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ABSTRACT Local model-agnostic Explainable Artificial Intelligence (XAI), such as LIME or SHAP, has
recently gained popularity among researchers and data scientists for explaining black boxMachine Learning
(ML) models. In the industry, practitioners focus not only on how these explanations can validate their
models but also on how they can help maintain trust from end-users. Some studies attempted to measure
this ability by quantifying what they refer to as the explainability or interpretability of ML models. In this
paper, we introduce a new method for measuring explainability with reference to an approximated human
model. We develop a human-friendly interface to strategically collect human decision-making and translate
it into a set of logical rules and intuitions, or simply annotations. These annotations are then compared with
the local explanations derived from common XAI tools. Through a human survey, we demonstrate that it is
possible to quantify human intuition and empirically compare it to a given explanation, enabling a practical
quantification of explainability. By relying on this new method, we identified several potential flaws in
today’s ML selection process. Furthermore, we demonstrate how our method can help to better evaluate ML
models.

INDEX TERMS Explainable artificial intelligence, artificial intelligence, machine learning, explainability.

I. INTRODUCTION
With the ever-growing adoption of Machine Learning (ML),
the potential of fraudulence in highly complex ML models
has recently raised significant concerns, leading to a surge of
research in eXplainable Artificial Intelligence (XAI). Despite
achieving promising results, XAI, a technology that focuses
on elucidating opaque ML models, still faces significant
challenges that need to be addressed [1], [2].

One major problem pertains to the quantitative measure-
ment of the trustworthiness of an XAI explanation [3].
In the industry context, this is especially pertinent, as ML
developers require the XAI not only to validate their models
but also to demonstrate their reliability to potential users.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaojie Su .

Traditional performance criteria are insufficient in this
regard; an additional focus on user trust is needed. While the
XAI continues to maintain its prominence in the assessment
of various ML models, it is noteworthy that a deficiency
persists in the current form of quantitative evaluation
frameworks, where the majority of research addressing this
issue either struggles with the complexity of extensive human
surveys or resorts to proxy methods based on the author’s
subjective assessment [4], [5], both of which are unsuitable
in the company setting. This deficiency consequently renders
all current evaluations reliant on qualitative measurements,
thereby lacking practicability in the evaluation process.

For instance, in the renowned LIME paper [6], to validate
the ability of LIME explanations to indicate better classifiers,
the authors introduced a human experiment by strategically
or randomly showing explanations from two classifiers to
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FIGURE 1. A demo of two different models’ prediction reasoning.

human participants. The authors deliberately violate one
classifier by training it with a biased dataset, while the
other classifier is trained on the real dataset. The participants
were then asked to select better explanations. Most people
correctly select the explanations from the real model.
Accordingly, they concluded the usefulness of their method
for benefiting non-experts in choosing better models. In their
qualitative evaluation approach, several issues emerge: first,
the underlying factors that drive participants to select certain
explanations are not clear. Second, the degree to which
one explanation is superior to another remains undefined.
Third, the transition from evaluating individual explanations
to assessing the entire model seems unreliable.

To figure out answers of these issues and propose our own
evaluation framework, we replicated the human experiments
in [6] by presenting explanations from two distinct models,
as illustrated in Fig. 1.

This time, the ML’s task was to predict whether an
individual has a high or low income based on their personal
information. Notably, the majority of participants (37 out
of 46) perceived model B as more reliable. We proceeded
to inquire about the reasons behind their selections. The
participants’ responses revealed two primary criteria, which
we summarize as follows:

Consistency with common sense in the direction of
feature importance: Participants believed that certain fea-
tures should logically have a positive or negative impact
on predicting a high salary. For instance, they expected a

bachelor’s degree to positively influence the prediction of a
high salary rather than a low salary.

Consistency with common sense in the relative impor-
tance of features: Participants expressed that the order of
feature importance, based on their absolute values, should
align with their intuitive understanding. For instance, they
believed that gender should not be more influential in
predicting one’s salary than their level of education.

Based on the responses we have obtained, it seems feasible
to gather human perspectives on ‘‘common sense. We can
then incorporate them into a framework that can be compared
to the explanations derived from the XAI. Furthermore, the
explainability of these explanations can be quantified based
on their similarity to this ‘‘common sense’’. Also, the overall
explainability of the model can be assessed by collectively
evaluating each individual explanation.

Nevertheless, it’s important to consider additional factors
when evaluating explanations. According to Carvalho et al.,
there are mainly three goals for better explainability: (1)
user’s understandability, (2) user’s interpreting efficiency,
and (3) XAI approximating accuracy [7]. While under-
standability is strongly related to the similarity between
human cognition and the XAI explanations as we mentioned
previously, we also want to give solutions to quantify the
user’s interpreting efficiency and the XAI approximating
accuracy.

In summary, our proposed quantification method is as
follow: To assess the understandability of the explanation,
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we propose a method to map human cognition to a linear
model and then compare this human-defined model with
the locally approximated model obtained from SHAP. For
interpreting efficiency, we measure the number of cognitive
chunks and feature diversity to estimate the efficiency of
human understanding. Finally, the difference between the
XAI local prediction and the model prediction is used to
measure the XAI approximating accuracy. Although we
aim to create a universal and model-agnostic method to
quantify the explainability of all ML models, considering
the variety of ML tasks, we will only focus on clas-
sification problems related to the tabular dataset in this
research.

