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ABSTRACT The joint optimization of spectral efficiency (SE) and energy efficiency (EE) through power
allocation (PA) techniques is a critical requirement for emerging fifth-generation and beyond networks.
The trade-off between SE and EE becomes challenging in the massive multiple-input-multiple-output
(MIMO) equipped base stations (BSs) in multi-cell cellular networks. Various algorithmic approaches
including genetic algorithms and convex optimization have been considered to optimize the trade-offs
between SE and EE in cellular networks. However, these methods suffer from high computational costs.
A promising deep reinforcement learning technique is capable of addressing the computational challenges
of single-objective optimization problems in wireless networks. Furthermore, multi-objective reinforcement
learning has been employed for multi-objective optimization problems and can be utilized to jointly enhance
the SE and EE in cellular networks. In this paper, we propose a downlink (DL) transmit PA method
based on a multi-objective asynchronous advantage single actor-multiple critics (MO-A3Cs) architecture.
The proposed architecture aims to optimize SE and EE trade-offs in massive MIMO-assisted multi-cell
networks. Furthermore, we also propose a Bayesian rule-based preference weight updating mechanism,
multi-objective advantage function, and balanced-reward aggregation method to effectively train and avoid
biased objective reward during the training process of the proposed model. Extensive simulations depict that
the proposedmodel is better capable of dealing with the joint optimization of SE and EE in dynamic changing
scenarios. Compared to the existing benchmarks such as Pareto front approximation-based multi-objective,
reinforcement learning-based single objective, and iterativemethods, the proposed approach provides a better
SE-EE trade-off by achieving a higher EE in multi-cell massive MIMO networks.

INDEX TERMS 5G and beyond networks, energy efficiency, massiveMIMO,multi-objective reinforcement
learning, power allocation, spectral efficiency.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) is one of
the key technologies of fifth-generation (5G) and beyond
networks, capable of enhancing spectral efficiency (SE)
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and cell coverage. Massive MIMO utilizes multi-antenna
transmissions at the base station (BS) to simultaneously serve
multiple user equipment (UEs) [1], [2]. The impact of fading
and interference in massive MIMO can be reduced through
spatial diversity and multiplexing gain. Moreover, the link
reliability and transmission rate are improved by leveraging
the spatial domain to precisely focus energy toward the
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intended UE. The multi-user MIMO (MU-MIMO) systems
utilize the same frequency resources to serve multiple users
at the same time, which leads to more efficient use of scarce
spectrum resources and provides more tolerance to propa-
gation losses compared to single-user MIMO (SU-MIMO)
systems. However, deploying a large number of antennas
requires high transmission power which results in higher
interference, degraded overall network performance, and
significantly elevated energy consumption [3]. A remarkable
advancement has been made to enhance the performance of
downlink (DL) MU-MIMO systems, primarily focusing on
tackling the high energy consumption of the cellular network
by achieving a reasonable trade-off between SE and energy
efficiency (EE) [4], [5]. Furthermore, the joint optimization
of SE and EE in 5G and beyond 5G (B5G) networks
is crucial due to the exponential increase in data traffic
and the associated rise in energy consumption in multi-cell
massive MIMO networks. This optimization is imperative
to efficiently utilize the spectrum resources and address
environmental impacts by reducing the network energy
consumption [6], [7]. The resource allocation techniques,
associated with the joint optimization of SE and EE, seriously
influence the overall network performance and play a vital
role in harnessing the full potential of multi-cell massive
MU-MIMO networks. Optimal power allocation (PA) that
efficiently utilizes the power resources while ensuring the
quality-of-service (QoS) requirements of the UEs is a
challenging task. The PA problem becomes more crucial in
managing the high inter-cell and intra-cell interference in a
densely deployed network scenario.

Different algorithmic approaches such as genetic algorithm
and convex optimization are used to solve multi-objective
optimization (MOO) problems. However, using these con-
ventional techniques for MOO-based PA faces limitations
such as scalability and high computational complexity
which increases exponentially with the number of anten-
nas in massive MIMO systems [8], [9]. In this regard,
deep learning-based PA schemes are proposed that can
achieve near-optimal performance while addressing the
computational complexity issues inherited by the iterative
algorithm-based PA techniques [10], [11], [12]. However,
deep learning-based approaches require additional datasets
and do not perform well in dynamically changing wireless
network scenarios.

