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ABSTRACT Reinforcement learning employs heuristic intrinsic rewards to facilitate effective learning and
exploration of the environment by intelligent agents. Particularly in environments with sparse rewards, it’s
challenging for agents to reach goals or obtain extrinsic rewards through random exploration. Appropriate
intrinsic rewards can significantly boost learning. However, using intrinsic rewards requires a careful balance
between exploration and exploitation, which is typically adjusted by a coefficient. In addition, different
settings of the intrinsic reward coefficient can lead to significant differences in learning efficiency and
performance. Hence, this paper presents a novel approach to regulate intrinsic rewards by adaptively
tuning their coefficients, with the aim of enhancing the performance of some existing intrinsic reward
techniques. The primary contributions of this study can be summarized in three aspects: 1) Designing
a coefficient that adjusts the magnitude of intrinsic rewards, which dynamically adapts based on the
return curve. 2) Developing an episode-wise adjustment strategy to improve the sample efficiency of
intrinsic reward methods. 3) Modifying the advantage function in gradient policy methods to mitigate
training instability caused by changes in the regulated intrinsic rewards. To evaluate the proposed method,
we conducted experiments in both 2D and 3D maze environments with sparse rewards, combining it with
several intrinsic reward approaches. The results demonstrate that the proposed method effectively enhances
learning efficiency and improves the performance of some existing approaches to a certain extent.

INDEX TERMS Exploration, intrinsic reward, reinforcement learning, learning efficiency.

I. INTRODUCTION
Reinforcement learning (RL) involves an agent learning
to optimize its actions by maximizing cumulative rewards
through a trial-and-error strategy [1]. However, in environ-
ments with sparse rewards, the agent struggles to acquire
immediate rewards, leading to suboptimal learning [2].
Exploration in these environments rarely reaches goal states
or provides meaningful feedback. This inefficiency can result
in increased interactions with the environment and even
complete failure in learning. To address this challenge,
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researchers have heuristically proposed various intrinsic
reward methods that leverage observations to generate
immediate rewards, encouraging the agent’s exploration of
the state space and improving learning efficiency [3], [4], [5],
[6], [7], [8].

To further enhance the performance of intrinsic rewards,
certain challenging issues need to be addressed. The
parameters of intrinsic rewards significantly influence the
exploration-exploitation trade-off [1], which determines
whether the agent should explore unexplored states or
optimize policies based on existing data. Inappropriate
parameters can cause intrinsic rewards to interfere with the
effects of extrinsic rewards, resulting in inefficient learning
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or degraded performance. Despite some intrinsic reward
schemes considering this trade-off [9], [10], many methods
still rely on preset parameters.

Another concern is the potential for further optimizing
the performance of heuristic intrinsic reward methods. Some
researchers have explored the combination of different
reward types to enhance the impact of intrinsic rewards,
such as integrating episodic rewards with global rewards [9]
or combining count-based rewards with other types of
rewards [11], [12], [13]. However, it remains unclear whether
a more universal method could enhance the efficacy of
intrinsic rewards across diverse task environments.

In response to these challenges, this paper proposes a
method to adjust the parameters of intrinsic rewards based
on feedback from extrinsic rewards for some existing reward
schemes, such as AGAC [12], COUNT [7], and RIDE [13].
Our method tackles the exploration-exploitation trade-off
by regulating intrinsic rewards, utilizing variations in the
extrinsic reward during the learning process as empirical
evidence to guide the adjustment of intrinsic rewards.

Furthermore, we propose the use of weighted intrin-
sic rewards within an episode to enhance exploration in
trajectory-wise reward environments, where agents receive
rewards only at the end of an episode. These weights regulate
the intrinsic rewards for each step in an episode, following an
increasing weight series from the start of the episode. This
approach acknowledges that states closer to the episode’s
start, which are near the starting point and therefore easily
observed or frequently visited based on the agent’s policy,
require smaller intrinsic rewards. Conversely, states closer to
the episode’s end are less likely to be observed, necessitating
larger intrinsic rewards. For tasks with variable episode
length, this intra-episode reward adjustment mechanism
enables adaptive intrinsic reward adjustments.

However, adjusting intrinsic rewards may introduce train-
ing instability. To address this issue, we enhance the policy
gradient method with a weighted advantage function, to avoid
disruptions to policy learning caused by the aforementioned
adjustments. Our modification makes the loss function
time-dependent, resembling an episodic Markov decision
process [14]. Although our policy function uses states as
inputs and incorporates the time steps of an episode in the
policy gradient, it differs in that our method is only employed
in the loss function.

In summary, the proposed method, named Adaptive
Intrinsic Reward Regulation (AdaReg), can be viewed as
a framework that enhances the performance of existing
intrinsic rewards by means of the exploration-exploitation
trade-off. This trade-off encompasses two dimensions: one
spanning the training process and one occurring within
each episode. The regulation of intrinsic rewards is dynam-
ically adjusted according to the current stage of training.
We validate our design across various trajectory-wise reward
environments with discrete action spaces and with several
types of intrinsic rewards. The main contributions of this
study are as follows:

1) Formulation of adaptive intrinsic reward regulation,
which contains an extrinsic regulation coefficient for adjust-
ing the magnitude of intrinsic rewards, and an episodic
regulation coefficient for intra-episode adjustment that fur-
ther improves the sample efficiency of intrinsic reward
methods.