Together with the performance metrics of ML models,
there are many potential applications of this explainability
metric. For instance, in the problem of model selection,
if several models perform very closely in terms of perfor-
mance metrics, we can choose the model with the highest
explainability for better explanations, which is extremely
important in industries where data scientists need to advertise
their models to end-users. Another application is a potential
probe to monitor the explainability change of a model
after updates caused by either a different training process
or a change of the training set. To the best of our
knowledge, no previous research has used human strategies
as a reference to measure the explainability of ML models.
This makes our study probably the first to address this
problem.

Therefore, this paper’s main contributions are as follows:
1) We introduce a novel framework that quantifies the

explainability of ML models by SHAP and references
to human strategy.

2) Our research uncovers various patterns within the ML
training process. These observations emerged during
the implementation of our method and provide insights
into the dynamics of explainability during model
training.

3) We critically examine and reevaluate several widespread
assumptions in the XAI domain, particularly in
practical applications. Our findings challenge the con-
ventional understanding and present new perspectives
on the explainability of ML models.

The remainder of this paper is as follows. In Section II,
we present some of the existing work related to the field of
explainability’s quantification. In Section III, we formally
define the objective of this work and explain in detail our
proposed method. In Section IV, we show a real-world
example obtained by running a human survey and discuss in
detail the obtained results. In Section V we discussed several
potential flaws in today’s ML selection process. Finally,
in Section VI, we conclude this paper.

II. RELATED WORK
In this section, we provide an overview of the local
model-agnostic XAI and discuss some related research on
quantifying the ML’s explainability.

A. LOCAL MODEL-AGNOSTIC XAI
Local model-agnostic XAI refers to a category of XAI tech-
niques. As the term ‘‘agnostic’’ suggests, these techniques do
not rely on the internal structure or specifics of the underlying
ML model but can be applied to any type of model that maps
input to output. As the term ‘‘local’’ suggests, this type of XAI
can only explain individual prediction rather than the general
strategy used by the ML models.

One common approach used in local model-agnostic XAI
is to generate explanations in the form of feature importance.
These explanations are typically generated by permuting
the input and observing how the prediction changes, which
highlights the contribution of each input feature to the final
prediction.

One popular local model-agnostic XAI method is SHAP,
introduced by Lundberg and Lee in 2017 [8]. SHAP is
based on Shapley values [9] from cooperative game theory
and provides explanations for individual predictions by
attributing the contribution of each feature to the final output.
It offers different modules that can be applied to various types
of ML models, such as kernel-SHAP for all types of models,
deep-SHAP for deep learning models, and tree-SHAP [10]
for tree-based models.

Other local model-agnostic XAI techniques, such as LIME
[6], also operate on the same principle of providing local
explanations by approximating the model’s behavior around
the specific instance being explained.

B. QUANTIFICATION OF EXPLAINABILITY
According to Arrieta et al., explainability can be regarded
as an active characteristic of a model, denoting any action
or procedure taken by a model to clarify or detail its
internal function [11]. In contrast, interpretability refers to
a passive characteristic of a model referring to the level
at which a given model makes sense to a human observer.
In our study, we consider explainability as an attribute
of ML models, while interpretability describes the extent
of human comprehension. Accordingly, a model with low
explainability always lacks the capability to be interpreted
and trusted by humans, and a model with high explainability
can easily be interpreted and trusted by humans.

Since explainability is highly related to both ML structures
and humans, the study of quantifying explainability can
also be implemented from both directions. Some studies
like [4] attempted to quantify the complexity of arbitrary ML
models based on functional decomposition, which focuses
on three criteria: the number of features used, the interaction
strength, and the main effect complexity. Moreover, Mohseni
et al. have addressed the inversely proportional relationship
between a model’s complexity and its explainability [12].
Others also suggested that some models like decision trees
or linear models are intrinsically explainable models, while
ensemble models and deep learning models are not, also
known as black-box models [13]. Although the taxonomy
seems well-founded, it still lacks practical value in the real-
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world scenario, where different models’ explainability cannot
be directly compared due to different explanation methods.
Meanwhile, models claimed to be more explainable due
to their structures usually lack human subjective opinions,
leaving these methods unsupported in terms of real-world
usage [3].

On the other hand, starting from the human side, some
studies focused on collecting human subjective reviews to
measure the explainability of explanations. For example,
Schmidt and Biessmann used the information transfer rate
to quantify the explainability of any given explanation [5].
This transfer rate is measured by the human interaction time
and the similarity between the human’s prediction and the
model’s prediction. Nevertheless, Mohseni and Block [14]
created multi-layer human attention masks aggregated from
multiple human annotators and compared them with the
model saliency explanations obtained by Gradient-weighted
Class Activation Mapping (Grad-CAM) [15] and LIME [6].
Their idea is most similar to ours in the literature. As their
study mainly focuses on images, they mention several
limitations of the study, including the lack of reproducibility
and the high cost of human annotation. These problems are,
however, relatively easy to address for tabular datasets, which
we will further elaborate in the next section.

To conclude, the review of previous research shows the
dissonance between subjective and objective measurements
of explainability. Although some attempts have been imple-
mented to cover the gap, they seem rather unpractical in real-
world scenarios.

III. PROPOSED APPROACH
First, we should define the problem setup. Let A denote an
ML algorithm, and λ represent a parameter set. For any A
with its parameters instantiated to λ, denoted as Aλ, our
target is to quantify the explainability of such model Aλ.
This explainability will be based on the model’s ability to
achieve the following goals: (1) The strategy of such a model
extracted by an XAImethod should make sense to the human.
(2) The XAI approximation should be accurate. (3) The
explanation itself should enable the human to make a quick
judgment. Accordingly, we have created a human-grounded
quantification method to quantify such explainability.

