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ABSTRACT The field of cybersecurity has witnessed a significant shift towards Programmable Data Planes
with the emergence of the P4 programming P4. The existing literature lacks a comprehensive taxonomy
that provides collaborative classifications and characterization of P4-based cybersecurity solutions. In this
paper, we propose a novel taxonomy to better characterize published works in the field of cybersecurity
solutions developed leveraging P4 and Programmable Data Planes. Our taxonomy introduces three main
categories: detection techniques, mitigation actions, and deployment platforms. Unlike existing classification
approaches present in literature, our taxonomy allows categorizing a given work according to different
criteria, thus enabling collaborative classifications and the identification of shared features by highlighting
intra-category and inter-category relationships that can be established among different works. Through
our comprehensive characterization of the works identified in the literature, we present key findings that
contribute to extend the current understanding of the field. By identifying the diverse range of techniques
employed and the platforms utilized, we aim at addressing the needs to understand the area, which is funda-
mental for future advancements. Notably, we emphasize the significance of security provisioning through the
adoption of cybersecurity functional abstractions. These abstractions enable the emulation of the behavior
of conventional security devices, leveraging the capabilities of P4. Furthermore, we discuss several research
challenges and possible future directions that have emerged from our analysis. This paper focuses on provid-
ing valuable insights and knowledge for researchers and practitioners in the field of cybersecurity solutions
based on Programmable Data Planes leveraging P4, with the final goal of opening avenues for new research.

INDEX TERMS Detection, mitigation, security provisioning, machine learning, programmable data plane,
P4 programming language.

I. INTRODUCTION
Software-Defined Networking (SDN) is a revolutionary
networking paradigm that has introduced essential changes
in network management by empowering a programmable
network approach for different management and operation
tasks. SDN is based on core concepts such as separa-
tion of Control and Data planes, network programma-
bility, flow-based traffic management, and a logically
centralized network view. These concepts have enabled the
development of novel solutions and the revision of existing
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approaches to tackle different network challenges [1].
For instance, network security has been extensively
revisited in the light of SDN. Traditional cybersecurity
solutions usually increase communication delays and
rely on traffic duplicity, and they might even introduce
congestion issues or data loss [2], [3]. Hence, one
aspect that can be improved is the response time. This
improvement is especially relevant in contexts such as
network infrastructures in industrial areas where the risk
of loss or duplication of packets when they are sent to a
middle-box specialized in cybersecurity can increase delays
in time-sensitive systems, which for some use cases is
unacceptable [4].
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As a natural evolution and complete realization of the
SDN paradigm, Programmable Data Planes (PDPs) extend
the landscape for the development of network management
solutions. Different proposals in literature [5], [6], [7], [8],
[9] introduce the concept of programmable pipelines that
can be deployed at data plane devices. These programmable
pipelines make it possible to offload operations associated
with traffic processing from the logically centralized control
plane toward devices in the data plane. Moreover, the
programmable nature of data planes makes it possible to
implement functionalities with extended scope and possibil-
ities that can be leveraged to develop sophisticated solutions
in addition to those provided in traditional networks.
In particular, network security can take advantage of network
programmability, for instance, by partially offloading traffic
classification and anomaly detection to the data plane.

Currently, Programming Protocol-independent Packet Pro-
cessor (P4), is the de facto standard language for data
plane programmability [10], [11], and it is based on
the concept of programmable switching architectures [12].
These architectures allow the defining of custom packet
formats and parsing sequences within the forwarding devices.
Thus, by leveraging this customization, operations of traffic
classification or even Machine Learning (ML) models can
be deployed in the data plane, which might increase the
robustness, scalability, and efficiency of network solutions.

Given the relevance of network security and the interest
of industry and academia in developing solutions based on
PDPs, in this work, we present a literature survey that offers
three distinct contributions that distinguish it from previous
works.

• First, we propose a broader, timely, and relevant
taxonomy of the solutions available in the literature that
address different aspects of network security using PDP:
(i) detection techniques, (ii) mitigation actions, and
(iii) experimental platforms. Particularly, we address the
categorization of solutions based on mitigation, which
is a category not frequently considered in the literature.
In addition, our taxonomy develops an inter-domain
categorization approach rather than the intra-domain
approach commonly used in other literature surveys.

• Second, we highlight the potential of P4 to enable
the creation and adaptation of specific cybersecurity
middle-box functions, which can be deployed in the
data plane. Leveraging the capabilities of PDP provides
the opportunity to substitute conventional cybersecurity
devices with the mentioned adapted functions while
maintaining the efficiency of PDP. Additionally, in this
contribution, we emphasize the concept of Security Pro-
visioning, aiming to implement proactive cybersecurity
measures.

• Third, we present a summary of possible emerging
research branches and perceptions of future trends in
the field of cybersecurity solutions leveraging PDPs.
Our discussion encompasses development limitations,
a future view in the deployment of machine learning

in data planes, the path to achieve in-network com-
puting and self-driving networks, the improvement of
mitigation actions, and finally, intrinsic PDP security
challenges.

The remainder of this paper is organized as follows.
Section II gives a brief overview of the P4 programming
language in a simple way, including fundamental topics
such as the program, the compiler, the switch reference
architecture, and the P4Runtime as the basic southbound
interface. Section III focuses on previous works that present
reviews of cybersecurity solutions utilizing P4 and their
corresponding taxonomies. Section IV describes our pro-
posed taxonomy, which summarizes the literature review
based on our cross-categorical approach. Our taxonomy
encompasses detection techniques, mitigation actions, and
the experimental platforms used to deploy P4 cybersecurity
solutions. Subsequently, Section V emphasizes the impor-
tance of proactive responses to threats and highlights the
utilization of P4 capabilities for emulating the behavior of
recognized security devices. Section VI discusses emerging
research branches and future challenges in network security
that leverage PDPs based on the findings obtained from this
work. Finally, Section VII concludes the paper.

II. P4 IN A NUTSHELL
Traditional networks integrate control and data planes in
the same device. This mode of operation became difficult
to manage and limited the possibilities for innovation [1],
[13]. Consequently, SDN emerged as a paradigm that
makes the network dynamic, flexible, and programmable
by decoupling the control and data planes. Despite SDN
bringing new functionalities and benefits, it also suffers
from scalability and performance issues, partly due to the
lack of intelligence in forwarding devices [12]. The search
for higher performance has motivated the introduction of
new approaches, such as PDP, that introduce a promise
of better performance when compared to fixed-function
switches while introducing additional flexibility for the
implementation of solutions [14].

The PDP concept refers to the ability to customize the
packet processing behavior of network devices by exposing
low-level packet processing logic through higher abstrac-
tions, such as standardized Application Programming Inter-
faces (APIs) [15]. In this matter, PDP enables the creation of
custom network functions tailored to fulfill specific require-
ments defined by network managers. Different platforms
can be used to deploy programmable data planes. Some of
these platforms are Application-Specific Integrated Circuits
(ASICs) [16], [17], the Software-based Behavioral Model
version 2 (BMv2) [7], Field-programmable Gate Arrays
(FPGAs) [8], and network processors. These platforms offer
high performance due to the dedicated and specialized
components dealing with network management tasks.

There is a diverse list of data plane programming solutions
for deploying PDPs. Some of these solutions are: Data
Plane Development Kit (DPDK) [5], eXpress Data Path
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FIGURE 1. Workflow model of the P4 programming language.

(XDP) [18], and P4 [10]. Among these solutions, the P4 pro-
gramming language has emerged as the most prominent data
plane programming language due to its versatility, abstraction
level, pipeline usage, similarity with the C programming
language, and a broad range of built-in data plane functions,
which have captured the attention of academia and industry
due to the success of different proposals which leverage
it [19].
P4 allows specifying both the configuration of data plane

devices and how these devices process packets, thus provid-
ing a higher level of abstraction in network programming. The
design of P4 has three main goals:
I. Reconfigurability: Controllers can redefine in the field

the mechanisms for packet parsing and processing.
II. Protocol independence: A high-level abstraction that

enables protocol-agnostic designs, allowing packet pro-
cessing regardless of the specific formats or headers of
these packets. The ultimate goal is to support a wide
range of protocols while adapting to evolving network
needs through customizable and flexible processing.

III. Target independence: Programmers can describe
packet processing functions without the need to know
the specifics of the underlying hardware.

Initially, P4 was developed to program software switches
using the v1model architecture [7]. However, its applicability
has expanded to cover a diverse range of physical data
plane devices such as: programmable Network Interface
Cards (NICs) based on the Portable NIC Architecture (PNA)
[20], switches supporting the Portable Switch Architecture

(PSA) [21], and specialized switch brands such as Barefoot
Networks and Intel equipped with Tofino Native Architecture
(TNA) [22].

The P4 working group has proposed two standards: P414
andP416. The last one introduces new capabilities in response
to the shortcomings of the previous version. Some of these
new capabilities are strict types, expressions, nested data
structures, and support for multiple targets and pipeline
architectures. Moreover, P416 provides several base types as
well as type operators, different arithmetic algorithms, and
external constructs for functions not defined within the P4
core [23]. In [24], the P4 working group has compiled the
specifications for the P4 programming language, P4Runtime,
and different target architectures. Furthermore, the P416
language specification for the latest version is available
at [25] for further information.

The operation and development of functionalities on
P4-based switches follow a very well-defined workflow
depicted in Figure 1. This workflow integrates four main
components: the P4 program itself, the P4 compiler, the
architectural reference model of the switch where the
program is intended to run, and the P4Runtime interface
as a mechanism to communicate control and data planes.
In the following subsections, we describe these components
in detail.

A. P4 PROGRAM
A P4 program (depicted in Figure 1 - A) defines the logic of
the packet processing, which expresses the intended behavior
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of the data plane devices. P4 programs are developed for
specific P4 architectural models, such as v1model, PNA,
PSA, and TNA. A P4 program has five main blocks: Headers,
Parsers, Tables, Actions, and the Processing Pipeline. The
Header component defines the format of the packets that
the P4-enabled switch will be able to recognize. In other
words, it specifies the packet fields, their length, and the
expected order of these fields within the packet. The parser
component, which resembles a finite state machine, defines
how packet headers are processed. It specifies the order of the
packet header processing and the decisionsmade according to
particular values of these headers. Tables and actions blocks
implement the actual decision-making process on the packet
flow. Table entries determine which packet header values or
variables can be matched to determine which action must be
applied to the corresponding packet. Finally, the processing
pipeline component integrates the previous elements and
determines the order and logic of the operations to be applied
to the packets flowing through the switch [23].