Deep reinforcement learning (DRL) is an emerging
technique that employs the Markov decision process (MDP)
framework to solve optimization problems. Through a
trial-and-error strategy, DRL algorithms utilize interactions
between agents and environments to determine optimal
policies for solving problems. The DRL algorithm has the
potential to effectively deal with computationally complex
optimization problems in dynamic wireless networks [13],
[14], [15], [16], [17], [18], [19], [20]. Keeping in view,
the escalating importance of the joint optimization of SE
and EE in the 5G and B5G networks, this work aims to
design an efficient multi-objective reinforcement learning

(MORL) framework for PA which ensures effective training
and convergence while addressing the MOO problem in
multi-cell massive MIMO systems.

A. RELATED WORKS
DRL has been applied to multiple problems in wireless
networks. The authors in [13] proposed a deep Q-network
(DQN)-based PA method to enhance the sum rate in multi-
cell networks, using the maximized sum rate as the reward.
The states considered for the actions selected by the DQN
agents include normalized interference, DL rate, and transmit
power. Similarly, the authors in [14] defined theMDP for sum
rate maximization, considering the previous transmission
power and channel gain as states. However, this approach
results in a high dimensionality problem, as noted in [21]. The
DQN algorithm employs deep neural networks to estimate
the expected rewards of actions and can be computationally
intensive due to the complexity of training deep neural net-
works. This complexity arises from the need to address large
neural networks with many layers and parameters, which
requires significant computational resources for training and
updating. To address these challenges, the actor-critic (A2C)
algorithm is employed in [15]. The A2C algorithm improves
upon the limitation of the DQN algorithm by using separate
networks for the actor, which learns the policy, and the
critic, which estimates the value function. The authors in [16]
consider continuous action space for the DL max-min power
control problem in cell-free (CF) massive MIMO systems
and propose a deep deterministic policy gradient (DDPG)
method. Furthermore, the objective function is maximized
considering max-min fairness [22] and the maximum product
signal-to-interference-plus-noise ratio (SINR) [23] methods.
However, single agent-based PA strategies in DRL algorithms
require extensive training to determine optimal policies in
case of optimization in large-scale complex environments.

To deal with training overhead in single agents-based
DRL technique for PA in dynamic wireless networks, the
multi-agent reinforcement learning (MARL) approach was
adopted with enhanced training strategy, scalable distributed
learning, and execution in [17] and [18]. The authors
in [17] introduce a multi-agent DQN-based PA technique
to maximize the sum rate in multi-cell networks. The sum
rate is maximized using local agents with uniform target
parameters while the global network updates the replay buffer
gathered by these local agents. Furthermore, the authors
demonstrate that the multi-agent DQN outperforms the single
DQN in model training efficiency. Similarly, a multi-agent
double DQN (DDQN)-based PA framework is proposed
in [18] to maximize the capacity in multi-cell massive
MIMO networks. The multi-agent DDQN model is split into
sub-networks, i.e., the target Q-network and the evaluation
Q-network, to avoid overestimating the Q-value in the DQN
model. It is concluded that the proposed multi-agent DDQN
provides improved convergence stability compared to the
conventional DQN approach.
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TABLE 1. Comparison with existing power allocation studies based on various reinforcement learning strategies.

Recently, the emerging MORL algorithm has been used to
solve MOO problems in the massive CF MIMO networks.
The authors in [19] use a reward vector, defined as the
sum rate and user fairness. In addition, to solve the MOO
problem by transforming the problem into a single objective
optimization (SOO). Moreover, the twin-delayed DDPG
(TD3) algorithm with a replay buffer effectively maximizes
the sum rate and fairness. These replay buffer-based training
strategies can enhance sampling diversity and efficiency
in CF massive MIMO networks. The authors in [20]
harness the A2C algorithm combined with replay memory
to design and learn a Pareto front approximation (PFA)
policy [24], [25]. This proposedmethodology simultaneously
optimizes channel capacity and user fairness. However, the
existing MORL model does undergo training through buffer
memory-based training strategies. It relies on old data saved
in the buffer with limited memory size and uses it for future
training. Furthermore, instead of using weight adjustment
among multiple objectives, interpolation preference weights
are considered, which are scenario-limited. These training
strategies can lead to sub-optimal policies in the case of
massive MIMO networks.