A. A MATHEMATICAL MODEL FOR HUMAN STRATEGY
Although it is nearly impossible to construct a mathematical
model that can represent human cognition for a given task
globally, we find it possible to represent it locally. For
instance, given the task of predicting whether a person’s
salary is over 50,000 USD, it is hard to tell how education
would globally influence the prediction. However, locally
most people can annotate the possible impact if a person has a
tertiary education level. Therefore, it is possible to use a linear
combination with the weights and their associated features to
locally represent a strategy.

Let h be the prediction model by humans. h(x) is a local
prediction based on a single input x. Any binary human

prediction can be approximated by the following equation:

h(x) = sign(
M∑
i=1

φixi). (1)

Here, xi ∈ {0, 1}M , and M is the number of all features’
values. φi ∈ [−1, 1], indicates the possible impact of one
feature value on the final prediction. Therefore, extracting the
human strategy translates into deciding φi for any possible
feature’s value in a given dataset.

It is also important to clarify the difference between
the terms ‘‘features’’ and ‘‘feature values’’ here. The term
‘‘feature’’ indicates the piece of information itself regardless
of the value it takes, whereas the term ‘‘feature value’’
indicates the instantiation of that information by giving it a
value. For instance, [education] is a feature, while [education
= doctor] is a possible value for this feature.
According to our human survey, individuals typically

process these two terms at different levels. When evaluating
values from the same feature, humans usually have a certain
ranking in mind. However, comparing values belonging
to different features proves to be more challenging. For
example, participants show a strong preference for a tertiary
education level over a high school education level in deciding
the salary but struggle when asked to compare a tertiary
degree with a specific working-hours.

On the other hand, judging the importance of a feature
itself is usually done by comparing it with other features.
For instance, while it may be difficult to directly compare
a specific education level with working hours, humans
find it easier to determine that the education-level holds
more significance than the working-hours when it comes to
salary decisions. Therefore, we believe that the annotation of
the features and the feature values should be implemented
separately. We will explain the annotation part in more detail
in the next subsection.Moreover, since annotating all possible
numerical values is impossible, we will use bins to discretize
the numerical features.

B. ANNOTATION FOR FEATURE WEIGHTS
Based on the issues addressed in the previous section, we have
developed a Graphical User Interface (GUI) to effectively
gather people’s opinions on different feature values.

To streamline the process, we have implemented a
selection box that prompts users to focus on one feature at
a time, while leaving the assessment of interrelationships
between different features to global importance annotations.
An illustrative example is depicted in Fig. 2 and Fig. 3.
Another challenge we encountered during our experiment

was the difficulty for humans to annotate all feature values
from scratch. For instance, annotators may have the idea
that individuals with a master’s degree generally earn more
than high school graduates. However, determining the exact
extent of this difference proves to be extremely challenging.
To overcome this hurdle, instead of requiring users to
annotate everything from scratch, we provide default values
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FIGURE 2. Demo on GUI about selecting features.

FIGURE 3. Demo on GUI about feature annotation.

by calculating the correlations between each feature value and
the target class using Cramér’s V [16]. Thus, users’ task is not
to establish these correlations but to modify them if they find
them implausible or irrelevant.

Now, let θd ∈ [0, 1] denote the global importance of the
d-th feature, and ρ

p
d denote the feature importance of d-

th feature’s p-th value. The φi of the human model is then
obtained by the following equation:

φi = θd × ρ
p
d . (2)

The index i here indicates an arbitrary order of all feature
values.

C. LOCALLY ABSTRACT ML’S STRATEGY
To make the human strategy and model strategy comparable,
we also need to find a way to approximate any ML strategy
to a linear model locally. In that sense, any additive feature
attribution method [8] is applicable. Let k be the original
prediction model and l be the explanation model. For any
predication k(xi) based on a single input xi, local explainable
methods try to ensure l(zi) ≈ k(zi), when zi ≈ xi. Therefore,
the explanation by all additive feature attributionmethods can
be represented by the following equation:

l(zi) = ξ0 +

M∑
i=1

ξi · zi, (3)

where zi ∈ {0, 1}M , and M is the total number of feature
values. ξi is the weight of i-th feature value and ξ0 is a possible
bias term for the linear model.

In eq. (1) and eq. (3), φi and ξi both attribute an effect
to a specific feature value. These effects, indicating how
models and humans utilize a specific feature value to make a
prediction, are therefore directly comparable. In this research
we use SHAP [8] to showcase our algorithm.

We chose SHAP over other local model-agnostic expla-
nation methods for two primary reasons. Firstly, SHAP’s
results are grounded in the calculation of the Shapley value,

which is based on a robust mathematical foundation. This
ensures that any variations observed when adjusting SHAP’s
parameters are due to the approximation method rather than
the underlying mathematics. This aspect of SHAP offers
a significant advantage over methods like LIME, which
constructs a lasso model to approximate feature importance
but lacks the same mathematical rigor [13]. Secondly, SHAP
stands out as an integrated tool within the field of Explainable
AI (XAI). It incorporates several cutting-edge projects to
enhance the accuracy and efficiency of its explanations.
For instance, SHAP includes specialized modules tailored
for different model types, such as tree-SHAP for tree-
based models deep-SHAP for deep learning models, and
linear-SHAP for linear models. These features make SHAP
a more comprehensive and reliable choice for our research
purposes.