2) Modification of the advantage function in gradient
policy methods to mitigate training instability caused by
shifts in regulated intrinsic rewards.

3) Validation of the proposed method through experiments
conducted onMiniGrid, a sparse-reward, procedurally gener-
ated environment, on VizDoom, a singleton 3D environment,
and MiniWorld, a procedurally generated 3D maze envi-
ronment. The effectiveness of each component is confirmed
through ablation experiments.

The remainder of this paper is organized as follows: In
Section II, we present related work on the exploration of RL
agents. The relevant background is provided in Section III.
Then, in Section IV, our method is described in detail.
Section V presents and discusses the experimental results,
demonstrating the advantages of the proposed method in
procedurally generated and high-dimensional observation
environments. Finally, the conclusion, limitations, and further
work are presented in Section VI.

II. RELATED WORK
Exploration, a fundamental component of reinforcement
learning, significantly influences sample efficiency and agent
performance. In recent years, numerous effective exploration
methods have been proposed and extensively researched [7],
[8], [12], [13], [15].

Intrinsic rewards, inspired by the concept of intrinsic
motivation in psychology, have gained popularity as amethod
for implementing exploration [16]. These rewards provide
bonuses to an agent when it accesses novel states or augments
its knowledge of the environment. Count-based methods
and curiosity-based methods are two main types of intrinsic
reward methods that have proven to be effective in various
challenging exploration environments [4], [6], [7], [8]. The
focus of this work is to enhance the learning efficiency
of agents through adaptive adjustments to some existing
intrinsic rewards.

Count-based methods allocate bonuses based on the
number of times a state has been visited [7], [8], [11], [17],
[18]. This approach is initially introduced in tabular settings
by counting each state [17]. Before this, the count-based
approach is already in use in some learning algorithms [19].
It is further refined with the use of pseudo-counts of states [7]
and a neural network-based state density estimator [8],
[18]. Episodic state count is demonstrated outstanding
performance in discrete state spaces [11], and we use it as
one of the baseline methods in our experiments.

Curiosity-based methods, on the other hand, assign
bonuses based on the uncertainty or prediction error of
environment dynamics [3], [6], [13], [20]. The Intelligent
Adaptive Curiosity (IAC)method utilizes a forward dynamics
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prediction model to generate intrinsic rewards [3], while
the Intrinsic Curiosity Module (ICM) learns a latent space
with a self-supervised inverse dynamics model and uses the
prediction error of the next state in the latent space as an
intrinsic reward [6]. To boost the performance in procedurally
generated environments, Rewarding Impact-Driven Explo-
ration (RIDE) uses the difference of latent representations
between two consecutive states as an exploration bonus [13].
We use RIDE as a representative curiosity-based reward
method in our experiments to validate the effectiveness of our
approach.

Adversarial learning techniques from supervised learning
have also been applied to reinforcement learning for enhanc-
ing exploration [21], [22], [23]. The Adversarially Guided
Actor-Critic (AGAC) introduces an adversarial policy to learn
the behavior of the current policy, rewarding actions that
deviate from the adversarial policy [12]. We also consider
AGAC as one of the baseline methods in our experiments for
comparative analysis.

In addition, other exploration-promoting strategies have
been examined in RL. The AMIGo approach teaches a
goal-generating teacher agent to assign sub-goals to a student
agent [24]. A tree-like traversal method is proposed to
explore while learning to return to less visited regions [25].
Other strategies involve injecting noise into the parameter
space [26] or action space [27] to guide agents to new regions.
The Never Give Up (NGU) method combines episodic
rewards with global rewards to promote the exploration
capabilities of agents [9]. In our work, we manage to enhance
some existing intrinsic rewards through within-episode
reward adjustments.

The trade-off between exploration and exploitation
presents another challenge in reinforcement learning. For
simpler tasks, approaches like Bayesian RL [28] and PAC-
MDP methods [29], [30] effectively handle this trade-off,
offering formal guarantees. However, for more complex
tasks, heuristic designs are typically employed [31], [32].
Researchers have investigated the optimal amount of
exploration (i.e., the overall exploration-exploitation trade-
off) [33], [34], the best actions for exploration [3], [35], [36],
and recently, the optimal timing for exploration [31]. Our
approach proposes adjusting exploration based on extrinsic
rewards to better manage this trade-off.

III. BACKGROUND AND NOTATION
A. MARKOV DECISION PROCESS (MDP)
The scope of our work is within the framework of the
Markov Decision Process (MDP), denoted by the tuple
M = S,A,P,R, γ , where S signifies the state space,
A represents the set of actions, P is the transition kernel
(assumed to be unknown), R is the reward function, and
γ ∈ [0, 1) serves as the discount factor. At each step, the agent
interacts with the state space S by observing a state s and
choosing an action a ∈ A based on the policy function π(s).

The state s then transitions to a new state s′ with a probability
P(s′|s, a), resulting in the agent receiving a reward r(s, a).