B. P4 COMPILER
The P4 Compiler (depicted in Figure 1 - B) is a software
tool that translates the P4 code into machine code specific
to a target device. The P4 compiler has two main functions:
(i) Generating an executable file for the target device in
the data plane, indicating the header format and the cor-
responding operations translated into primitive instructions
for the corresponding hardware (i.e. machine code); and (ii)
Generating a run-time mapping to allow control and data
plane to communicate with each other through the P4Runtime
interface. P4-enabled device manufacturers design and pro-
vide the P4 compiler for specific P4 target devices.

C. P4 SWITCH ARCHITECTURAL MODEL
One of the goals of the P4 language is to be target-
independent, meaning that programmers can describe packet
processing functions without knowing the details of the
underlying hardware [26]. The P4 target (depicted in
Figure 1 - C) has a packet processing pipeline whose
structure is target-specific and it corresponds to a particular
architectural model. Target independence is achieved by
leveraging the notion of the Portable Switch Architecture,
which is an open-source framework providing a common
interface and abstraction for programming network switches.
PSA defines control blocks divided into three components:
I. The parser, which specifies the sequence to analyze

different headers in a packet. It resembles the notion of a
finite state machine with a state corresponding to a given
header and a transition corresponding to given values of
a field within the header.

II. The Match/Action block, which contains multiple
Match/Action tables used to match packet header
parameters according to different user-provided values
and defines actions to take whenever a match occurs.

III. The Deparser, which reassembles the headers into
packets in regular order and sends them out to the next
step, either a queue or an output port.

III. RELATED WORK
The integration between SDN control planes and
P4-programmable devices is a hot research topic that has
enabled the development of a wide landscape of solutions
for different computer network domains. In the cybersecurity
area, there is a combined effort between academia and
industry in order to develop solutions capable of protecting
networks against a growing number of cyberattacks. In that
matter, there is a current trend aiming at the development
of P4-based cybersecurity solutions that try to deal with
more sophisticated attacks. Moreover, by leveraging P4, it is
possible to take advantage of network programmability to
deploy cybersecurity solutions directly in the data plane or
through the collaboration between control and data planes.

In this survey, we propose a taxonomy of the reviewed
works based on the exploration of research proposals centered
around network security using network programmability. The
following articles reviewing cybersecurity solutions based on
P4 were handy for the construction of our taxonomy.

Kfoury et al. [14] present an exhaustive survey on P4-
enabled programmable data plane switches. This paper
analyzes more than 150 articles related to P4-based solutions
such as in-band network telemetry, network performance,
middlebox functions, accelerated computations, Internet of
Things (IoT), cybersecurity, and testing, among others.
From these articles, 48 papers focus on the cybersecurity
research domain. The classification provided by these authors
categorizes P4-based programmable solutions into seven
domains covering the most significant research areas. For the
cybersecurity domain, the authors propose a taxonomy that
classifies P4-based cybersecurity solutions into five security-
related categories. The aforementioned categories are heavy-
hitter detection, cryptography, anonymity, access control, and
miscellaneous defense solutions.

In Gao and Wang [23], authors propose a literature
survey addressing solution proposals that leverage P4-based
programmable data planes for network security problems.
The work is divided into two main sections: first, the
authors describe the P4 workflow depicted in Figure 1 while
presenting the advantages of P4-based programmable data
planes to cope with network security issues. In the second
section, the authors provide a classification of P4-based
cybersecurity solutions. This review classifies these solutions
into four categories according to the perspective of proactive
and reactive defense and the combination of multiple
enabling technologies. The four network security categories
in this review are: access control, privacy and encryption,
availability, and integrated defense. These categories define
control over incoming traffic, privacy protection, network
availability, and defense improvement. Authors present
solutions such as Firewalls, cryptography, techniques against
Distributed Denial of Service (DDoS) attacks, and ML
approaches, among others.

In AlSabeh et al. [27], authors present a survey on cyber-
security solutions deployed in P4-programmable switches.
In this survey, authors provide a taxonomy that classifies
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TABLE 1. Comparison of different literature surveys on cybersecurity solutions leveraging P4.

reviewed solutions according to three network security objec-
tives: network availability, anonymity and confidentiality,
and operational security provisioning. The categories express
the required network goals regarding security, ranging from
prevention mechanisms to the deployment of detection and
mitigation mechanisms.

In Hauser et al. [29], authors provide a comprehensive
survey on data plane programming leveraging P4. The article
presents a general overview of P4 by providing information
about data plane programming, architectures, compilers,
targets, and data plane APIs. The paper explains the evolution
of data plane programmability through P4while summarizing
research efforts in order to advance general network solutions
taking advantage of P4. The authors provide a concise review
of network domains such as: monitoring, traffic management
and congestion control, routing and forwarding, advanced
networking, and network security, among other topics.
In the network security domain, the survey presents different
P4-based solutions, namely Firewalls, port knocking, DDoS
defense systems, Intrusion Detection Systems (IDSs), and
connection security, among other solutions.

Similarly, Kianpisheh et al. [28] present a comprehensive
survey on in-network computing using programmable net-
works. The authors have proposed a systematic classification
framework to categorize in-network solutions developed with
P4 into different network domains. These domains are: ana-
lytics, caching, security, coordination, and new technologies.
Regarding in-network security, the study has categorized
security solutions into three categories: DDoS defense
solutions, Firewalls, and miscellaneous security solutions
developed with P4. The authors mainly focus on the analysis
of mechanisms for the detection of DDoS. Additionally, the
paper introduces P4-based security solutions that use ML and
Blockchain, among other technologies.

The previously mentioned surveys offer an in-depth
overview of the advancements in P4-based solutions for
enhancing network security. In [14], [23], and [27], authors
provide taxonomies according to the design and imple-
mentation principles that become building blocks of secure
systems. These taxonomies classify P4 solutions based on
the CIA triad (confidentiality, integrity, availability) [30].

In Hauser et al. [29], authors categorize P4-based secu-
rity solutions by defining the domains of the taxonomy
according to the type of cyberattacks to defend against, and
defense applications such as IDS and Firewalls. Likewise,
Kianpisheh et al. [28] present a classification for in-network
P4-based security solutions in the context of defense solutions
against DDoS attacks and implementation of Firewalls.

Nevertheless, the reviewed taxonomies divide the secu-
rity solutions leveraging P4 into isolated domains. The
classification criteria used in these taxonomies divide the
solutions into categories based on common research domains.
Moreover, some of the considered P4-based security solu-
tions lacking common properties are simply grouped under
generic domains like ‘‘other/miscellaneous security solu-
tions’’. Consequently, the taxonomy domains are limited
since they just apply hierarchical classifications that do not
allow determining interceptions between security domains
sharing properties or defense objectives.

From the aforementioned surveys, in [23] and [27], the
focus is network security leveraging the P4 programming
language for the implementation of security solutions. On the
other hand, the remaining papers [14], [28], [29] focus on a
more general overview of P4. In the security domain, [14],
[28], [29] offer a summarized overview of P4-based security
solutions leveraging network programmability. Additionally,
the reviewed surveys provide an analysis of emerging topics
related to P4 and security solutions. Hence, we consider it
important to include how the future will look in terms of
the development and implementation of security solutions
leveraging P4.

Table 1 provides a comparison between the main focus
of the aforementioned surveys and the contributions from
our work. As can be seen, previous work focuses on the
classification of P4-based cybersecurity proposals in intra-
domain categories, meaning that the authors of these surveys
classify papers according to the identification of common
domains or topics. These domains divide cybersecurity
solutions, grouping them into entities within a specific
cybersecurity area. For instance, domainsmight be associated
with the CIA triad grouping different cybersecurity solutions
developed with P4. This division might indicate constraints
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on cybersecurity solutions, preventing them from belonging
to multiple research domains sharing common properties by
leveraging the capabilities of P4. In contrast, in this paper,
we propose a taxonomy that classifies cybersecurity solutions
leveraging P4 and PDPs into intra-domain and inter-domain
categories. This approach enables the classification of
P4-based solutions based on specific research domains, such
as detection or mitigation, and simultaneously, through inter-
domain connections, P4 cybersecurity solutions can belong
to different cybersecurity domains by sharing common
properties. Our proposed taxonomy is presented in the
following section.

In addition, it is important to mention that in our literature
review, we identified that most of the works focus on
the development of detection strategies, and they leave
mitigation in second place. Mitigation actions are paramount
to alleviating the network, reducing the impact of attacks,
safeguarding private information, and preventing further
attacks. In that matter, the implementation of appropriate
mitigation actions might enable a better reaction to incoming
attacks. Our paper covers the study of the implementation of
mitigation actions leveraging the P4 programming language,
in addition to those covering detection, since we consider
these two approaches to be vital in the development of
security solutions. Finally, through our work, we provide
a novel state-of-the-art of security solutions leveraging P4
while providing an updated overview of future work and
challenges for the development of P4 cybersecurity solutions.

IV. TAXONOMY OF CYBERSECURITY IMPLEMENTED
PDPs
The findings presented in the previous section lead us to
propose a new approach to condense the categorization
of P4-based cybersecurity solutions in a simpler and more
effective way.

As shown in Figure 2, we propose a taxonomy to
classify the different P4-based cybersecurity proposals taking
into account detection and mitigation main categories
(inter-domain classification) and their different techniques
(intra-domain classification). In our taxonomy, we also
propose another main category, platform, where we list the
different data plane programmable target devices used to
implement and deploy cybersecurity solutions.

The following subsections will discuss each category,
techniques, actions, and platforms shown in Figure 2. Finally,
Tables 3, 4, and 5 will comprise all the solutions studied,
with their respective detection technique, mitigation, and
deployment platform.