D. QUANTIFICATION OF EXPLAINABILITY OF A SINGLE
PREDICTION
To measure the explainability of any given model Aλ,
we need to first quantify the explainability of any single
prediction k(xi). As we stated previously, this explainability
will be calculated based on the explanation’s similarity,
accuracy, diversity, and simplicity.

1) SIMILARITY BETWEEN A MODEL AND THE HUMAN
STRATEGY
As we mentioned in Subsections III-A and III-C, for a given
example xi ∈ X , we will have multiple humans annotating
feature importance values denoted as φi and multiple XAI
feature importance values denoted as ξi. To better represent
these values, we rearrange the index by introducing two new
matrices, namely Cij by changing the order of φi and Wij by
changing the order of ξi. Here, i is the index of the example,
and j is the index of the features. The similarity between
human cognition and model strategy will then be denoted as:

Es(xi) = Sc(Cij,Wij), (4)

where Sc(Cij,Wij) indicates the cosine similarity of two
vectors.

2) ACCURACY OF APPROXIMATION
In Subsection III-C, we mentioned that all local explainable
methods try to ensure l(z) ≈ k(z) when z ≈ x. Therefore, the
approximation accuracy can be measured by the difference
between l(z) and k(z). Here for a given example xi ∈ X ,
the accuracy of the approximation can be denoted as the
following equation:

Ea(xi) = |l(xi)− k(xi)|. (5)

3) FEATURE DIVERSITY (NON-REDUNDANCY)
How feature diversity will influence humans in explanation
is when several features that the model considered necessary
are very similar. For example, suppose we need to explain
a model trained by a dataset lacking feature engineering,
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containing over 50 features, many of which are very similar
or highly correlated to a point where we can derive one
from another. A good model strategy should focus on every
aspect of an example from the users’ perspective. Therefore,
tomeasure the goodness of explanation, we should also create
a mechanism to reward feature diversity.

To achieve that, we need first to let domain experts group
features based on their similarities. These groups will then be
denoted as Fg, where each Fg contains a certain number of
features f gn . That is to say, different groups do not necessarily
have the same number of features, and f gn simply refers to
the number of features belonging to the g-th group. Suppose
the number of features is Nf , that of groups is Ng, and Wf gn
indicates the feature importance of f gn , t is the user-defined
threshold. For example xi, we have the following equation to
measure the feature diversity:

Ed (xi) =

∑Ng
g=1 1[∃f

g
n ∈ Fg, |Wf gn | > t]

Ng
. (6)

The underlying idea behind this equation is as follows:
for features that are deemed highly important by XAI (using
a user-defined threshold t to determine high importance),
we calculate the number of groups to which these features
belong. If they belong to a diverse range of groups,
we consider the feature diversity to be high. Conversely,
if they all belong to a small number of groups, the diversity
will be low.

4) SIMPLICITY
As many researchers have already addressed in the literature,
the size of the explanation, namely the number of features
used in our case, will influence the user’s interpretability.
Therefore, models incorporating fewer features yet keeping
the same accuracy should also be rewarded in a model
selection scenario. The simplicity of the explanation based
on an example xi will be quantified as follows:

Ee(xi) =
1
Nf

. (7)

To conclude this section, the explainability of a single
prediction f (xi), can be quantified by combining all four
criteria:

E(xi) = ω1Es(xi)+ ω2Ea(xi)+ ω3Ed (xi)+ ω4Ee(xi), (8)

where ω1, ω2, ω3, and ω4 are weights given to each
component of the explainability, highlighting its importance
for target users to understand an explanation.

5) MULTI-CLASS CASE
Previously, we only introduced how to quantify the explain-
ability of binary classification problems. However, since we
want to propose amethod covering all classification problems
related to the tabular dataset, a technique for the multi-class
problem is needed.

In SHAP [8], all N -class explanations can be separated
into N -binary explanations, where

∑N
n=1 l

n(zi) = 1.

ln(z) represents the model prediction of the possibility of
class n Accordingly, N sets of feature importance will be
provided. Therefore, for an N -class classification problem,
the explainability of a prediction based on xi can be quantified
as follows:

E(xi) =

∑N
n=1 E

n(xi)
N

. (9)

E. QUANTIFICATION OF MODEL’S EXPLAINABILITY
Accordingly, for any given model Aλ, and a specific
test dataset Dtest for testing the explainability, whose size
(cardinality) is St . The explainability of Aλ should not
only be measured by the average value of all prediction’s
explainability but also by its standard deviation, which can
be calculated using the following equation:

E(Aλ,Dtest) =

∑St
i=1 E(xi)

St
− ω5 · std(E(Dtest)), (10)

where std(E(Dtest)) is the standard deviation of the vector
E(Dtest), which includes all single explainabilities of the
examples in the set Dtest.

IV. SIMULATED EXPERIMENT
In this section, we conducted simulated user experiments
to assess the effectiveness of our explainability metric in
capturing real human ideas. To achieve this, we trained
multiple models to make predictions, which were then
explained using the SHAP technique and evaluated using our
explainability metric.

It is worth noting that even when presented with the same
example, different models may generate distinct prediction
strategies. Thus, the objective of our human survey was to
expose participants to these diverse explanations and examine
whether their preferences, in terms of trust, aligned with our
explainability metric. If the human participants consistently
favored explanations with higher explainability, it would
serve as evidence supporting the utility of our method.