B. POLICY GRADIENT
Reinforcement Learning (RL) aims to maximize the agent’s
expected cumulative return Eπ

[∑H
t=0 γ r t

]
. This is achieved

by taking steps in the direction of the gradient of the expected
return with respect to the policy parameters. The expected
return, denoted as J (θ ), depends on the policy parameter θ .
The policy gradient provides the gradient of J (θ ) as follows:

∇J (θ ) = Eτ

[
T∑
t=0

At∇logπθ (at |st )

]
(1)

where At represents the advantage function, which measures
the advantage of taking a specific action in a particular state
over randomly selecting an action according to the policy πθ .
We use the definition of the advantage function as:

At = rt + γV (st+1) − V (st ) (2)

where the value function V (st ) of a state st represents the
expected return from that state when following the policy πθ .

C. INTRINSIC REWARDS
Various intrinsic reward mechanisms have been explored
in the researches [6], [8], [12], [13]. In these works, the
agent receives an intrinsic reward, r it , at each timestep in
addition to an extrinsic reward, ret . The learning objective
becomes optimizing the weighted sum of intrinsic and
extrinsic rewards:

rt = ret + βr it (3)

where β serves as a balancing coefficient for the two rewards.
This reward coefficient plays a significant role in both the
efficiency and performance of learning, and these aspects are
extensively discussed in this paper.

Episodic state count defines intrinsic rewards based on the
frequency of a given state visitation within an episode [13]:

rcountt =
1√

Nep(st+1)
(4)

where Nep(st+1) denotes the number of occurrences of state
st within the current episode.

RIDE generates intrinsic rewards by calculating the
distance between the embeddings of two consecutive obser-
vations. These rewards are then modulated based on the
episodic state count [13]:

r ridet = ||femb(st ) − femb(st+1)||2 ·
1√

Nep(st+1)
(5)

where femb(s) represents a learned state representation as the
ICM [6].

AGAC computes intrinsic rewards based on the KL
divergence between the agent’s policy distribution and an
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adversarial policy distribution [12]:

ragact = βadv
· DKL(π(·|st )||πadv(·|st )) + βcount

·

I[Nep(st+1) = 1] (6)

where βadv is the adversarial bonus coefficient, βcount

is the count-based bonus coefficient, π(·) is the policy
function, πadv(·) represents the adversarial policy (trained by
mimicking the actions of the policy), and I(·) is an indicator
function.

IV. ADAPTIVE INTRINSIC REWARD REGULATION
A. PROBLEM FORMULATION
The method presented here serves as a framework that
enhances the performance of existing intrinsic rewards by
incorporating the exploration-exploitation trade-off. This
trade-off encompasses two dimensions: one that spans the
training process and one that occurs within each episode.

The proposed method replaces the coefficient in
Equation (3) with an adaptive coefficient denoted as C(n, t):

rt = ret + C(n, t) · r it (7)

To adequately adjust the intrinsic rewards, the adaptive factor
consists of two parts:

C(n, t) = Cext(n) · Cep(t) (8)

where Cext(n) represents the extrinsic regulation coefficient,
which is adjusted based on extrinsic rewards throughout the
training process, in which n is the episode index, and Cep(t)
denotes the episodic regulation coefficient, which is adjusted
based on the timesteps t within each episode. The details of
the design for these two coefficients will be presented next.

B. EXTRINSIC REGULATION COEFFICIENT
The extrinsic regulation coefficient Cext(n) is utilized to adjust
the intrinsic rewards according to the feedback obtained
from extrinsic rewards. This coefficient considers the current
extrinsic reward and the maximum extrinsic reward.

Cext(n) =
r̄ top − r̄ last

dmax (9)

where r̄ top denotes the average of the top K extrinsic
rewards, r̄ last represents the average of the last K extrinsic
rewards, dmax signifies the maximum difference (r̄ top − r̄ last)
between r̄ top and r̄ last since the beginning of training. In the
implementation, we use two buffers of length K to calculate
r̄ top and r̄ last respectively, as depicted in Figure 1. The buffer
introduces a smoothing effect on extrinsic rewards.

The difference between the average return in the buffer and
the agent’s current return tends to be minimal both at the start
of the training andwhen the training approaches convergence.
Consequently, Cext(n) will approach a very small value once
the algorithm converges.

To prevent significant fluctuations in the coefficient
that might shock the training process, we adjust Cext(n)
incrementally, expressed as Cext(n) = Cext(n) + 1Cext(n).

We also apply a constraint ϵ to limit the magnitude of each
update. The adjusted equation becomes:

Cext(n) = Cext(n) + clip
( r̄ top − r̄ last

dmax − Cext(n),

− ϵ, 0
)

(10)

The coefficient calculation leverages the changes in the
difference between the maximum extrinsic rewards and the
current extrinsic rewards. These differences typically exhibit
peaks during training, which then decrease after convergence.
We utilize these changes to adjust the intrinsic rewards and
promote learning efficiency. The heuristic approach involves
gradually decreasing the intrinsic rewards coefficient as the
extrinsic rewards approach convergence. This reduction aims
to minimize the interference of intrinsic rewards on the
learning process of the agent, and helps in focusing more on
these valuable extrinsic cues.