A. DETECTION
Detection aims at identifying any malicious activity that
might compromise the network [31]. However, the mentioned
malicious activity has the potential to be camouflaged
with legitimate intrusion attempts directed towards its
ultimate target. Attackers may leverage intrusion attempts
to gain unauthorized access, manipulate, or compromise

FIGURE 2. Proposed taxonomy to categorize cybersecurity solutions
implemented with P4.

specific information [32]. Effectively defending against such
intrusions necessitates a critical step involving the analysis
of the most relevant activity, whether at end devices or
across the network. This can be achieved through the
deployment of host-based IDS (HIDS) or network-based IDS
(NIDS) [33]. NIDS, in particular, offers significant advan-
tages in cybersecurity applications, encompassing two key
aspects: (i) thorough inspection of each desired network
packet and (ii) the absence of a requirement for installation
on each host. Moreover, the characteristics of PDP address
the main drawback of traditional NIDS, as proposed by
Khraisat et al. [34], including: (i) Dedicated software; PDP
facilitates the creation of a multipurpose programmable
switch capable of handling both forwarding and cybersecu-
rity applications. (ii) High-speed network analysis; PDP’s
distinctive feature of line rate operation ensures efficient
performance, even during DPI operations.

Detection techniques can vary from defining a simple
threshold or a pre-installed matching list to the use of
sophisticated ML algorithms. The following subsections
present the review of different works based on each detection
technique listed in Figure 2, whereas in Table 3 we present
a summary, according to the proposed taxonomy, of the
reviewed P4-based solutions that apply detection techniques.

1) THRESHOLD
This technique uses predefined values to trigger specificman-
agement actions and responses [35]. Typically, a threshold
is associated with a numerical variable and indicates a limit
value of that variable. It is often used in conjunction with
other detection techniques, such as entropy and matching
lists. This section will focus on those solutions that only
use thresholds as mechanisms for the detection of potential
attacks.

Paolucci et al. [37] used registers in P4 to store information
about TCP SYN messages, the number of messages sent
(or received), and source port numbers. A threshold is fixed
to define a specific limit for the number of consecutive
connection attempts, which, in excess, might be a symptom
of port scanning.
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FIGURE 3. Solution based on thresholds and counters, applied to SIP invite messages within P4 switch (adapted from [36]).

Laraba et al. [38] used an Extended Finite State Machine
(EFSM) abstraction implemented with P4, subject to the
memory constraints of programmable forwarding devices.
This EFSM requires capturing and storing specific informa-
tion from headers of protocols such as TCP, UDP, and ICMP,
among others. A set of detection modules is created using
the mentioned EFSM abstraction. In this case, a decision
module (based on a Petri Net model), varies its response
with respect to a synchronized set of other detection modules.
Each one of these modules is formed by a 7-tuple based on
states, events, actions, initial states, variables, conditions, and
transitions. Thus, the ability of P4 to perform DPI makes
this analysis possible. Finally, based on the response of the
decision module, the detection module uses status registers
and counters to determine a set of alert and reaction levels,
and subsequently warning of a possible attack attempt if a
threshold based on the mentioned levels is reached.

Ding et al. [39] combined the Direct Bitmap [40] and
Count-Min Sketch [41] registers into their proposal BACON
(a probabilistic data structure implemented and used in P4),
which allows estimating the number of distinct flows, thus
reducing the memory usage of switches where it is deployed.
When a flow is characterized in BACON, it shows the
different source IPs attempting to connect to a particular
destination IP within a given time frame. If a specific number
of connection attempts associated to a defined threshold is
exceeded, an alarm is triggered.

Febro et al. [36] investigated the detection of INVITE
flooding attacks in the Session Initiation Protocol (SIP). The
authors used DPI leveraging programmable switches. Using
a counter-based approach, they basically count the number
of times that a SIP flow is matched. Based on the assumption
that a human can not initiatemore than ten calls in one second,
this approach relies on a controller that evaluates a threshold
associated with the number of call attempts. In addition, the
authors used P4 to process various protocol header fields,
including those in Ethernet, IPv4, UDP, and SIP, to facilitate

the analysis. The approach proposed by the authors uses
a dedicated table called ‘‘sipinvite_table’’ which
incorporates match conditions for ingress port and SIP
INVITE identification and a counter integrated into the table.
An overview of the counter attached to Match-action tables
is illustrated in Figure 3. In this work, the authors provided
insights into enhancing network security and protecting even
application protocols against threats by employing DPI and
counter-based thresholds implemented at the data plane.

2) ENTROPY
The concept of entropy, which comes from Shannon’s
Information Theory, has been used by some authors as a
relevant feature to be assessed on network flows. Entropy
can be used to measure the amount of disorder, randomness,
or variability in data elements, making it a suitable feature
for the analysis of values of different protocol headers, such
as IP addresses, source and destination ports, or protocol
identification. By measuring the entropy of protocol header
values in packets belonging to a flow, it is possible to detect
anomalies or patterns that allow distinguishing between
legitimate and compromised traffic. Hence, an increment in
the entropy measure might be an indication of a security
problem [35], [44], [45].

Ding et al. [44] proposed to normalize the entropy value of
destination IP addresses in packets extracted from captured
network traffic. The authors also adapted the theoretical
entropy calculation process to accommodate the fact that
P4 does not perform floating point arithmetic operations.
Notably, authors utilized entropy as a threshold, which can
be adaptive in specific scenarios. Each entropy calculation is
compared with an adaptive threshold for a time interval, thus
enabling the effective detection of anomalous patterns.

Lapolli et al. [42] presented a real-time DDoS attack detec-
tion approach that focuses on calculating the Shannon entropy
of source and destination IP addresses in order to identify
anomalies. Built on this concept, Silveira Ilha et al. [43]
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FIGURE 4. Solution based on entropy and Anti-DDoS detection mechanism (adapted from [42], [43]).

incorporated the entropy calculation technique into their
proposal. Their approach incorporates, as well as [42], the
calculation of entropies of IP addresses, an approximation
to the measurement of IP packet frequencies, and an intro-
duction of a smoothing coefficient to support the detection
process, avoiding short-term fluctuation. Both approaches
differ mainly in the deployment platform, as we will detail
in Section IV-C.
Authors in [42] and [43] employed a fixed-sized observa-

tion window (OW) as the starting point for their respective
detection techniques. Figure 4 displays a visual representa-
tion of the general operation steps used in these solutions.
Within a single OW, a frequency approximation operation is
utilized to count the occurrences of every distinct source and
destination IP addresses in the traffic. This frequency approx-
imation then serves as an input parameter for an IP addresses
Shannon entropy estimation process. The mentioned entropy
estimation builds a statistical model to represent benign
network traffic conditions. Then, the statistical model is
updated with the counts obtained within the OW as a mean to
accommodate changes in traffic patterns over time. Later, the
anomaly detection stage involves calculating the entropy of
the IP addresses to compare it to the statistical model built as
indicated above. Any significant deviations from the expected
entropy values indicate unusual changes in traffic behavior.
In response, the system generates an alarm or updates the
statistical model accordingly. The approach employed in [42]
and [43] showcases a framework as shown in Figure 4.
This framework represents an interesting approach to the
detection of DDoS attacks, produces valuable insights for
network traffic analysis, and provides a basis for proactive
identification and response to anomalous events.

3) MACHINE LEARNING (ML)
ML has emerged as a powerful tool for extracting insights
and making predictions from large amounts of data. In recent
years, the adoption of ML has been extended to the
networking domain, ultimately within PDPs. As previously
mentioned, P4 language enables the development of flex-
ible and customizable packet processing, and it can even
enable the direct implementation of custom algorithms and
techniques (including ML) within packet forwarding devices
in the network [46]. There are four main advantages that
emerge from the integration of ML capabilities into PDPs.
First,ML algorithms can analyze and learn from network data

in real-time, thus enabling intelligent decision-making and
adaptive behavior in packet processing. Second, the ability to
process and extract relevant features directly at the data plane
reduces reliance on centralized control and improves network
efficiency. Third, ML algorithms implemented in PDP
facilitate the detection of complex patterns, anomalies, and
security threats, providing new and outstanding approaches
to network security and performance improvement. Finally,
the location of Programmable Forwarding Devices at certain
vantage points might represent an ideal position for some
use cases, such as the mitigation of attacks (which can
be performed closer to the attack source). The integration
of ML and PDP holds immense potential to transform
network operations and enhance network management and
performance. Indeed, some PDP researchers have been
tackling this exploitable area in recent years, as is evident in
the literature [47] and [48].

The integration ofMLmodels into programmable switches
is not a trivial task. The first thing to consider is the
trade-off between the resource consumption associated with
the ML model and the one used for the packet forwarding
task. Despite the potential for functions such as in-band
attack detection, it is important to preserve the line-rate
performance [48]. Additionally, given the limitations of the
P4 programming language, the incorporation of ML models
might require certain abstractions in order to map the model
artifacts to the switch pipeline structures (e.g. Match/Action
tables). Moreover, despite the switch program itself might
not change during the operation, it is possible that table
structures do need to change as a mechanism of adaptation
to the variations in traffic dynamics. Hence, this adaptation
also needs to be supported. In our taxonomy, we ana-
lyze works implementing ML-based classifiers published
since 2019 which are either totally or partially implemented
in the data plane. Table 2 presents a summary of the reviewed
works.

Macías et al. [49] proposed ORACLE, a collaborative
solution integrating data and control planes to detect DDoS
attacks. The architecture of ORACLE efficiently detects
attacks with fine-grained inspection leveraging the PDP
for feature extraction. The authors addressed controller
overloading and data plane feature extraction challenges.
Arithmetic conversions resolved operational limitations in
P4, particularly the square roots and division operations. Flow
information and statistics are stored using registers and hash
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functions in data structures. Flow registers are created by
hashing 5-tuple inputs, distinguishing bidirectional (BD) and
unidirectional (UD) flows. Figure 5 depicts the workflow
of ORACLE. ORACLE implements with P4 the extraction
of flow features, which are not feasible to be extracted
with a traditional control plane approach using OpenFlow.
Also, ORACLE uses registers and hash functions to index
flow data in a data structure, feeding a statistics collector
component that manages packet features. The 5-tuple inputs
are stored in registers and then processed by hash functions
to discern BD/UD flows and features. The features extracted
by the pipeline handler include flow duration (BD), flow
inter-arrival time standard deviation (BD), backward packet
payload sizes (UD), and average packet payload size per
flow (BD). This flow recognition functionality implemented
with P4 facilitates mathematical aggregation in the PDP,
thus allowing the extraction of additional features: total
packet count, payload size, size square (backward), and
normal/square inter-arrival times. An information transmitter
forwards organized features to the control plane where a
process of classification is performed with a trained ML
model.

FIGURE 5. ORACLE workflow (adapted from [49]).