The simulated experiment consists of three primary stages:
1) Human strategy modeling, 2) Example selection, and
3) Human survey. When given a specific task, we start
by constructing a human model using annotations from
domain experts or volunteers. Next, we utilize a specific
algorithm to choose representative predictions from various
ML models and explain them using the SHAP technique.
Finally, we present different pairs of explanations to humans
and ask for their preferences, which helps us evaluate the
feasibility of our metric.

In the subsequent subsections, we will first introduce the
dataset we used in this survey and then present a detailed
description of each stage, elucidating the methodology and
procedures employed in our study.

A. DATASET
In terms of dataset selection, considering the majority of
participants in our survey are students, our focus is on
datasets that are widely recognized and understood by the
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general public. This strategy is intended to reduce potential
misunderstandings that could arise from the use of highly
specialized or technical data. Therefore, we carefully chose
three distinct datasets for our experimental analysis. These
datasets include the census income dataset [17], the default
prediction dataset [18], and the laptop price dataset.1

In the following subsections, we provide a comprehensive
description of each dataset to offer a clear understanding of
their characteristics and relevance to our study.

1) INCOME DATASET
The primary objective of the census income dataset is to pre-
dict whether an individual’s income exceeds $ 50,000 USD.
The dataset comprises over 32,000 examples, each containing
14 distinct features. For the purpose of our human survey,
we have excluded certain sensitive attributes such as race and
nationality to ensure fairness and prevent bias. Additionally,
we performed feature engineering to consolidate related
features. For instance, we combined capital gain and loss to
derive the pure capital gain. Consequently, the final training
dataset consisted of 8 features, namely age, family members,
working hours per day, occupation, gender, marital status,
education level, and pure capital gain.

2) THE DEFAULT PREDICTION
The primary objective of this dataset is to predict whether an
individual will experience a credit card default based on their
credit history spanning fivemonths. The dataset encompasses
various features, including personal information and the
individual’s default history over the past five months.
These features provide valuable insights into the individual’s
financial behavior and patterns, aiding in the prediction of
credit card defaults.

3) THE LAPTOP PRICE
This dataset comprises a comprehensive inventory of various
computer components, including their respective brands.
The objective of this dataset is to predict whether a given
computer can be classified as high-end or not. By examining
the specific components and brands associated with each
computer, the model can make an informed prediction
regarding its classification.

In the subsequent subsections, we provide a detailed
explanation of how we extract human ideas from specific
tasks and utilize them to build the human model.

B. HUMAN STRATEGY MODELING
At this stage, our objective is to extract the human strategy
employed in specific tasks and convert it into a linear model
for comparison with the ML strategy. The overall process of
this stage is depicted in Fig. 4.

We developed a Graphical User Interface (GUI) specifi-
cally designed for extracting strategies from human partici-
pants. This application serves four primary purposes:

1https://www.kaggle.com/datasets/muhammetvarl/laptop-price

FIGURE 4. The pipeline of the human strategy modeling.

1) GROUPING FEATURES
When presented with a particular task and its associated
dataset, we engage domain experts to categorize the different
features into distinct groups. These categories play a crucial
role in the subsequent computation of feature diversity.
However, through effective feature engineering techniques,
it is possible to render all the included features uncorrelated.
Consequently, each category may encompass only one
feature.

2) BINNING CONTINUOUS VALUES
Domain experts utilize the GUI to categorize all continuous
values by examining the density function of each continuous
feature. This step ensures that the generated bins do not
contain an excessive or insufficient number of examples,
thereby enhancing the accuracy and reliability of the
subsequent analysis.

3) ANNOTATING THE IMPORTANCE OF FEATURES
Domain experts are tasked with annotating the relative
importance of all features. For instance, in the adult income
dataset, they would annotate features such as education,
gender, occupation, age, and so on, based on their perceived
significance.

4) ANNOTATING THE IMPORTANCE OF FEATURE VALUES
Within each feature, domain experts provide annotations
for all the specific feature values. For example, under the
‘‘education’’ feature, they would assign importance values
to feature values such as primary school, middle school,
bachelor’s degree, master’s degree, and so on. This step
allows for a more comprehensive understanding of the
varying degrees of importance within a given feature.

As we mentioned in III-B, we have incorporated default
annotation values based on the calculation of Cramér’s V
correlation [16] between each feature value and the target
class, as depicted in Fig. 3. These default values serve
as a starting point, providing annotators with a reference
that incorporates information derived from the dataset itself.
Annotators have the flexibility to modify these default values
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FIGURE 5. Pipeline of generating examples for human survey.

if they believe they are inappropriate or require adjustment
based on their domain expertise.

C. EXAMPLE SELECTION
The example selection process is depicted in Fig. 5. As it
is infeasible for users to review every single example in the
dataset, we employ a strategy to select a representative subset
of examples for human evaluation. It is important to note that
the objective of our human survey is not to assess the quality
of explanations but rather to measure the degree to which
our method accurately captures real human ideas. In other
words, if an explanation is deemed ‘‘bad’’ by our method,
it should also be perceived as unsatisfactory by real humans.
We summarize the selection strategy as sub-modular picking,
referring to the selection strategy outlined in [6].

Unlike the sub-modular pick algorithm in [6], our algo-
rithm addresses the problem of picking up a subset from
the testing set that is suitable for comparison. Our goal of
this survey is to see how the explainability values represent
the real human idea but not to evaluate models in terms of
explainability. We argue that a suitable subset for making
comparisons should maintain the following criteria: (1)
The subset selected by the algorithm should be within a
human-defined budget B, which is the largest number of
instances that human judges are willing to check. (2) The
features included in the subset should be as diverse as
possible - there is no use in asking participants to check
similar examples over and over again. (3) The predictions‘
explanations of two models based on this subset should have
a certain degree of difference - there are no benefits in asking
participants to compare two explanations that look the same.