C. EPISODIC REGULATION COEFFICIENT
The episodic regulation coefficient Cep(t) adjusts the ratio
of the intrinsic rewards at each timestep within an episode.
Here, Cep(t) ∈ [0, 1] can be any monotonically increasing
function used for step-based tuning. In this work, we define
it as follows:

Cep(t) = min(1,
t
L
) (11)

where t represents the timestep in an episode, L is a
normalization factor that can bemanually specified or derived
from the maximum length of collected trajectories. The
operator min(·) ensures that Cep(t) remains less than or equal
to 1. The choice of parameter L will be discussed in detail in
Section V-E.

In trajectory-wise reward tasks, the episodic regulation
coefficient is utilized to reduce excessive incentive states near
the beginning of an episode, where states are easily observed
or frequently visited. It also amplifies the intrinsic rewards
near the end of an episode, where states are less likely to be
observed, thus necessitating larger intrinsic rewards. On the
other hand, as the lengths of episodes decrease, the overall
impact of intrinsic rewards diminishes, further reducing their
potential interference with the agent’s learning process.

D. POLICY GRADIENT WITH REWARD REGULATION
During training, we employ the defined rewards as described
in Equation (7). Consequently, we redefine the advantage
in the policy gradient loss by substituting Equation (7) into
Equation (2). To simplify notation, we replace C(n, t) with C.

At = rt + γV (st+1) − V (st )

= (ret + C · r it ) + γV (st+1) − V (st ) (12)

where the value estimator V (st ) is obtained by minimizing
the TD residual

(
(ret +C · r it )+γV (st+1)−V (st )

)2. However,
learning is hindered by the fact that the target (ret + C · r it ) +

γV (st+1) changes at each timestep and each episode due
to the changing C. To address this issue, we split the value
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FIGURE 1. The architecture of adaptive intrinsic reward regulation, illustrating the components of the advantage
AR. The components include the extrinsic regulation coefficient Cext, the episodic regulation coefficient Cep, the
extrinsic and intrinsic reward advantage Aei, and the extrinsic reward advantage Ae.

estimator V (st ) into two parts, namely V ei(st ) and V e(st ),
to counteract this change:

V (st ) = CV ei(st ) + (1 − C)V e(st ) (13)

where V ei(st ) and V e(st ) denote the value estimators that
account for both intrinsic rewards and extrinsic rewards, and
extrinsic rewards alone, respectively. They are updated by
minimizing the following loss:

L(V ei) = E(st ,re,r i,st+1)∼τ

[(
(ret + r it ) + γV ei(st+1)

− V ei(st )
)2]

L(V e) = E(st ,re,st+1)∼τ

[(
ret + γV e(st+1)

− V e(st )
)2]

(14)

Consequently, the advantage At can be rewritten using V ei(st )
and V e(st ) to replace V (st ):

At = (ret + Cr it ) + γVφ(st+1) − Vφ(st )

= C(ret + r it ) + (1 − C)ret + γ
(
CV ei(st+1)

+ (1 − C)V e(st+1)
)
−

(
CV ei(st ) + (1 − C)V e(st )

)
= C

(
(ret + r it ) + V ei(st ) + V ei(st )

)
+ (1 − C)

(
ret + V e(st ) + V e(st )

)
(15)

For simplicity of notation, we define the extrinsic and
intrinsic reward advantages Aei and the extrinsic reward
advantage Ae:

Aeit ≜ (ret + r it ) + V ei(st ) + V ei(st )

Aet ≜ ret + V e(st ) + V e(st ) (16)

Using these definitions, the advantage with reward regulation
At can be expressed as ARt :

ARt = CAeit + (1 − C)Aet (17)

Algorithm 1 Adaptive Intrinsic Reward Regulation
1: Input: Training steps S, RL rollout steps T
2: Initialize the policy πθ

3: for batch iteration n = 1, 2, . . . until N do
4: Execute πθ for T timesteps to generate T tuples of

(st , at , ret , st+1)
5: for each timestep t in generated episode τ do
6: if t = 0 then
7: Calculate Cext(n) in Equation (10)
8: end if
9: Calculate Cep(t) and C(n, t) in Equation (11) and

Equation (8).
10: Compute intrinsic reward r it according to the

specific method.
11: Compute advantage ARt in Equation (17).
12: end for
13: Update πθ and value functions, V ei and V e,

in Equation (18) and Equation (14).
14: end for

The objective of the policy gradient in Equation (1) is then
rewritten as:

∇J (θ ) = Eτ

[
T∑
t=0

(CAeit + (1 − C)Aet )∇logπθ (at |st )

]
(18)

In summary, adaptive intrinsic reward regulation contains
two regulation coefficients: the extrinsic regulation coeffi-
cient and the episodic regulation coefficient. We modify the
calculation of the advantage in the policy gradient loss to
address the issue of changing target values during training,
which improve learning stability. The proposed method is
depicted in Figure 1, and the algorithmic procedure is
summarized in Algorithm 1.
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FIGURE 2. The architecture of the neural networks for the policy function
and the value function. These two networks do not share parameters and
are applied in all MiniGrid, ViZDoom, and MiniWorld experiments.