Barradas et al. [50] introduced FlowLens, an approach
performing real-time classification of malicious packets
using a collaboration between data and control planes. The
data plane collects compact features and sends them to
the control plane which classifies using ML techniques.
The authors employed well-known ML algorithms such as
XGBoost (Gradient Boosting), Multinomial Naïve-Bayes,
and Random Forest (RF) for the classification task. The
authors consider the frequency distribution intervals of the
packet flows, and from these intervals, the most relevant
features are extracted for subsequent classification. Notably,
the authors proposed a methodology that manages to reduce
and optimize the use of memory and processing time in

forwarding devices. The design and implementation of this
ML-based solution aims for accurate and resource-efficient
detection of malicious network traffic, thereby contributing
to enhance the deployment of effective network security
measures.

Musumeci et al. [51] proposed an innovative solution
that leverages ML techniques for the direct detection of
DDoS attacks (specifically TCP SYN flood) within the data
plane. Their approach aimed at minimizing data forwarding
latency while mitigating the transmission of malicious
packets toward a detection module. To reach the solution,
the authors employed a feature extractor module and a
binary classifier based on ML algorithms applied during
Observation Windows (OW) for practical analysis. The
extracted features include average packet length, SYN flags,
and ratios (the percentage of packets containing particular
values of given header values out of the total packets observed
during the OW), such as TCP ratio, UDP ratio, and TCP-UDP
ratio. The ML algorithms utilized included RF, K-Nearest
Neighbors (KNN), and Support Vector Machines (SVM).

Paolucci et al. [52] explored the potential of the P4
programming language for implementing an Artificial Neural
Network (NN) directly within a programmable switch.
Authors demonstrated that protocol header fields or metadata
could serve as practical input features to NNs. In this
proposal, the neurons were implemented as integer variables
of 8 bits. The NN was trained using a subset of features
extracted from the UNSW-NB15 [53], [54] data set, which
can be easily extracted with primitives of the P4 language.
The output of each neuron of the NN was computed as
the weighted sum of all the feature inputs, followed by the
application of a Rectified Linear Unit (ReLU) activation
function. The weights of the NN layers were updated through
interactions with the control plane, seeking for excitatory or
inhibitory stimuli. This work demonstrates the potential of
P4 to enable the deployment of NNs within programmable
switches, paving the way for intelligent and adaptive packet
processing in network environments.

Lee and Singh [55] proposed embedding an RF algo-
rithm into a programmable switch for efficient in-network
data analysis and real-time attack detection in SDN/PDP
environments. This approach utilizes Match/Action tables to
process traffic features in stateless and stateful ways. Authors
harnessed the P4 language to extract these traffic features
right at the data plane. The RF model was trained using
a subset of the top 12 features available in the UNSW-
NB15 dataset [53], [54], considering memory and capacity
constraints common in programmable forwarding devices.
The hyperparameters of the RF classifier were determined
through offline training and testing, considering the trade-off
between possible overfitting and memory utilization. The
implementation of the RF algorithm within the switch
involves embedding Decision Trees (DT) into Match/Action
tables. Each decision tree level becomes represented by a
table with keys and actions based on conditional evaluations.
For instance, as shown in Algorithm 1, node_id indicates the
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location of a node within the tree, prevFeature denotes the ID
of a previous feature, and isTrue indicates whether the last
condition has been satisfied. Actions can include parameters
like the evaluation of, for instance, thresholds associated
with packet counts. The Match/Action tables implement the
verification of decision tree features using an action called
CheckFeature or triggering an action called SetClass located
at the final node. The ultimate classification is the result
obtained from a majority vote among decision trees used in
the implementation of the RF algorithm.

Algorithm 1 Example of a P4 Match/Action Table Defined
for the n-th Decision Tree Level [55]
Table level_n {

key = {
meta.node_id: exact;
meta.node_prevFeature: exact;
meta.node_isTrue: exact;

}
actions = {

NoAction;
CheckFeature;
SetClass;

}
size = 1024;

}

TABLE 2. ML algorithms used in the P4 solutions described.

4) MATCHING LIST
Several P4-based cybersecurity solutions rely on special
lists that define specific treatments for incoming packets.
In the P4 programming language context, special lists
are implemented as a set of rules indicating matches.
Utilizing matching techniques can be enhanced through the
implementation of DPI strategies. This approach entails a
thorough inspection of both header and payload contents for
every packet processed by the programmable switch acting as
a NIDS. The NIDS, equipped with the capability to identify

predefined patterns, requires a defined decision based on
inspection recognition. This decision is then implemented as
the action of aMatch-Action table defined in the P4 language.
Hence, a matching list is a data structure that exploits DPI
fundamentals and is used to compare incoming packet fields
against a predefined set of values or patterns expressed
as entries into the Match/Action table. This comparison is
based on identifying the total or partial similarities of given
fields within packet headers [35]. The primary objective
of the matching process is to efficiently classify incoming
packets and facilitate their processing through network
functions [25].
Regularly, the implementation of matching lists with P4

uses two common approaches to handle incoming packets,
whitelists and blacklists. A whitelists is a list of specific
and authorized network parameters expressed as values for
protocol headers, indicating the packet on which some
predefined actions may be performed. On the other hand, a
blacklists is a list of unauthorized network parameters, also
expressed as values of protocol headers, indicating packets
that might be associated with malicious activities [35].

Vörös and Kiss [72] introduced a pioneering security
middleware deployed in the data plane, marking the first
implementation of a P4-based Firewall. This work holds
significant importance in network security, influencing sub-
sequent research and practical implementations. The proposal
integrates protocol filters, port filters, and flood attack
detection, leveraging the ability of P4 to process custom
packet headers. This aligns with second-generation Firewalls,
extending to the fourth layer and utilizing stateful memory.
The implementation focuses on the parsing of Ethernet
headers, with emphasis on the ethertype field indicating
encapsulated protocols like IPv4, IPv6, TCP, or UDP, which
is used to guide the protocol parsing at the P4 program
implementing the Firewall. The solution operates based on
a blacklist approach, utilizing a Matching List implemented
with stateful memory to check a ban list. Counters are
also used to measure packet rates per IP (DoS attacks),
unsuccessful connection attempts (Portscan or SYN floods),
and transferred bytes.Match/Action tables are used to enforce
rules based on exact matches on protocol numbers, IP,
orMAC addresses and Longest PrefixMatch for IP addresses.
These matches are used to indicate either forwarding or
dropping actions. The foundational insights of this work
significantly influenced the evolution of P4-based Matching
List solutions and Firewall designs, paving the way for
advancements in network security.

Liu et al. [73] proposed JAQEN. This proposal aims at
effectively detecting DDoS attacks by employing universal
sketches [74]. The proposed detection methodology consists
of two components, one in the data plane and the other in
the control plane. Universal sketches represent a category of
approximation algorithms designed to estimate several net-
work statistics concurrently. These are traditionally addressed
by specific algorithms such as high impact, entropy, and
determination of distinct flows, which are applied in response
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to commands received from a central controller or triggered
by specific events. The control plane implements an API that
allows the configuration of these sketches, applies decisions
associated with the detection tasks, and analyzes various
metrics derived from the data plane, such as heavy hitters,
flow measures, and the mentioned entropy. An important
advancement in this research involves the utilization of a
network-wide resource manager. This manager strategically
places detection modules across network devices, enhancing
their efficiency and efficacy in identifying DDoS attacks.

Datta et al. [75] created P4GUARD, a software-based
configurable Firewall that operates in the data plane of
the network. The Firewall is implemented by utilizing
a controller, which orchestrates the Firewall functionality
leveraging P4 tables in the data plane devices. The control
plane populates the tables within switches with new entries
using information derived from an application running on
it. Also, this Firewall provides statistics gathered at the data
plane devices and transmitted to the controller. The Firewall
operates based on policies defined within Match/Action
tables that allow or block traffic based on features such
as protocol numbers, IP addresses, port numbers, and
switch IDs.

B. MITIGATION
At present, security solutions seek to implement mechanisms
in order to defend computer networks against cyberthreats.
These actions include strategies for monitoring, traffic
analysis, detection, and mitigation, among others [94]. In that
matter, emerging technologies offer functionalities to boost
the network defense and strengthen the response against more
sophisticated and complex attacks [2].
The concept of PDP has paved the way for the development

of innovative cybersecurity strategies. By leveraging P4,
the cybersecurity community has increasingly focused on
developing security solutions, with a particular emphasis
on the detection process. However, mitigation is also a
paramount research domain that requires more attention.

Mitigation refers to the decision, action, or practice
planned to reduce the level of risk associated with a threat
scenario or vulnerability [95]. Mitigation strategies aim to
develop robust systems to remediate the network after the
detection of an attack. In this stage, the deployed defense
systems evaluate the detection decision output and take the
appropriate actions to alleviate the network and reestablish
the correct network operation. In this paper, we classify
the mitigation process according to the implemented actions
leveraged by the P4 programming language. These actions are
applied by the data plane devices when an attack is detected.
Additionally, it is possible to simultaneously implement
different mitigation actions according to security policies and
system’s defense specifications.

Furthermore, by leveraging the P4 capabilities and func-
tionalities for packet customization, reconfiguration to define
packet parsing, and the definition of specific packet formats,
it is possible to implement sophisticated mitigation strategies.

These strategies can be deployed entirely in the data plane
without the controller intervention, but they could also
establish collaborative actions among data plane devices.

In this survey, we present four categories to classify miti-
gation actions: dropping, filtering, redirection, and isolation.
Table 4 presents an overview of the reviewed solutions in
our proposed taxonomy, which are implemented with P4 and
apply mitigation actions.

1) DROPPING
Dropping is a fast mitigation action that involves identifying
malicious incoming traffic from a known attacker and subse-
quently discarding it. Dropping action can be implemented
by blocking a network port or by using a blacklist that
immediately drops packets associated with possible attacks.
This action requires a high level of certainty in the detection
process to avoid dropping legitimate traffic [96]. It is
important to consider the impact of implementing dropping
as a mitigation action by blocking a data plane device
port. For instance, when blocking a compromised port, the
dropping action might discard both malicious and benign
traffic. Despite the possible impact against benign traffic,
this is the most prominent mitigation action implemented in
cybersecurity solutions leveraging the P4 language.