Given a set of instances X (|X | = n), we construct an n×d
matrixO by one-hot encoding so that each column represents
the absence or presence of one feature value. For each column
j in O, let Ij denote the total appearance of one feature value.
Further, for the two models that we use to select the subset,
let E be an n× d explanation matrix of one model, E ′ be the
explanation matrix of another, and D represents a difference
vector between E1 and E2 with a size of d (each element in

vector represents the cosine similarity between each row in E
and E ′). Finally, since we want to pick up a subset that can
cover as many features’ values as possible while maintaining
a certain degree of difference, we formalize this coverage
intuition in eq. (10):

c (V ,O, I ) =
d∑
j=1

I
[
∃j ∈ V : Dj > σ

]
, (11)

where c is a set function that, given O and I , if Dj is bigger
than a threshold σ , computes the total appearance of features
in a set V . The pick problem, defined in eq. (11), is to find
the set V , where the new index i in V can achieve the highest
marginal gain.

Pick (O, I ) = argmax
V ,|V |≤B

(c (V ∪ i,O, I )− c (V ,O, I )) . (12)

We further define the procedure to greedily find the
subset V in Algorithm 1.

Algorithm 1 Sub-Modular Pick
Require: Instance X , Explanations E , E ′, Budget B
O← onehot(X )
for j ∈

{
1 . . . d ′

}
do

Ij←
∑n

i=1Oij
Dj← Sc(Ej,E ′j )

end for
V ← {}
while |V | < B do
V ← V ∪ Pick(O, I )

end while

D. HUMAN SURVEY
For each dataset, we trained two different Dense Neural
Networks (DNNs) with distinct structures to assess their
performance in terms of explainability on the same examples.
The first DNN was trained with a relatively simple structure,
consisting of only one hidden layer with sixty nodes.
In contrast, the second DNN was trained with six hidden
layers, each containing sixty nodes.
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FIGURE 6. Pipeline of the 1st phase in human survey.

Both models utilized the Rectified Linear Unit (ReLU)
activation function in the hidden layers, and the Sigmoid
function as the activation function in the output layer.
We evaluated the explainability metric using the same testing
set, which accounted for 20% of the dataset. The performance
metrics of the models are provided in Table 1.

Regarding the parameters for the explainability calcula-
tion, since the number of input features remains constant
and all features belong to different groups, we set ω3 and
ω4 to zero. Additionally, we assigned values of 1 to ω1 and
ω2, and 0.6 to ω5. These choices resulted in a range of
explainability for the models approximately ranging from -
1.6 to 1.0, while the range for the examples’ explainability
was approximately -1.0 to 1.0.

It is important to note that we use the term ‘‘roughly’’
because SHAP generates highly accurate local predictions,
minimizing the effect of ω2 near zero.
To assesswhether a higher explainability value can indicate

better interpretability for humans, we strategically selected
five examples from each dataset. These examples were then
predicted by all the trained models, and their predictions
were explained using SHAP. Each pair of explanations was
presented to the human participants, who were asked to
compare them and evaluate their trustworthiness.

Finally, we recruited 46 participants with diverse back-
grounds to participate in the human survey.

The human survey consists of two phases. In the first phase,
participants are tasked with selecting their preferred model
among the options provided. In the second phase, they are
asked to assign a score ranging from 1 to 10 to specific
explanations, indicating their perceived reasonability of the
explanation’s strategy.

The human survey follows the pipeline illustrated in Fig. 6.
In the first phase, participants are initially presented with
example information without any accompanying explana-
tions, as shown in Fig. 7. This step allows participants to
form their own judgments and construct their understanding
without external influence. Subsequently, two predictions
made by ML models are presented along with their
corresponding explanations. Participants can compare the
model’s explanation with their own cognition and choose

FIGURE 7. Showing one example in the dataset.

TABLE 1. Model information and performance.

the preferred model. Finally, all participants are requested
to provide reasons for their preference regarding a particular
explanation.

In the second phase, participants are presented with ten
predictions made by a single model, and each prediction is
accompanied by an explanation. These explanations vary in
terms of their level of explainability, ranging from high to
low. Participants are then asked to assign scores to these ten
explanations, indicating their perceived reasonability. Higher
scores are assigned to explanations that make more sense to
the participants.

E. SURVEY RESULTS
The results of the human survey are shown in Table 2, where
the explainability of each prediction and the human choice
ratio are shown.

The results show that all of the examples we picked have
larger human preference ratios towards the explanations with
higher explainability. Furthermore, the ratio difference of
choice and value difference of explainability seems to be
positively correlated - their χ2 correlation values in the
datasets in hand are 0.905, 0.956, and 0.711, respectively.
However, the ratio of ‘‘hard to tell’’ in every example is much
higher than we expected. We asked the participants why they
consider it hard to tell which one is better. For all 153 answers
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TABLE 2. Survey results of the comparison.

with ‘‘hard to tell’’, nearly 80% were given the reason ‘‘Both
are untrustworthy.’’

In situations where there are significant differences in the
explanations, most individuals can easily identify the better
ones. However, as the level of explainability becomes similar,
human decision-making becomesmore diverse. It is therefore
reasonable to assess how humans interpret the explanations
provided by the twomodels, as themodel with higher explain-
ability is capable of generatingmore explainable explanations
for most predictions derived from the same training set.
Nonetheless, while people can generally recognize which
explanations are reasonable and which are not, it can be
challenging for them to determine the extent to which one
explanation is better than another.