V. EXPERIMENTS
We conduct experiments to evaluate the performance of
Adaptive Intrinsic Reward Regulation (AdaReg) in three
environments with discrete actions: MiniGrid, ViZDoom,
and MiniWorld, in which MiniGrid and MiniWorld are
procedurally-generated environments. In these environments,
agents receive rewards only at the end of an episode.
We assess the performance of our method from four different
perspectives:

1) Comparative performance of our proposed method
versus baseline methods in procedurally-generated
environments with high reward sparsity.

2) Efficacy of our method in high-dimensional environ-
ments.

3) The correlation between the normalization factor L and
performance.

4) Individual contribution of each module to the overall
performance.

Next, we discuss these points in detail.

A. EXPERIMENTAL DETAILS
To demonstrate the performance enhancements facilitated by
AdaReg, we integrate it with four distinct intrinsic reward
methodologies. The four baseline methods we used are:

1) The Adversarially Guided Actor-Critic (AGAC)
approach, which is an adversarial method [12].

2) The Episodic State Count (COUNT) method, utilized
as a count-based exploration technique [7], [11].

3) Rewarding Impact-Driven Exploration (RIDE),
designed specifically for procedurally-generated envi-
ronments [13].

4) Elliptical Episodic Bonuses (E3B), a count-based
method suitable for high-dimensional observations [37].
This method is evaluated in a 3D maze environment.

The experimental results, including both our method and
the baselines, employ identical neural network architectures
for the policy function and value function. The architecture,

depicted in Figure 2, consists of three convolutional layers
and two fully connected layers, with separate parameters
for each network. This architecture is inspired by the
designs presented in [12] and [13]. Although alternative
architectures may offer potential performance improvements,
using a uniform network structure ensures comparability
across results. Additionally, RIDE, E3B and AGAC require
additional neural networks for their learning functionalities.
We follow the designs outlined in the respective literature for
RIDE and E3B, while for AGAC, an extra policy network,
depicted as the policy network in Figure 2, is employed to
learn the adversarial policy.

Two primary hyperparameters require adjustment dur-
ing experimentation. The first one is the intrinsic
reward coefficient, denoted as β. We perform grid
searches over the intrinsic reward coefficient, with values
β ∈ [0.3, 0.1, 0.03, 0.01, 0.003, 0.001] for the RIDE
and COUNT methods in the 2D Maze and 3D Maze
environments, respectively. We perform grid searches for
E3B with values β ∈ [10−5, 6 · 10−6, 3 · 10−6, 10−6]. For
AGAC, we utilize the parameter settings as described in [12],
in which βadv is the coefficient of adversarial bonus and
βcount is the coefficient of count-based bonus. The selected
values for 2DMaze and 3DMaze are shown in Tables 1 and 2.
The normalization coefficient, denoted as L in

Equation (11), is the second adjustable parameter. The max-
imum episode length, usually provided by the environment
simulator, can typically be obtained directly via the simulator
interface. However, for the sake of generality, we assume that
the maximum length remains unknown and therefore require
recording the length of each episode:

Hk = Hk−1 ∪ {hk} (19)

where hk denotes the length of the k-th episode, Hk collects
the lengths of the first k episodes, and H0 = Φ. The
maximum episode length is then derived from max(Hk ).

Furthermore, the buffer length K is set to 100, and ϵ is set
to 0.001. The values of K and ϵ have a minor impact on the
experimental results. In our experiments, we use these values
and will not discuss them further. Parameters associated with
specific algorithms, such as the parameters in RIDE, AGAC
and E3B, are configured as specified in their researches [12],
[13], [37]. The chosen values are reported in Tables 1 and 2.

B. RESULTS ON MINIGRID
We evaluate our approach on various procedurally-generated
tasks with different levels of complexity in the MiniGrid
environment and compare the outcomes to those of baseline
methods. The MiniGrid environment [38] consists of a
suite of challenging tasks that are generated procedurally.
These tasks are characterized by partial observation and
sparse-reward gridworlds. Our focus is on three task types:
MultiRoom, KeyCorridor, and ObstructedMaze, which are
depicted in Figure 3.

All methods take the current observation and the previous
three observations as input to the policy and value functions.
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FIGURE 3. Illustrations of scenarios in the MiniGrid environment: (a) The
MultiRoom task involves multiple rooms, where the agent, indicated by
the red arrow, must open the door, traverse all rooms, and reach the
green square, marking the goal position. (b) In the ObstructedMaze task,
the agent needs to open the door, clear obstacles, locate the key within a
box, open the subsequent door, and enter the final room to reach the
goal, denoted by a ball. (c) In the KeyCorridor task, the agent must find
the key in a room, unlock the door to access the final room, and reach the
goal, represented by a ball.

TABLE 1. Hyperparameters for MiniGrid experiments.

