that
of method 1. Firstly, the ego vehicle is only required to
deceleration if DXev2p is larger than X swi

m2 . Besides, when
DXev2p ∈

[
X ′

m2,X swim2

)
, the optimal A∗

p2ev now is not equal to

zero which means turning is the optimal operation choice for
the ego vehicle in current stage.

Here, the X ′
m2 is larger than DX

′′

ev2p in Fig. 17 because
that the pedestrian is set to actively avoid the ego vehicle in
method 2. So, even ifDXev2p ∈

[
DX

′

ev2p,D
X ′′

ev2p

]
, the ego vehicle

does not need to turn for maintaining dev2p ⩾ dmin
ev2p due to the

active yielding of the pedestrian.

FIGURE 19. View of test bench.

V. BENCH TEST
The view of the test bench is shown in Fig.19. A 4-axis
motion stage provided by IROC was adopted in this paper.
The vibration, rotation, acceleration, and jerk are generated
by 4 cylinders: 2 cylinders provide the pitch angle generated
by the gas/brake pedal and the other 2 cylinders provide the
roll angle generated by operation of steering wheel. The host
computer provides signals of the pedal opening and steering
wheel angle generated by Matlab/Simulink and Carmaker.

The control flow of test bench is shown in Fig.20, which is
as following:

1.Based on current state information of the ego vehicle Stev
and the pedestrian Stped, generate interacting force Ftev2p and
Ftp2ev;
2.Based on currentDX ,t

ev2p and the pedestrian moving mode,
calculate A∗,t

ev2p and F∗,t
ev2p according to Eq.(81) and (82) (or

Eq.(85) and (86));
3.Generate vref,t+1

ev and ax,ref,t+1
ev for next time step t + 1

according to mass point vehicle model Eq.(50)-(53);
4.Generate corresponding steering wheel angle δt+1

ev and
pedal opening pt+1

ev by PID for T3R bench.
To verify the reliability of the algorithm under uncertain

pedestrian motion, a sequence of discrete times intervals
for the pedestrian crossing the road was established at 0.1
second intervals, which is defined as tcroped = k · ts, k ∈

N+, ts = 0.1s. And, if t ≥ tcroped, the pedestrian will operate
crossing road maneuver. The crossing road decision is not
known in advance by ego vehicle. The 100 simulation (that
means k = 100) results of method 1 and 2 under different
vehicle-pedestrian distancewhen pedestrian suddenly crosses
road is given by Fig. 21.

From the results, it is obvious that method 2 is a more
aggressive strategy due to the active avoidance of the
pedestrian, as demonstrated in Fig. 21(d).In Fig. 21(d),
the number of times the vehicle’s minimum longitudinal
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FIGURE 20. Control flow of test bench.

FIGURE 21. Results of method 1 and 2 under successive pedestrian-crossing road
X-position:(a) Maximum deviation distance from reference path of ego vehicle;(b) Mean
longitudinal speed of ego vehicle;(c) Minimum distance between ego vehicle and
pedestrian;(d) Minimum longitudinal speed of ego vehicle.

speed under method 1 equals zero is much higher than
that of method 2, meaning that method 1 requires the ego
vehicle to decelerate and wait for the pedestrian to pass
in most cases while method 2 tends to requires the ego
vehicle to avoid the pedestrian with turning maneuver under
a relative higher speed. On the other hand, Although the
more aggressive strategy of method 2 results in a higher
mean longitudinal speed, it also causes a lager maximum
deviation distance from the reference path, which are shown
by Fig. 21(b) and (a). Besides, both method 1 and method 2

ensure that the ego vehicle safely avoids the pedestrian,
as the minimum distance between them is larger than 1.5m
which is set as the minimum safety distance, as shown in
Fig. 21(c).

VI. CONCLUSION
In this work, we introduced a novel SFM-based method with
adaptive parameters for the ego vehicle’s CA strategy. And
the main contribution of this paper can be summarized as:
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• The interaction between the ego vehicle and the pedes-
trian was reasonable simplified as a Markov process,
which was supported by real driving data.

• Instead of assessing the risk of the pedestrian crossing
or predicting the future pedestrian trajectories, the
ego vehicle adopted a force balance-based collision
avoidance method, which is simply based on the
current state of vehicle-pedestrian interaction system.
The SFM-based method eliminates the dangers caused
by inaccurate predictions from various environments or
individual differences in pedestrians.

By considering pedestrians with two different motion
modes, the proposed method was evaluated in a test bench,
and the superior results showed that the proposed method
helped the ego vehicle maneuver safely, quickly, and with a
slight turning yielding to randomly crossing pedestrians.

Due to the proposed scenario and the SFM-based dynamic
model, the following future work should be done to improve
the current work:

• A more complex scenario,with multiple pedestrians and
vehicles should be designed to verify the reliability of
proposed method taking into account the interaction
between pedestrians and vehicles.

• In the current study, we did not consider the specific
causes of pedestrian random movements, but simply
used a Gaussian probability model to randomize.
In future research, wewill carefully explore the causes of
the random movements, which may be caused by other
traffic elements.

• In this work, pedestrians were simply classified as
‘careless’ or ‘careful’. A more reasonable classification
or identification for pedestrian, should be adopted, such
as combining pedestrian-aware risk assessment or image
recognition.

• In this work, pedestrians were simply classified as
‘careless’ or ‘careful’. A more reasonable classification
or identification for pedestrian, should be adopted, such
as combining pedestrian-aware risk assessment or image
recognition.

• A mass point vehicle model was used for simplification
in this work. However, the vehicle shape should be
carefully considered, particularly in interacting with
moving pedestrian in a low-speed scenarios.
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