The results of the second phase also reflect this phe-
nomenon, as depicted in Fig. 8, where participants generally
agree that certain explanations are reasonable while others
are not. However, for explanations with decent levels of
explainability, it becomes difficult for humans to distinguish
which one is better.

Another noteworthy observation from the second round’s
results is that as explainability decreases to a point near
-1 (scaled to 0 in Fig. 8), human intuition regarding the
reasonability of these explanations unexpectedly increases.
Upon interviewing some participants, it was discovered that
without any background information, they had no knowledge
of the income levels associated with certain occupations
or how specific features would influence the predictions,
as they were students without expertise in the field. For
example, in the 8th example shown in Fig. 8, the explanation
indicates a significant positive impact of the feature value
[occupation = protective service] (translated as policeman in
our explanation), which is incorrect since we annotated this
specific occupation with a negative impact. However, many
participants believed that being a policeman is an indicator of

FIGURE 8. The average human annotation against the scaled
explainability. Here, the explainability value of each explanation was
scaled to match the range of human annotation, which is within 0 to 10.

high income, unaware of the fact that the average income of
a service job in the USA was only $25k in 1994.

V. DISCUSSIONS
A. WHY IS IT HARD TO COMPARE EXPLAINABILTY OF
DIFFERENT MODELS
A commonly held belief in the literature is that simple models
are inherently more explainable than complex models.
Models such as decision trees, k-nearest neighbors, and linear
models are often considered intrinsically explainable due to
their human-interpretable rules.

However, in practical scenarios where vast datasets are
used to train simple models, the strategies derived from
such models may not always be easily interpretable. This is
because simple models are limited in their ability to represent
complex global strategies. For example, a simple rule list may
not be sufficient to capture the intricate relationships within
a dataset comprising 30,000 examples. Even if one attempts
to construct such a rule list, it would likely be exceedingly
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TABLE 3. A comparison between the random forest classifier and the
decision tree one in terms of explainability, accuracy, and F1-score.

long, making it incomprehensible to humans despite being
formulated in a human-understandable manner.

As a result, in practice, even for inherently explain-
able models, practitioners often utilize XAI technologies
to simplify the rules and make them understandable to
customers. Under these circumstances, we are curious about
the differences in explainability between an explainable
model and a black-box model.

To address this question, we trained two different models,
a Decision Tree (DT) and a Random Forest (RF), using
the same income dataset. Employing the default parameters
provided by Scikit-Learn, the results of the two models are
depicted in Fig. 9 and summarized in Table 3.

To our surprise, the performance of the DT and RF models
does not differ significantly. However, the DT now exhibits
a depth of 58 and maintains over 5000 leaves, which makes
it practically impossible to transform into a reasonable set of
rules that can be presented to customers. The resulting rule
set would consist of thousands of confusing rules, some of
which may even appear absurd.

In contrast, we utilized the SHAPmethod and our proposed
approach to evaluate the two models. Interestingly, the RF
model outperformed the DT in terms of explainability. This
difference is clearly demonstrated in the Probability Density
Function (PDF) depicted in Fig. 9, where we drew the PDF
of all examples’ explainability. We can tell the majority of
predictions made by the RF model are more explainable
compared to those made by the DT model - the green pattern
has a larger density in the high-explainability region.

However, it is important to note that this experiment does
not necessarily prove that the DT model is less interpretable
than the RFmodel. This is because the explanations generated
by SHAP are approximations andmay not be as faithful as the
direct rule lists generated by the DTmodel. Moreover, similar
to the DT model, the RF model constructs multiple decision
trees and employs a subset of them randomly (hence the term
‘‘Random’’ Forest) to generate predictions. These generated
trees are even less comprehensive and understandable than
the single DT’s tree. Consequently, attempting to transform
the RF model into a set of rules for customer presentation is
even more futile, as these rules lack logical coherence and
understandability.

Nevertheless, in practice, when faced with a complex
DT or an intricate RF model, practitioners often resort to
XAI methods such as SHAP. In this regard, we argue that
practitioners should carefully consider which algorithms to
employ, as so-called explainable models may not necessarily
retain their explainability under such circumstances.

FIGURE 9. The PDFs of the two models’ explainability: The Random
Forest (RF) and the Decision Tree (DT).

FIGURE 10. The PDF of the subtractions between the RF’ explainability
values and the DT’s explainability values on the same example.

B. DIFFERENCE BETWEEN EXPLAINABILITY OF THE
SINGLE PREDICTION AND THE MODEL
Most quantification methods using human references and
local explanations try to strategically pick up a limited set
of examples for human evaluation. The number of examples
picked is restricted by how many examples humans are
willing to check. For the most part, humans tend to prefer not
to take a survey asking them to check thousands of examples.
However, when evaluated by the human model, this problem
does not exist.

In the previous experiment, depicted in Fig. 9, we suggest
that the RF outperforms the DT in terms of explainability.
This conclusion is drawn from the observation that the
explainability values of the RF aremore concentrated towards
higher values. However, this does not imply that every
prediction made by the RF is inherently more reasonable than
those made by the DT.

To further demonstrate this, we calculate the differences
in explainability between each prediction made by the RF
and the corresponding prediction by the DT for the same
example. The density plot of these explainability differences
is presented in Fig. 10, where the blue dotted line separates
the examples into two groups: better examples and worse
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FIGURE 11. Explainability of neural networks with different structures
per epoch.

examples. Intuitively, examples on the right side of the blue
line indicate those with higher explainability in the RF, and
vice versa.