The inputs are the partial observations of the agent’s view
with the size of 7 × 7 × 3. The implementation details
of the intrinsic reward methods are as follows: For AGAC,
we follow the sameMiniGrid settings as in the literature [12].
We use partially observable states to generate adversarial
bonuses in combination with fully observable state counts.
For COUNT, we utilize the fully observable state count
as intrinsic rewards, following the configuration in the
literature [11]. For RIDE, we use partially observable states
to generate intrinsic rewards. The hyperparameter settings for
the experiments are presented in Table 1.

Figure 4 shows the performance curves of our proposed
method and the baselines. We compare the performance
of our method with its baseline on each task. In the
ObstructedMaze tasks, AdaReg consistently outperforms the
baselines. In the KeyCorridor tasks, our method significantly
improves performance. In theMultiRoom tasks, our approach
shows a slight advantage. This could be due to the presence
of multiple similar scenarios across the rooms, which
reduces the effect of episodic regulation. However, extrinsic
regulation continues to enable the average return curve to
converge to a larger value by reducing intrinsic rewards.

Furthermore, we compare the results of AdaReg inte-
gration, including AGAC+AdaReg, COUNT+AdaReg, and
RIDE+AdaReg. We find that AGAC+AdaReg achieves
similar performance to COUNT+AdaReg. This phenomenon
could be due to the fact that both AGAC and COUNT
utilize fully observable counts. However, the adversarial
bonus within AGACmight dilute the role of counting, leading
to a performance gap between the two. The incorporation
of AdaReg mitigates this adverse impact, aligning the

TABLE 2. Hyperparameters used in experiments on ViZDoom and
MiniWorld.

average return curve of AGAC+AdaReg with that of
COUNT+AdaReg. This demonstrates that our proposed
method not only amplifies the effects of existing intrinsic
rewards but also effectively curbs their potential negative
implications.

We have demonstrated the performance improvement of
our method compared to COUNT and RIDE, and confirmed
the suppression of adverse effects in AGAC. However,
further empirical verification is needed to determine whether
AdaReg can enhance the effectiveness of the adversarial
bonus adjustment in AGAC. This will be addressed in the
subsequent two subsections.

C. RESULTS ON VIZDOOM
We conduct an evaluation of our approach using Viz-
Doom [39], a 3D maze environment. Specifically, we focus
on the MyWayHome task, which requires the agent to
navigate through corridors and locate the room containing the
final goal. Figure 5 provides an illustration and description of
these environments.

All methods utilize the agent’s perspective, which is
converted to grayscale, resized to 42 × 42 pixels, and
combined with the previous three frames. This composite
image serves as the input for both the policy function and
the value function. Additionally, AGAC, COUNT, RIDE
and E3B use the current agent’s perspective as input for
intrinsic rewards. For comparison purposes, we include an
average return curve for the experiment where the agent is
trained without any intrinsic rewards (NoIntReward). The
hyperparameter settings can be found in Table 2.

Figure 6 presents the performance curves of our proposed
method and its baselines, along with a comparison to the
curve excluding intrinsic rewards. Themethods incorporating
AdaReg demonstrate significant improvements over the
baseline method. The outcomes achieved by AGAC and
RIDE in the experiment align with those reported in the
literature [12], and the result of E3B is consistent with that
in the literature [37].

Comparing the results to NoIntReward, it is evident that
AGAC and RIDE yield similar performance. This suggests
that the MyWayHome task is not particularly challenging,
and the agent can learn without relying on intrinsic rewards.
This similarity in return curves between RIDE and NoIntRe-
ward has also been reported in the literature [11]. On the other
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FIGURE 4. Performance comparison of the AdaReg algorithm in conjunction with AGAC, COUNT, and RIDE within the MiniGrid environment.
The first row depicts the performance comparison of AdaReg combined with AGAC. The second row illustrates the performance
comparison of AdaReg integrated with COUNT. The third row presents the performance comparison of AdaReg combined with RIDE. Each
column corresponds to each task. All the experiments are run five times with random seeds, and the shaded area denotes the standard
deviation of returns. The horizontal axis signifies the quantity of agents’ timesteps within tasks, and the vertical axis corresponds to the
average return acquired by agents.

FIGURE 5. An illustration and brief description of the MyWayHome task within the VizDoom
environment. (a) Sample scenarios of the MyWayHome task from the agent’s perspective. (b) The
structure of the MyWayHome task, which consists of 9 rooms interconnected by corridors. The
agent must reach the goal location within 2100 steps, or else the task is considered a failure. The
red circle represents the agent’s spawn locations, and at the start of each episode, the agent
appears randomly at one of these positions. The green star denotes the agent’s goal location.

hand, COUNT, due to the potential for large rewards in high-
dimensional environments, rarely improves learning and
can sometimes create interference. Interestingly, the method
proposed in this paper can mitigate the effects of detrimental
intrinsic rewards, leading to more stable learning outcomes.
This phenomenon can be attributed to the implementation
of extrinsic regulation, which progressively diminishes the
impact of intrinsic rewards as the average return curve
increases.

Unlike the COUNT method, which can interfere with the
agent’s learning, the counting approach of E3B is designed
for high-dimensional observations and thus facilitates

learning in 3D environments. The results demonstrate that the
average reward curves for AdaReg+E3B outperform those
using E3B alone. The application of AdaReg’s extrinsic
regulation effectively mitigates performance degradation
issues in E3B after convergence, which are often due to the
excessive influence of intrinsic rewards.