Simsek et al. [82] proposed DroPPPP, a modular defense
system. When an attack is detected, an attack flag is set,
indicating the beginning of the mitigation process. If the
flag is active and the difference between timestamps of
packets coming from a possibly malicious source is less
than a predefined time window threshold, these packets are
set to be dropped by the switch. When the attack finishes,
the flag is reset, and the switch stores the timestamp of
the last occurrence of an attack. To implement dropping,
DroPPPP employs a Two-Rate-Three-Color marker. Packets
marked green are forwarded normally, packets marked yellow
are forwarded normally but a digest message is sent to the
controller, and packets marked red are dropped. Likewise,
Shen et al. [86] propose dropping as a mitigating action
against TCP SYN and UDP flooding attacks. For TCP SYN
flood attacks, the defense mechanism generates a blacklist
after an attack is detected. On the other hand, for UDP attacks,
authors propose a Two-Rate-Three-Color marker process to
classify traffic. Packets marked red are dropped, while the
ones marked yellow are sent to the controller for further
inspection. Furthermore, in P4-NSAF [89], packets marked
red are dropped when the count of these packets surpasses a
rate threshold. Also, the defense system implements modules
to countermeasure spoofing and flooding attacks against IPv6
networks.

Khooi et al. [83] proposed DIDA as a solution to
mitigate DDoS attacks. Figure 6 presents an overview
of the implemented detection and mitigation techniques
in DIDA. For detection, the authors propose the use of
a threshold associated with the number of requests and
responses provided by an Intrusion Prevention System (IPS)
network and a DNS resolver. In (a) and (b) steps, there is
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TABLE 3. Overview of detection techniques leveraging P4.

a normal exchange of DNS requests. For instance, when
compromised servers (c) send traffic that exceeds a rate
threshold, the system detects the anomaly and indicates the
possible occurrence of a DDoS attack. After the attack is
detected by the switch closest to the victim, the system
engages in the mitigation process by using the malicious
packet for recirculation. The attack packet is customized and
used to create a control tag to encode the IP address of the
known attacker in the source IP field. This packet is sent
(d) toward the switches at the edge of the network to block
packets coming from the provided suspicious IP addresses.
Hence, the dropping is carried out by reading a blacklist that
matches the IP address or addresses of the attacker and the
entry network port of the cyberattack. Moreover, DIDA also
implements a whitelist to store information for known trusted
devices.

In [43], Silveira Ilha et al. proposed EUCLID, a system
that implements a defense-readiness state machine to define
defense actions. The system sets an alarm flag and starts
in the safe state where detection is active and mitigation is
dormant. When an attack is detected, the system transitions to
a defense-active state. In this state, EUCLID enforces packet
dropping as amitigation action. There is also a cooldown state
where the dropping action is still enforced until a predefined
number of time windows without attack occurs.

In Laraba et al. [38], authors proposed a two-module
defense. The first module encompasses detection, while the

FIGURE 6. Detection and mitigation mechanisms implemented in DIDA
(adapted from [83]).

second corresponds to a decision module. Authors implement
mitigation actions inside a decision module that is designed
as a Petri net. The defense system aims to mitigate multi-step
and sophisticated attacks. A multi-step attack defines a
sequence of steps with their corresponding sub-goals in order
to disrupt the network. The mitigating action might be taken
according to the sub-goals achieved by multi-step attacks.
The Petri net is implemented using Match/Action tables
in P4. Moreover, the Petri net defines the possible reactions
and alerts, based on the patterns from the multi-step attack
identified during the detection process. The system defines
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different alert levels following the achieved sub-goals and
applies dropping as mitigating action when all the sub-goals
of the attack are achieved.

Kuka et al. [79] present an FPGA-accelerated system that
provides a defense line against DDoS attacks by filtering
traffic before it reaches the intended victims. The system
defense is organized into modules. After malicious traffic
is detected, this traffic is blocked using a module called
Blocking Filter. This module defines hash tables to mark
packets and collect statistics associated with offending IP
addresses. After marking the suspicious packets, another
module called Check and Drop discards attack traffic while
also providing checks to detect packet malformation. The
mitigation action filters traffic coming from the top-N sources
by selectively blocking the IP addresses responsible for the
attacks.

DIDA and DroPPPP introduce blacklists to indicate
malicious traffic for further dropping. Moreover, in [73],
[77], and [80], authors also apply the dropping action after
parsing the incoming packets and checking them against
a blacklist. Similarly, in [72] and [75], authors introduce
Firewalls that apply dropping to traffic that matches ban lists.
Usually, blacklists are constructed based on IP addresses.
Nevertheless, by leveraging P4 capabilities, these blacklists
can be generated based on different packet fields that match
predefined security policies.

2) FILTERING
The filtering action is implemented similarly to dropping.
For this action, filtering involves the selective discarding
of malicious traffic to prevent disruptions in the network.
Filtering might discard a portion of malicious packets fol-
lowing probabilistic methods or by statistical measurements.
Moreover, filtering can be implemented as a mitigation
approach while there is further analysis of the malicious
traffic [45].

In BUNGEE [45], González et al. proposed an adaptive
pushback mechanism to detect and mitigate DDoS attacks.
Figure 7 presents the defense steps carried out by this
solution implemented with P4. The pushback action allows
the distribution of input information for detection techniques
and mitigation actions progressively at the upstream data
plane devices in the path from the attacker toward the
intended victim. After attack detection (1), mitigation actions
start to filter packets in order to restrict attack packets from
reaching the intended victim (2). Then, through P4, the
defense strategy consists of recirculating a cloned attack
packet to the upstream devices. The packet is transformed into
an alarm packet by adding a custom header that includes the
IP address of the identified suspect. This alarm is used by the
pushback (3,5) action in order to push the defense towards
the edge of the network (4,6). BUNGEE implements filtering
as a mitigation action in order to limit malicious traffic from
reaching the network under attack. The system determines the
suspect IP address and includes it in a suspect list. Packets
that match the suspect list must be subjected to filtering. This

FIGURE 7. Overview of BUNGEE defense mechanism (adapted from [45]).

work adopts partial packet dropping, where there is a control
ratio of suspect packets that will be allowed to follow their
path toward the possible victim. The filtering mechanisms are
applied at the edge of the network.

Hardegen et al. [58] proposed FLOWSEN, a security
system to defend against heavy hitter attacks. These attacks
aim to reveal private information by analyzing the frequency
of interactions in computer networks. In FLOWSEN, authors
incorporate dropping, filtering, and redirection as mitigation
actions. The filtering strategy is applied to suspicious packets
following a probabilistic method that leverages the P4
dropping primitive. The dropping probability depends on the
amount of traffic rate exceeding a predefined threshold and
the excess of a bit rate threshold. The higher the relative
flow load, the higher the flow-specific drop ratio. Similarly,
in [88], the NetHCF defense system deploys a filtering state
to drop packets belonging to spoofing attacks that surpass a
packet rate threshold.

In [36], upon the detection of a DoS attack against the SIP
protocol, the defense system initiates the mitigation stage.
In this stage, the controller installs rules in P4-programmable
switches to filter traffic, and only drops malicious SIP
INVITE packets from a device connected to a specific switch
port. The drop action only discards malicious SIP INVITE
packets while allowing other types of packets to pass through
the specified port in the switch.

In BACKWARD [90], authors maintain a filtering list
including the top-k connections to the intended victim. When
an attack is detected, incoming packets are compared with
the aforementioned list. Packets included in the top-k source
list are discarded. The filtering list is shared with upstream
devices by cloning a packet used to send a notification to
upstream switches in order to pushback the defense and limit
the attack near the edge of the network.

In JAQEN [73], Liu et al. proposed dropping, filtering,
and redirection as mitigation actions. The filtering action
is based on the implementation of blacklists and whitelists
inside programmable devices. This action marks traffic
aiming at allowing or discarding these packets from reaching
the intended victim. The filtering action is implemented
based on exact or approximated lists that contribute
to stopping suspicious traffic from passing through the
switch.
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3) REDIRECTION
The redirection action consists of forwarding the malicious
traffic to a specific device inside the network [96]. This action
aims to further analyze the malicious traffic or to execute
more sophisticated mitigating actions. Through this strategy,
suspicious traffic can be forwarded to an IDS, a specific-
purpose server (e.g. a honeypot), or an SDN controller, among
other security-hardening devices, in order to further study the
behavior of possibly malicious traffic. Furthermore, it might
be possible to redirect or divert legitimate network traffic
around sections that have been impacted by an attack. For
instance, in the event of a link flooding attack affecting a
network link, benign traffic could be redirected in order to
circumvent the affected links until they are fully operational.

Ndonda et al. [76] designed a two-level defense system.
The first level is implemented using BMv2 switches. The
strategy leverages P4 Match/Action tables in order to
construct a whitelist. According to this approach, in the first
level, it is possible to define security policies and mitigation
actions expressed through a whitelist. In case there is no
match with the whitelist, the system redirects the traffic to
an IDS in order to apply further analysis actions. The second
defense level provides an IDS that uses a security engine
to discard malicious packets while including their relevant
information into a blacklist for further filtering of possible
future threats.

Similarly, POSEIDON [85] implements redirection as one
of the available mitigation actions, along with filtering and
dropping. POSEIDON defines different primitive actions
according to statistical results from the analysis of network
traffic. Figure 8 presents a general overview of the implemen-
tation of POSEIDON. Actions can be executed completely
on the switch, assisted by external general-purpose servers,
or completely executed on specialized servers (e.g. honeypots
and IDSs). ‘‘Switch-assisted’’ and ‘‘Server only’’ actions
can implement redirection as mitigating actions. For switch-
assisted actions, the mitigation is separated into actions
executed in the switch while other actions are offloaded to
servers. For instance, in the case of a SYN flood attack
occurrence, it is possible to apply dropping and redirection
as mitigating actions. If the traffic is benign, it is forwarded
normally to the next hop, and the traffic might be dropped for
suspicious packets. Otherwise, it is possible to redirect these
packets to dedicated servers in order to further analyze them
and take the required measures.