While most predictions made by the RF exhibit higher
explainability, it is important to note that around 20% of pre-
dictions made by the RF actually have lower explainability.
Therefore, we argue that conventional methods of comparing
models by selecting only a few examples are not reliable
due to the diversity of explainability distribution. In other
words, there is a possibility that the selected examples
perform better with one model, explainability-wise, but when
a sufficient number of examples are examined, another model
may actually perform better.

C. EXPLAINABILITY IN THE TRAINING PROCESS
To observe how explainability evolves as the Neural Network
updates its parameters, we employed four Neural Networks
with distinct structures and monitored their explainability
after each epoch, with the batch size set to the size of the
training set.

The results, illustrated in Fig. 11, demonstrate an initial
rapid increase in explainability for nearly all the structures.
However, this upward trend eventually diminishes, and the
explainability values start to decline beyond certain points.

Furthermore, while all the models (except the model with
random annotation) are able to achieve a similar peak level
of explainability, it is notable that models with more complex
structures exhibit greater sensitivity to explainability. These
models show faster improvement in explainability but also
experience faster declines.

On one hand, the substantial increase in explainability
during the early epochs can be attributed to the model
initially establishing a set of general rules that align, to some
extent, with human intuition regarding what factors are most
important.

On the other hand, as the model continues to learn and
adapt to the training data, it begins to develop more complex
and customized rules that specifically fit the individual
training samples or batches. Consequently, the model starts
to diverge from the human annotations. In other words, the
model learns very specific rules that are true for only a

few samples in the current dataset, but these rules do not
apply to themajority of samples, resulting in counter-intuitive
explanations.

This phenomenon is further highlighted by the manner
in which each model’s explainability declines. Simpler
networks have limited capacity to construct complex rules,
causing them to adhere to rules that align with the majority
of samples in the training set. Conversely, more complex
networks have the ability to learn highly specific rules,
leading them to overfit in terms of explainability even before
they overfit in terms of loss.

To examine the influence of human annotations on
the model’s explainability, we monitored the explainability
change of a 2-layer Deep Neural Network (DNN) with
random annotations. These annotations were randomly
generated by the computer. Under such circumstances, the
explainability barely changes and remains close to zero,
indicating a lack of meaningful correlation. This highlights
the importance of having reasonable human annotations to
effectively quantify the model’s explainability. We speculate
that if these random annotations were to become less random
and more structured, we might observe the corresponding
curves approaching those of other models.

Our experiment on explainability change demonstrates the
impact of the training process on explainability, an aspect that
is often overlooked bymanyML practitioners. Therefore, it is
crucial to monitor these changes in explainability in addition
to assessing model accuracy and loss.

VI. CONCLUSION
In this paper, we have presented a novel solution to quantify
the explainability of any ML classifier by leveraging human
strategy. Our approach involves domain-knowledgeable users
annotating all possible feature values in a given dataset,
thereby constructing a local linear model that approximates
human strategy. This linear model is then compared to the
linear model generated by SHAP based on various ML
models. We have also incorporated several well-studied
criteria of explainability from previous works, allowing users
to choose the criteria that align with their preferences.

To validate the effectiveness of our explainability metric,
we conducted a human survey involving 46 participants.
The results demonstrated that our metric approximated the
human interpretability of explanations effectively. During the
implementation of our method, we observed several notable
patterns in the ML training process. One key observation was
that explainability often follows a distinct trajectory during
training. Initially, it increases rapidly but starts to decline
after reaching a certain threshold. This insight underscores
the need to consider both the architecture and the training
dynamics of ML models when evaluating them based on
explainability.

Our method also allowed us to challenge and reassess
some prevalent beliefs in practical settings. For instance,
our experiments revealed that models traditionally labeled
as ‘explainable’ may not always surpass ‘unexplainable’
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models in terms of actual explainability. In one experiment,
using SHAP to interpret both a decision tree and a random
forest trained on the same dataset, we found scenarios
where the random forest was more explainable. Furthermore,
we investigated the reliability of using a small number of
examples to gauge a model’s overall explainability. Our
findings indicate a wide variability in the explainability
of individual predictions. Interestingly, models with lower
overall explainability sometimes produced predictions with
higher explainability than those from more explainable
models. This variation suggests that deciding a model’s
explainability based on a limited set of examples can be
misleading.

However, it is important to acknowledge several limitations
that should be taken into consideration when interpreting the
results. These limitations include the followings:

1) In our human survey, we did not incorporate all the
criteria outlined in our mathematical model, though
many of these have been thoroughly investigated in
previous studies.

2) Our proposed method is tailored specifically for
tabular datasets and classification tasks, limiting its
applicability to other types of data, such as text or
images.

3) The effectiveness of our quantification process is
highly dependent on the quality of human annotations.
We demonstrated in one of our experiments how
random annotations can be ineffective in accurately
measuring explainability. Therefore, developing an
annotation strategy that gains wide acceptance among
potential users is critical.

Despite these limitations, we believe that our method is
robust and applicable to a wide range of classification tasks
in the field of data science. It is crucial to highlight the
potential risks associated with solely relying on accuracy
during theML training process. By neglecting the importance
of explainability, ML models may struggle to maintain the
trust of end-users. Our work serves as a valuable contribution
to addressing this issue and emphasizes the need to consider
explainability alongside accuracy in the development and
deployment of ML models.
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