Our experiments have confirmed the improved perfor-
mance of our method on AGAC, RIDE and E3B, as well as
the alleviation of interference caused by COUNT in high-
dimensional environments. However, since VizDoom is a
fixed 3D maze environment, we aim to further validate our
work in a procedurally-generated 3D maze environment.
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FIGURE 6. A comparative performance assessment of the AdaReg algorithm integrated with AGAC, COUNT, RIDE and E3B on the
MyWayHome task of the VizDoom environment, with NoIntReward serving as a baseline. First: Performance comparison of AdaReg
combined with AGAC. Second: Performance comparison of AdaReg combined with RIDE. Third: Performance comparison of AdaReg
combined with COUNT. Fourth: Performance comparison of AdaReg combined with E3B. All experiments are run five times with random
seeds, and the shaded area denotes the standard deviation of returns. The horizontal axis corresponds to the agents’ timesteps in tasks,
while the vertical axis represents the average return acquired by the agents.

FIGURE 7. Illustration and description of the MazeS4 task within the MiniWorld
environment. (a) Exemplar scenarios of the MazeS4 task as seen by the agent.
(b) Representative structure of the MazeS4 task, procedurally generated for each
episode. The maze is a 4 × 4 grid, and the agent must navigate from the spawn point to
the goal within a maximum of 384 steps; failure to do so results in an unsuccessful
episode. The red circle represents the agent’s spawn point, while the green star
denotes the goal.

D. RESULTS ON MINIWORLD
Experiments are conducted using the MazeS4 task within
the MiniWorld environment [39], which consists of a
procedurally-generated 4 × 4 maze. The implementation
of Maze tasks in [15] is used for these experiments,
deviating from the official version in [40]. In the official
implementation of maze tasks, starting and goal positions
are randomly placed on these maze grids. However, the
implementation in [15] maintains constant starting and goal
positions. In the modified maze task, agents always appear
at the top left of the map, and the goal position is fixed at
the bottom right of the map. Figure 7 provides an illustrative
overview of the environment.

All methods used in the experiments rely on the agent’s
perspective, which is resized to 42 × 42 × 3 pixels. This
processed image serves as the input for the policy and
value functions. AGAC, COUNT, RIDE and E3B utilize
the current view of the agent to generate intrinsic rewards.
Additionally, the experiments include an average return curve
of NoIntReward, which is an agent trained without intrinsic
rewards, for the purpose of comparison. The hyperparameters
employed in the experiment are detailed in Table 2.

In Figure 7, we present performance curves of the proposed
method alongside its baseline and compare it with the case
without intrinsic rewards. The proposed method demon-
strates an enhancement compared to the baseline. However,
the procedurally-generated environment implies that the sce-
narios differ across episodes, making certain intrinsic reward
methodologies, such as AGAC and COUNT, ineffective
in achieving the same level of learning performance as
extrinsic rewards alone. In contrast, RIDE is specifically
tailored for procedurally-generated environments, which
accounts for its markedly superior performance relative
to NoIntReward. After combining RIDE with the AdaReg
method, there is an observable improvement in performance.
Similar to results observed in the VizDoom environment, the
combination of E3B with AdaReg enhances its effectiveness
and reduces performance deterioration during the algorithm’s
convergence phase.

Furthermore, when comparing these experimental out-
comes with NoIntReward, it is evident that the return curves
for AGAC and COUNT are inferior to NoIntReward. This
suggests that the AGAC’s adversarial bonuses hamper the
agent’s exploration within the dynamic environment, and
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FIGURE 8. Comparison of performance among the AdaReg algorithm integrated with AGAC, COUNT, RIDE and E3B in the MazeS4 task within
the MiniWorld environment, using NoIntReward as a baseline. First: Performance of AdaReg when combined with AGAC. Second:
Performance of AdaReg in conjunction with RIDE. Thrid: Performance of AdaReg coupled with COUNT. Fourth: Performance of AdaReg
coupled with E3B. All experiments are run five times with random seeds, and the shaded area denotes the standard deviation of returns.
The horizontal axis corresponds to the number of timesteps taken by agents within the tasks, while the vertical axis represents the average
return accrued by the agents.

FIGURE 9. Performance of AdaReg with various normalization factor settings. The normalization factor L is
evaluated with AdaReg, L = 150, L = 300, L = 450, L = 600, and L = 750. Each experiment is run five times with
random seeds. For clarity in the graph, only the average curve is drawn.

COUNT generates a large number of rewards in high-
dimensional environments, which impacts the learning of the
agent. The episodic regulation in AdaReg can temper the
influence of intrinsic rewards in accordance with extrinsic
rewards, thereby mitigating the disruptive effect of intrinsic
rewards and enabling the agent to generate an improved
average return curve.

E. EFFECTS OF THE NORMALIZATION FACTOR
In the preceding experiments, we consistently observe
optimal outcomes when using the maximum trajectory
length as the normalization factor. However, in certain
tasks, determining the maximum trajectory length may not
always be feasible. Therefore, it is important to evaluate the
performance of the method when the normalization factor
is assigned manually and compare these results with those
obtained from using the maximum trajectory length.