In [73], authors presented JAQEN, which aims to build
a robust defense against volumetric DDoS attacks. JAQEN
provides a P4 API to enforce switch-native mitigation
actions such as redirection and filtering. The authors propose
mitigation based on three steps: Filtering, analysis, and policy
update. The filtering is based on lists that allow or block
packets from reaching their destination. In the analysis step,
packets are marked as either benign or as part of a DDoS
attack. Finally, in the update process, the redirection action
recirculates suspicious packets in order to further analyze
them and update the filtering lists. The redirection action

FIGURE 8. POSEIDON high-level architecture implementation including a
defense instance (adapted from [85]).

clones packets and sends them to the control plane or tries
to match them against a filtering list stored in the ingress
pipeline of the switch. In that way, suspicious packets can
be forwarded according to the decision represented with a
blacklist or a whitelist.
In [37], Paolucci et al. proposed an optical offloading

strategy to redirect traffic. The defense system leverages
P4-based switches to divert traffic in order to decrease the
congestion of the network in two scenarios. The first scenario
consists of an edge switch that redirects malicious traffic to
an external device for further analysis. The second scenario
offloads traffic through an optical bypass when the packet rate
limit surpasses a predefined threshold to avoid congestion
attacks. This action permits benign traffic circulation through
network channels with more available resources. On the other
hand, Hardegen et al. [58] also proposed a redirection action
in order to detour suspicious packets through non-optimal
paths with the increased hop count in order to block them
from reaching their destination.

4) ISOLATION
Traffic isolation is a mitigation strategy that confines
malicious traffic to prevent attackers from exploiting network
resources [96]. However, the implementation of isolation
actions might be impractical due to the required amount of
resources to store malicious traffic temporarily. This storing
is required so that malicious packets can be further either
analyzed or discarded. Moreover, the deployment of isolation
strategies leveraging P4 is scarce, and there are just a few
defense measures that incorporate isolation as a mitigation
action. In fact, in our review of the state-of-the-art, we found
only one work that proposed traffic isolation as part of its
defense strategy.

In [37], authors proposed a defense strategy for detecting
andmitigatingDDoS attacks by implementing aNN. Figure 9
shows the pipeline of the proposed P4-programmable Neural
Switch. Traffic ingress (1) into the switch where packets
are parsed in order to extract useful information. The
detection strategy involves traffic classification performed
by the NN, where the inference output determines the
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TABLE 4. P4 mitigation techniques overview.

packet forwarding rule. For benign traffic, packets are
forwarded through a specific interface (2). If an attack is
detected, the switch forwards the traffic through a different
interface (3) that is connected to an isolated network. This
network serves as a quarantine area for malicious traffic.
Therefore, it is possible to avoid the disruption of the network
while DDoS traffic is temporarily confined. Subsequently,
according to the authors, this P4-based solution was the first
approach to an Artificial Intelligence (AI)-driven switch that
effectively applies in-network AI analysis by leveraging P4
programmability.

C. PLATFORM
The P4 programming language can be utilized across various
platforms. Since P4 is nowadays the de-facto standard pro-
gramming language for PDPs, according to our findings, the
academic community and industry commonly opt for specific
hardware and software-based platforms for the practical
and experimental realization of their implementations. The
following platforms emerge as the prevailing choices for
facilitating the deployment of the contributions identified
in the literature. Three of the most important platforms are
BMv2 [7], which is software-based, and Intel Tofino [9]
and NetFPGA [8], which are hardware-based. BMv2 can be
cheaper than Tofino or NetFPGA because users just need
an efficient computer to run the P4 programs. On the other
hand, a Tofino switch or a NetFPGA device can provide more
accurate experimental results, especially when distinguishing
between emulated and real testbeds, as corroborated by
existing literature.

1) BMV2
The Behavioral Model version 2 (BMv2) is an implementa-
tion in C++ of a software switch that can be programmed
with P4. Its primary purpose is to emulate the entire packet
processing behavior of the data plane using the P4 language.

BMv2 operates by taking a JSON file as input, which
is generated through the successful compilation of a P4
Program using the P4 reference compiler. It is important
to emphasize that BMv2 is not intended for production
use. Instead, it serves as a valuable tool for debugging,
development, and research experimentation, particularly in
the context of PDP environments [7].

It is worth noting that experiments with BMv2 are
commonly integrated with Mininet [97] to create customized
network topologies based on a PDP environment. Fur-
thermore, BMv2 can be connected to a controller, thus
implementing a complete realization of the SDN paradigm,
considering the programmability of both the control and data
planes [98].

Most of the reviewed works implement their P4-based
security solutions using BMv2 switches. Authors can take
advantage of software switches in order to expedite the
deployment and testing of the proposed P4-based security
solutions. For instance, in [72], authors proposed the first
security middleware using P4 by leveraging a BMv2 switch.
In [52], authors presented the demonstration of a P4 Neural
Network switch deployed in a BMv2 switch. This work
performs in-network traffic classification to detect and
mitigate DDoS attacks. For works such as [49], [51], [55],
and [63], authors used BMv2 switches to extract relevant
traffic features in order to apply detection mechanisms
through ML algorithms. Moreover, in P4-based security
solutions such as [37], [38], [42], [45], [58], [77], [81],
and [83], authors took advantage of BMv2 switches aiming
to design a testing environment to evaluate the performance
of the corresponding P4 detection and mitigation strategies.

2) BARETOOT-INTEL TOFINO
The Barefoot-Intel Tofino (BIT) programmable switches are
specifically designed to implement PDPs through the use of
the P4 programming language, enabling users to define and
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FIGURE 9. Pipeline of the proposed P4-programmable neural network
switch (adapted from [52]).

customize packet processing behavior within the data plane.
This programmability empowers the implementation of
application-specific network functions, providing flexibility
and adaptability to administrators. Notably, these switches
exhibit notorious packet processing capabilities, operating
at line-rate, with speeds of up to 24 terabits per second
(Tbps), while maintaining custom programmed forwarding
table capacities.

In the realm of research, BIT switches offer valuable
network visibility and telemetry features, useful for the
implementation of monitoring and analysis of network traffic
patterns while preserving very high performance. Such capa-
bilities hold significant promises for the research community,
facilitating in-depth investigations and explorations within
network-related domains, including cybersecurity [9].

TNA is the BIT solution based on PSA, both define a
predetermined set of pipelines, each assigned to specific
ports on the programmable switch. These pipelines include
functions like parsing, deparsing, and control for both ingress
and egress traffic [21]. Additionally, TNA offers conventional
traffic management capabilities also found in PSA, such
as mirroring sessions, packet replication using multicast,
digests, resubmissions, and recirculation, among others.
Notably, TNA incorporates dedicated packet generators at the
end of each pipeline, capable of generating eight independent
streams of packets, often referred to as applications. The
triggering mechanisms for these applications are typically
defined by on-time timers, periodic timers, port status
changes, and packet recirculation events [22].
For instance, in [78], authors deployed CoFilter in a

BIT switch and evaluated latency for traffic offloading by
comparing their proposed solution against a software-based
solution. Their findings indicated that traffic offloading
latency using a BIT switch was 40 times lower than
the latency in a software-based switch. In [50], authors
deployed their P4-based solution in a BIT switch, aiming
at exploring the capabilities of modern switches. In [56],
authors implemented pHeavy in a BIT switch in order to
demonstrate that the proposed P4-based security solutions
can recollect and predict heavy flows at line-rate. Similarly,
in [88], authors evaluated the performance of HetHCF when
filtering spoofed IP attacks at line-rate. In P4-based security

solutions such as POSEIDON [85] and JAQEN [73], authors
assessed the implementation of detection and mitigation
strategies to defend against DDoS attacks by comparing the
performance of these solutions on simulated switches such as
BMv2 and real switches based on BIT.

3) NETFPGA
The Portable Network Architecture (PNA) is equivalent to
PSA, with the key distinction that it focuses on Network
Interface Controllers (NIC) rather than switches. PNA is
designed to manage data flows transiting between one or
multiple interfaces at end host systems [20]. To the best of our
knowledge, the most used PNA platform is NetFPGA SUME,
which provides researchers with a practical tool for network
experimentation, setting it apart from the software-focused
approach of BMV2. This platform showcases the potential of
integrating software and hardware capabilities in networking
devices specifically designed for research and experimenta-
tion purposes. By utilizing Field-Programmable Gate Arrays
(FPGAs), NetFPGA SUME offers a cost-effective solution
for exploring and testing network designs. While its speed
may be slightly lower compared to high-performance Intel-
Tofino-based solutions, it still achieves data transmission
rates of up to 100 Gbps. This combination of physicality
and programmability makes NetFPGA SUME an appealing
choice for researchers who want hands-on experience with
network experimentation, even though it might not reach the
same level of performance as BIT-based solutions [8].

Different authors deployed their defense solutions using
an FPGA. In [37], [80], and [84], authors used NetFPGA
for the deployment of their mitigation techniques, taking
advantage of properties for accelerated packet processing and
data filtering. Additionally, authors from [37] implemented
their defense in NetFPGA and BMv2. They aimed to evaluate
the proposed defense’s impact over real programmable
hardware devices. The P4-based defense solutions were
validated in both platforms, and the authors concluded
there was no significant performance degradation due to the
NetFPGA parallel architecture. In [79], authors proposed an
FPGA-accelerated device in order to mitigate attacks in an
ISP backbone infrastructure before the attack reaches the
intended victim.

V. ENHANCING CYBERSECURITY THROUGH P4-BASED
SECURITY PROVISIONING AND ABSTRACTED FUNCTIONS
The P4 programming language has demonstrated its value in
various networking domains, encompassing a wide range of
solutions such as monitoring, traffic management, congestion
control, routing and forwarding, 4G/5G cellular network
(core networks), IoT, industrial networks, and time-sensitive
networks [29]. In the context of cybersecurity, researchers
have explored different P4-based approaches within two
primary categories: detection and mitigation. These inves-
tigations include diverse platforms and have paved the way
for the development of P4 solutions in their respective
architectures,
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Within the cybersecurity landscape, there is a trending
category known as Security Provisioning, which focuses
on proactive measures rather than reactive responses. This
tendency involves the implementation of attack detection
techniques and mitigation actions within a single system,
leveraging P4 for security provisioning strategies. These
strategies aim to mitigate potential vulnerabilities by imple-
menting specific actions based on the taxonomy proposed
in Figure 2. However, such conventional cybersecurity extra
devices (firewalls, IDS, IPS, among others) often suffer from
high costs, potential network performance degradation, and
limited scalability in complex and critical systems [4], [99].
In this context, by harnessing the capabilities of PDP

through P4 language, comparable cybersecurity function-
alities provided by different middleboxes, such as Fire-
walls, IDSs, or IPSs, can be achieved through abstracted
functions, while preserving the novel characteristics of
the PDP architectures, such as line-rate efficiency. The
following subsections illustrate the behavior related to the
aforementioned middleboxes to determine which abstracted
functions could be derived. Additionally, in this section,
we present a summary of all the solutions addressed in this
paper, along with the classification according to our proposed
taxonomy (see Table 5).

A. FIREWALL
A Firewall acts as an enforceable security system that uses
pre-defined rules to monitor and control network traffic,
enabling the inspection of incoming and outgoing data.
By establishing a virtual barrier between internal infrastruc-
ture and external networks, like the Internet, Firewalls play
an important role in safeguarding network security. Two
primary types of Firewalls exist: Host-based and Network-
based. Host-based Firewalls operate on individual host
computers and govern the flow of network traffic to and
from these specific machines. On the other hand, Network-
based Firewalls filter traffic amongmultiple networks and are
typically implemented within network hardware [100]. In this
paper, we focused on Network-based Firewalls.

Several P4-based cybersecurity proposals can be classi-
fied within this category, as their functionality relies on
the implementation of Firewall operational principles and
functionalities. For instance, Vörös et al. [72] devised the
pioneering P4 Firewall featuring whitelist and blacklist
capabilities for diverse Protocol Data Units (PDU). Similarly,
González et al. [45] incorporated a suspects list, while
Narayanan et al. [80] employed whitelists and blacklists,
whereby incoming packets are evaluated against these lists.
These whitelist and blacklist functionalities are governed
by policy-based rules that dictate the appropriate actions
to be enforced when a key is activated in a Match/Action
table. Consequently, the handling of a flow relies on the
utilization of table entries expressing network policies.
These policies are subsequently enforced upon matches of
packets against the rules defined within the Match/Action

tables. The fine-grained processing capability of PDPs
facilitates adaptable filtering of incoming traffic, enabling the
management of flows in diverse manners.

B. INTRUSION DETECTION SYSTEM (IDS)
Hardware or software-based IDS can perform network
monitoring in order to detect malicious activity or policy
violations. If a violation occurs, the network administrator
or a data collector is notified by alarms from different
sources [100]. Considering this scenario, new approaches in
PDP involvingMLmight be relevant since their classification
result can be considered analogous to an alarm being
triggered.

Several examples within the academic literature highlight
the application of intrusion detection and classification
techniques. For instance, Lapolli et al. [42] proposed an
entropy-based anomaly detection approach, which triggers
alarm notifications. In a similar way, Zhang et al. [56]
introduced pHeavy, a binary classification framework trained
on imbalanced data, enabling network operators to address
the most significant and volumetric flows (or heavy flows)
upon receiving alarms. Meanwhile, Zheng et al. [57] embed-
ded ML algorithms into programmable switches to classify
diverse traffic, and used the outcomes of this classification
as alerts for a Security Operations Center (SOC), looking
for appropriate response actions. Finally, Ding et al. [44]
presented a DDoS detection strategy, which, by means of
an analysis based on entropy variations obtained from nor-
malized network traffic, generates alarms to the monitoring
collector. These examples illustrate the PDP development
and implementation tools for various intrusion detection
mechanisms, using P4 language, showcasing the utilization
of anomaly detection, classification, and entropy-based
approaches for timely response to security threats detection
in-band.

C. INTRUSION PREVENTION SYSTEM (IPS)
An IPS serves the purpose of not only monitoring network or
system activities for potentially malicious behavior but also
actively engaging in the identification, recording, reporting,
and mitigation of such activities. Thus, IPSs are considered
extensions of IDSs because they engage in the detection and
mitigation of malicious activities [100].

Some PDP-based cybersecurity approaches can be placed
in this category. Paolucci et al. [101] incorporate detection
and mitigation in their solution. After detecting a pre-defined
number of connection attempts in a port scan, the P4
switch discards the forthcoming attempts. Hence, it can
be categorized as an IPS. Through its collaborative APIs,
Liu et al. [73] proposed a P4-based solution that quickly
adapts to cyber-attacks and their changes to detect and
mitigate different threats and their alterations. Finally,
microVNF [87] workflows treated packets with deep packet
inspection, verification processes, and specific counters to
determine whether a flow is malicious.
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The following mechanisms are examples of collaboration
between IPS and Firewall. González et al. [45] built a blacklist
based on the entropy threshold. Then this blacklist feeds a
Firewall rule. Once detection occurs, the system communi-
cates with other P4-enabled switches to keepmalicious traffic
as close to the source as possible. When traffic becomes
normal, the malicious source exits the blacklists. On the
other hand, based on the constructed Match/Action tables,
Narayanan et al. [80] createdwhitelists and blacklists that can
develop rules and implement in the switch a behavior similar
to a Firewall. Thus, the combination of different tables helps
to harden the system against spoofing attacks.

The summary of the latter sections can be found in
Table 5, which includes the use of our proposed taxonomy
applied to various research papers, including categorization
concerning detection techniques, mitigation actions, security
provisioning, and platforms.

VI. RESEARCH CHALLENGES AND FUTURE TRENDS
This section presents a summary of trends and challenges
identified in the field of cybersecurity solutions leveraging
PDPs. It is important to note that this is an evolving area, and
the specific trends and problems discussed might evolve with
each new contribution.

A. DEVELOPMENT LIMITATIONS
The first challenge that PDP developers might face is
transitioning from emulated environments to physical plat-
forms. Emulated environments are designed and imple-
mented with a complete alignment to the programming
language specification, which might not be the case in actual
chip implementations found in physical devices. Moreover,
programming languages for PDPs (e.g. P4) lack different
primitives and artifacts, such as floating point arithmetic and
loop control structures, to guarantee line-rate performance
and operation stability.

On the other hand, the use and management of a consid-
erable amount of data and artificial intelligence algorithms
can bring big advantages for network management [102],
especially when it comes to cybersecurity. However, network
devices, programmable switches included, face challenges
due to their inherent memory limitations, which arise from
restrictions in processing and storage capabilities; this poses
a significant challenge in the implementation of attack detec-
tion approaches based on AI-techniques that are deployed
in the data plane. Nevertheless, PDP researchers have
made noteworthy progress in addressing these limitations
by leveraging the potential of stateful elements within P4
and supporting elements within programmable architectures,
such as meters, counters, and registers, among others.
By employing efficient memory management techniques,
including optimized data structures, hash operations, and
memory allocation strategies, researchers have sought to
maximize the utilization of available resources. However,
aspects such as the effective processing of individual flows
remain challenging.

It is crucial to note that cybersecurity solutions using PDP
architecture might face development restrictions based on
the system’s design. However, earlier paragraphs presented
instances where line-rate performance premise is manda-
tory and significant improvements in managing memory
resources were achieved. This progress aims to make
in-band cybersecurity solutions viable, including detection
techniques and mitigation actions, all supported by elements
(meters, registers, counters, among others) specified in the
language [25] and the respective architecture [7], [20],
[21], [22]. The above-mentioned fact requires continuous
improvements and abstracted methods for their practical
application, either just using the data plane [55], [61] or even
applying a collaboration with the control plane [49], [52],
[69]. The ongoing efforts to overcome memory constraints
and processing delays are driven by the acknowledgment
that effective cybersecurity measures depend on efficient
resource utilization, intelligent data processing techniques,
and robust memory management strategies. By further
exploring and enhancing the capabilities of programmable
switches, researchers aim to unlock the full potential of PDP
in cybersecurity solutions, ensuring a harmonious balance
between performance, resource constraints, and the evolving
demands of network environments.

B. NEXT STEPS IN DATA PLANE BASED MACHINE
LEARNING DEPLOYMENT
In recent years, there has been a significant surge in the
popularity of AI solutions, particularly in the field of
ML, driven by remarkable advancements in processors,
GPUs, and computational capabilities. As a result, the
landscape of AI-driven applications has witnessed substantial
enhancements, introducing many practical achievements
that were previously inconceivable. Even in the face of
memory and processing limitations, these advancements have
demonstrated that noteworthy results can still be achieved in
the domains of networking and cybersecurity. In the context
of networking, researchers have made notable efforts to adapt
several ML algorithms in order to be implemented with P4
leveraging different PDP architectures (e.g. PSA, TNA) for
cybersecurity classification purposes. These adaptations have
primarily involved collaborations between control and data
planes [49], [52], [69] or an offline training followed by the
deployment of an abstraction on the data plane [55], [61].

However, the utilization of in-network ML detection
techniques mandates the exploration of various target archi-
tectures, which can exhibit divergences in their definitions
and components, including metadata instances [7], [20],
[21], [22]. Fortunately, a common thread among these
techniques is the incorporation of Match/Action tables
featuring activation keys. Within the context of these tables
and keys, establishing abstracted entities for features, classes,
and even clusters are viable, depending on the specific ML
classifier employed. According to the nature of the ML
model and the aforementioned tables and keys, the executed
actions manifest through feasible architectural operations

VOLUME 12, 2024 6393



C. Garzón et al.: P4 Cybersecurity Solutions: Taxonomy and Open Challenges

like voting, computed vectors, probabilities, distances, and
others [48]. Finally, the programmable switch undertakes
the classification of a flow by leveraging mechanisms
such as decoded terms, vote tallies, highest probabilities,
or distances [47].

Table 2 shows that ML-based P4 cybersecurity related
implementations are supervised algorithms. This bias
towards supervised learning techniques is a direct con-
sequence of P4’s inherent limitations in processing and
memory, more so with unsupervised learning and deep
learning that often tries to manage a considerable amount
of information. However, it is crucial to acknowledge the
existing gap when it comes to incorporating unsupervised
learning and deep learning algorithms in the data plane. These
algorithms hold great potential for effectively analyzing and
processing heterogeneous data present in network traffic.
On the one hand, unsupervised algorithms can leverage
their ability to identify patterns and anomalies without
labeled training data. Unsupervised algorithms are proficient
at detecting patterns and anomalies in data even when
no labeled training data is available. On the other hand,
deep learning algorithms process data through multiple
layers of neural networks to understand complex patterns.
Both approaches offer valuable insights and can enhance
cybersecurity detection in complex network settings, though
they do require substantial amounts of data. Bridging the last
mentioned gaps and exploring the utilization of algorithms,
which require a large amount of data and memory (e.g. deep
learning and unsupervised learning), in the data plane is an
important avenue for future research and holds the promise
of unlocking new capabilities and advancements in network
security. Considering what was explained in the previous
paragraph, one way to obtain satisfactory results is through
collaboration between the control and data planes, seeking a
complete process involving data collection, data processing,
model validation, model deployment, and analysis of the
results [103]. Thus, harmonious collaboration can avoid
control plane exhaustion by delegating some tasks to the data
plane, such as collecting better features based on the premise
of DPI and PDPs.