The comprehensive results are depicted in Figure 9.
In this experiment, we select three distinct tasks for
comparison: ObstructedMaze-2Dlh, KeyCorridorS3R3, and
MultiRoom-N10-S10. These tasks vary in difficulty, with
ObstructedMaze-2Dlh being more challenging than KeyCor-
ridorS3R3, which, in turn, is harder than MultiRoom-N10-
S10. Additionally, each task allows a different maximum
number of steps, as specified in Table 3.

In these three environments, we test five manually
specified values of L in Equation (11) and compare themwith

TABLE 3. Maximum allowable steps in tasks.

the results of the proposed method with AGAC (AdaReg+
AGAC). In ObstructedMaze-2Dlh, the results for each
parameter are closely clustered, with only L = 150 causing a
noticeable degradation in performance. In KeyCorridorS3R3,
the outcomes of three experiments are very similar, while the
other three results (L = 450, L = 600, and L = 750) deviate
more significantly from the maximum trajectory length,
resulting in a more pronounced performance loss. Similarly,
in MultiRoom-N10-S10, performance drops considerably as
L diverges from the maximum trajectory length.

These findings suggest that even if the maximum trajectory
length is not accurately determined, manually specifying
the normalization factor can still yield a performance
improvement. Thus, it can be inferred that our proposed
method demonstrates robustness towards the selection of L.

F. ABLATIONS
The proposed method consists of two main elements:
extrinsic regulation and episodic regulation. To determine
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FIGURE 10. Results of the ablation study under various settings: AGAC integrated with the proposed method
(AdaReg+AGAC), AdaReg+AGAC without extrinsic regulation (NoExtReg), AdaReg+AGAC without episodic
regulation (NoEpReg), AdaReg+AGAC without both extrinsic regulation and episodic regulation (NoExtReg &
NoEpReg). Each experiment is run five times with random seeds. For clarity in the graph, only the average curve
is shown.

the individual contributions of these components, we conduct
an ablation study. We examine the influence of the extrinsic
regulation coefficient and the episodic regulation coefficient
on the learning performance by fixing one or two coefficients.
The value of the irrelevance coefficient is fixed at 1 to
disregard its influence.

Figure 10 illustrates the performance assessment under
four conditions: the proposed method with AGAC (AdaReg+
AGAC), AdaReg+AGAC without extrinsic regulation
(NoExtReg) where Cext = 1, AdaReg+AGAC without
episodic regulation (NoEpReg) where Cep = 1, and
AdaReg+AGAC without both extrinsic and episodic regula-
tion (NoExtReg&NoEpReg), which is equivalent to C = 1 in
Equation (17).

The experiment involves three tasks in MiniGrid:
ObstructedMaze-2Dlh, KeyCorridorS3R3, and MultiRoom-
N10-S10, representing three levels of difficulty: high,
medium, and low, respectively. AdaReg without extrinsic
regulation shows slightly inferior performance, followed by
AdaReg without episodic regulation. In ObstructedMaze-
2Dlh and KeyCorridorS3R3, NoExtReg exhibits similar
performance to AdaReg. Particularly in KeyCorridorS3R3,
the two curves coincide. In ObstructedMaze-2Dlh, AdaReg
converges to a higher value than NoExtReg. In MultiRoom-
N10-S10, NoExtReg exhibits its superiority over AdaReg.
In these tasks, NoEpReg demonstrates the ability of episodic
regulation to improve performance.

The ablation study clearly demonstrates that in AdaReg,
episodic regulation is crucial in enhancing performance,
while extrinsic regulation facilitates better convergence.
Conversely, if both components are removed simultaneously,
performance declines significantly. The above results are also
consistent with the judgment based on the intuitive analysis.

VI. CONCLUSION
This paper has introduced a novel approach aimed at
enhancing intrinsic reward methods in reinforcement learn-
ing (RL). The method improves learning efficiency and
performance of agents by addressing the challenge of

exploration-exploitation trade-off, particularly in environ-
ments with trajectory-wise rewards. This is achieved via two
regulation coefficients, the extrinsic and episodic regulation
coefficients, which adjust intrinsic rewards based on extrinsic
feedback and episode timesteps respectively. The method has
been demonstrated to provide significant improvements in
the performance of RL agents, by successful experiments
in diverse environments such as MiniGrid, VizDoom, and
MiniWorld. The results of this study validate the proposed
method and confirm the improvements it offers to the field of
reinforcement learning.

Nevertheless, this study has its limitations. One notable
limitation is the absence of a well-defined theoretical frame-
work that outlines the scope of applicability for our method.
In essence, while our approach demonstrates effectiveness
when combined with specific methods for particular tasks,
its applicability may not extend to all environments.

In future research, our objectives are twofold. Firstly,
we aim to identify a more universally applicable tech-
nique that can enhance existing intrinsic reward methods
across a broader spectrum of RL scenarios. Simultaneously,
we endeavor to define the boundaries of its applicability or
establish guiding principles for selecting suitable environ-
ments and tasks where our approach can deliver optimal
results.
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