C. TOWARDS IN-NETWORK COMPUTING AND
SELF-DRIVING NETWORKS
The thriving of computer networks and the associated devices
used by individuals and companies to carry out their daily
activities makes managing networks more crucial than ever.
There has been a continuous increase in the deployment
of network hardware and software tools. Hence, with the
expansion of computer networks, their management has
become so complex that it seems impossible to have an
effective control [13]. Consequently, new approaches are
required for networkmanagement to improve the operation of
computer networks. It is paramount to develop new network
technologies that ease the burden of network operations while
at the same time, the network administration capabilities
are enhanced [104]. In that matter, the self-driving network

concept aims to deploy autonomous networks capable of
predicting changes and adapting to the behavior of users and
enterprises without the need for human intervention [105].
Subsequently, it is necessary to introduce technologies that

change the network in order to make it easier to manage.
SDN is a paradigm that enhances network management by
including substantial programmability functions. Likewise,
PDPs allow the deployment of network management tasks,
making it feasible to perform self-driving tasks. This way,
it is possible to improve the performance of different network
activities. Furthermore, with the development of PDP devices
such as switches (e.g. Barefoot Tofino [9]) SmartNICSs (e.g
Netronome Agilio cards [6]), among others, it is possible to
perform in-network functions leveraging ML and DL.

Through ML and DL, network functionalities might be
dynamically adapted according to the dynamics of the
network. Moreover, both can be used for optimization and
decision-making activities [47]. There are successful cases of
ML andDL deployment algorithms. For instance, in Iisy [48],
authors present different ML classification models in order to
classify traffic and evaluate the feasibility, performance, and
resource consumption of ML techniques.

In that matter, it is important to highlight the close
relationship between ML and networking. Even more, ML is
a fundamental tool to achieve the notion of self-driving
networks. Additionally, ML can greatly benefit from new
paradigms such as PDP in order to offload network functions
to the data plane [46]. Nevertheless, despite the advantages
of PDP, the implementation of ML or DL capabilities might
have some limitations in terms of computational resources,
memory storage, and limited operations. Consequently,
it is desirable to aim at light ML/DL models with minor
consumption of computing and memory resources while
using simple arithmetic or logical operations. However,
lightweight ML models might not achieve satisfactory
performance for different network activities, as in the case of
traffic classification [106]. Hence, alternatives such as Binary
Neural Networks (BNN) have emerged as an alternative
aiming to bring intelligence to the data plane [107]. Although
BNNs are a good strategy, deploying large models in PDPs
with such limited resources is still a challenge. Therefore, the
networking community is constantly developing alternatives
to deploy ML and DL in such a way that the vision of
in-network computing can be achieved. For instance, it is
possible to establish communication between control and
data planes in order to deploy trained ML models on the
control plane by capturing relevant traffic characteristics from
the data plane devices.

Furthermore, in-network computing can significantly ben-
efit the cybersecurity area. SDN and PDP play a vital role
in enhancing network security. Self-driving networks provide
the required autonomy in order to implement detection and
mitigation strategies that do not require human intervention
and can be adapted to different security needs. Through the
implementation of ML and DL techniques, it is possible
to automate the detection process. Moreover, for mitigation
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TABLE 5. P4 solutions summary.

actions, autonomous networks will allow the fast deployment
of countermeasures against cyberattacks targeting the net-
work. Consequently, by implementing in-network operations,
it will be possible to deploy self-driving secure networks.
In this way, enhancing and deploying proactive actions in the
monitoring, prevention, detection, and mitigation strategies
will be possible. For instance, monitoring actions might
deploy network functions and manage network resources
according to the current state of the network. Prevention
strategies might leverage the analysis of traffic patterns to
enforce decisions in the presence of suspicious traffic. For
detection strategies, it is possible to implement ML and DL
strategies to detect cyberattack patterns.Moreover, mitigation

strategies can leverage the detection output in order to define
and deploy different mitigation actions.

For instance, authors from [50], [51], and [55] implement
their proposed ML algorithms in the data plane. Therefore,
their defense strategies avoid bottleneck communication with
centralized entities such as the network controller. This
approach deploys classification decisions as match-action
rules in the P4 switch. Moreover, in [52], authors present the
first NN implemented directly on a P4 switch. In contrast,
in articles such as [49], [59], [63], and [68], authors propose
ML solutions that involve the collaboration of control and
data plane. The data plane collects relevant traffic data
required by the ML algorithm in order to perform the
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classification. TheML can be placed in the control plane as an
API application that activates an alarm upon the presence of
an attack. Finally, implementing cybersecurity P4 solutions
with ML faces the challenges of optimizing communication
time among control and data plane collaboration, deploy-
ing classification rules in the P4 switches, and hardware
resources to implement ML algorithms directly in data plane
switches.

D. IMPROVING MITIGATION ACTIONS
Both academia and industry have increasingly focused
on the development of P4-based cybersecurity solutions.
Through a literature review it is possible to notice that
most works center around the implementation of detection
strategies, leaving out mitigation in second place. Mitigation
is a paramount topic that requires more attention in the
cybersecurity research domain. In this area, the focus is
to develop robust systems to remediate the network post-
attack detection. The development of appropriate techniques
might enable a better response in terms of effectiveness and
time response in the presence of cyberattacks. Therefore,
and as mentioned before, there are few mitigation strategies
leveraging programmable data planes. In this paper we
showcase a large area of opportunities for implementing
diverse mitigation actions leveraging Programmable Data
Planes.

In order to achieve effective and fast alleviation of the
network, mitigation solutions can take advantage of P4 to
deploy more robust systems. Solutions can apply different
mitigation actions as presented in the proposed taxonomy
in Figure 2. Furthermore, by leveraging P4 and custom
headers, it is feasible to implement collaborative mitigation
actions among data plane devices without the intervention
of the control plane. This way, the working load of the
controller can be reduced while the mitigation measures
are distributed across the whole network. Likewise, through
packet customization, mitigation measures might include
relevant information in the headers in order to execute
different security tasks.

Subsequently, P4-based mitigation solutions can take
advantage of the P4 language properties to combine different
approaches that will enhance the response of the network.
By leveraging network programmability, it is feasible to
replace fixed middlebox devices for P4 solutions that include
a mitigation module that enforces actions according to the
network state and the characteristics of the attack. For
instance, after an attack is detected, it is possible to indicate
different mitigation rules to data plane devices without
the need for controller intervention, which could improve
response time during the mitigation process. Furthermore,
more sophisticated mitigation actions can be implemented,
such as deploying honeypots or applying techniques designed
to alleviate path congestion through traffic redirection.
Finally, from Table 5, it is noticeable an emphasis on
the development of P4-detection solutions. Therefore, the
development of P4-mitigation solutions is a topic that

requires greater focus in order to take advantage of the
capabilities offered by the P4 programming language.

E. INTRINSIC PDP SECURITY CHALLENGES
Through Programmable Data Planes (PDP), there is potential
for significant advancement within the domain of network
security aimed at protecting network devices against the more
sophisticated network attacks occurring every day. In that
matter, considerable efforts undertaken by academia and
industry have been dedicated to deploying programmable
switches seeking to execute diverse security tasks in the
data plane. Moreover, incorporating security mechanisms
within PDPs is a fundamental component in discussing
research challenges to develop robust infrastructures in the
data plane to prevent potential threats. It is crucial to engage
in discussions concerning the security challenges intrinsic
to PDPs, seeking to establish more robust strategies for
detecting and mitigating attacks.

For instance, malicious actors have the potential to exploit
vulnerabilities inherent to the programmability of the data
plane, aiming to manipulate the network traffic behavior,
thereby introducing novel attack vectors. In that regard,
in [108], The authors present the term ‘‘sensitive attacks’’
to describe a category of attacks that specifically exploit
the programmable nature of switches, aiming to manipulate
network behavior by adapting network traffic. Furthermore,
there is a critical need for robust security verification mecha-
nisms, primarily because network administrators determine
the definition of forwarding behavior. The user-defined
configuration of the data plane could inadvertently expose
vulnerabilities or bugs in the programming used to configure
the programmable switches. In the context of P4, an expected
requirement involves the development of mechanisms that
facilitate the analysis and validation of P4 programs to ensure
their accurate and secure operation.

Consequently, the successful implementation of detection
and mitigation strategies within Programmable Data Planes
(PDPs) relies on the effectiveness of data plane technologies,
providing the essential reliability and security mechanisms
necessary for PDPs to enhance their security.

VII. CONCLUSION
This research conducted a comprehensive exploration of P4
cybersecurity solutions within the timeframe of 2016 to 2023.
The primary objective of this study was to contribute to
the field of cybersecurity in PDP, specifically by providing
a refined categorization of detection techniques, mitigation
actions, and deployment platforms by the research commu-
nity.

This paper started by providing a concise overview of
the key components of the P4 data plane language in order
to prepare the reader for a deeper understanding of the
subsequent discussions. A collaborative taxonomy was then
introduced, aiming to establish a framework that facilitates
the integration of detection, mitigation, and deployment
platforms, all using inter and intra-categories.
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This taxonomy was designed to foster synergistic
approaches and encourage the inclusion of complementary
elements rather than promoting exclusivity. We presented
the importance of a proactive cybersecurity, arguing
why adopting functions abstracted from classical security
devices can improve the performance of PDP cybersecurity
solutions through the P4 language and including a Security
Provisioning element of the diverse solutions.

Finally, this work concludes with a reflection on the
identified research challenges and describes topics for
future exploration. The identification and analysis of these
challenges are crucial to provide new research branches for
the research community engaged in PDP cybersecurity.

In summary, this work contributes to evolving the field
of P4 cybersecurity solutions by offering valuable insights
represented with the novel taxonomy. Also, highlighting
the benefits of Security Provisioning and discussing our
perception respecting the key research challenges and future
directions.
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