To solve this problem, it is crucial to develop an
advanced MORL algorithm designed to optimize transmit
PA, thereby enhancing the overall SE and EE in massive
MIMO networks. This paper introduces a novel MORL
algorithm that leverages a MARL strategy for efficient
training. This strategy enables interactions between each
local agent and independent environments, leading to the
acquisition of diverse and immediate experience data to
train joint optimization policy. Furthermore, we implement a
Bayesian rule-based preference weight updating mechanism
that dynamically adjusts the weightings of multi-objectives,
including SE and EE, informed by the trajectories collected
from each local agent. These innovations ensure that our
proposed MORL algorithm not only trains from a diversity
of experience data but also improves both SE and EE in
multi-cell massive MIMO networks.

The main contributions of the paper are as follows:

• We propose a PA technique based on the novel
MORL algorithm for the DL multi-cell massive MIMO
networks. The proposed MO-A3Cs algorithm utilizes
MORL to optimize a trade-off between SE and EE in
a massive MIMO network. MO-A3Cs follow Bayesian

rule-based preference updating, the multi-objective
advantage function, and the balanced-reward aggrega-
tion methods to solve the trade-off problem effectively.
The proposed PA technique optimally allocates the
transmission power in a massive MIMO network while
ensuring an overall SE and EE balanced increase.

• We define a multi-objective MDP (MOMDP) for
the proposed MO-A3Cs model comprising the state
space, action space, and the extended reward vector.
In addition, We provide the proposed MO-A3Cs model-
based DL transmit PA strategies in multi-cell massive
MIMO networks. This procedure offers insights into the
MORL algorithm for optimizing trade-offs, a critical
aspect of 5G networks and next-generation wireless
communications.

• Extensive simulations are conducted to analyze the
performance of the proposed MO-A3Cs for DL PA in
multi-cell massive MIMO networks. Compared with
other benchmark schemes, the proposed MO-A3Cs
provide better performance regarding average SE and
power consumption in the massive MIMO networks.
Furthermore, the simulation results depict the effec-
tiveness of the proposed MO-A3Cs in achieving a
joint-optimized SE and EE.

The rest of the paper is organized as follows. Section II
presents the system model for the DL multi-cell massive
MIMO networks. Section III presents the background and
problem formulation, while Section IV presents the proposed
MO-A3Cs model for DL PA in multi-cell massive MIMO
networks. The simulation setup and the detailed discussion
related to simulation results are presented in Section V.
Finally, the paper is summarized and concluded in SectionVI.

II. SYSTEM MODEL
In this section, we present the network layout followed by
the main system assumptions, SINR and SE, the network
power consumption model, and an overview of the joint
spectral-energy optimization problem.

A. NETWORK LAYOUT
A DL multi-cell massive MIMO network is considered with
L number of cells as shown in Fig. 1. The BS is deployed
at the center of each cell where j-th BS ∀j ∈ {1, 2, . . . ,L}
in the network is equipped with M number of antennas. The
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UEs are assumed to be located randomly in the l-th cell [10].
Furthermore, we assume that each BS simultaneously serves
a K number of UEs by sharing the same frequency band.

The channel matrices between the j-th BS and k-th UE
located in l-th cell is denoted by hlj,k ∈ CM and can be
expressed as

hlj,k ∼ NC
(
0,Rl

j,k

)
, (1)

where CM and Rl
j,k ∈ CM×M denote the complex-valued

vector space of dimension M and the spatial correlation
matrix, respectively. Furthermore, we assume the BSs and
UEs are perfectly synchronized and operate under the time
division duplex (TDD) protocol. Before performing DL
the channel at the BS. The UEs reuse the pilot signal in
the cell, and the reuse factor τp = K is employed to
reduce interference in the adjacent cells [26]. Based on
this assumption, we utilize the minimum mean-square error
(MMSE) estimation method at the BS to effectively estimate
the imperfect channel condition corrupted by the interference
and noise in the network [27]. The estimated channel between
the j-th BS and k-th UE computed from the uplink pilot signal
ρUL, is denoted by ĥlj,k . The MMSE-based estimated channel
is given by

FIGURE 1. Illustration of the DL multi-cell massive MIMO networks.

ĥlj,k = Rl
j,kQ

−1
j,k

 L∑
l ̸=j

hlj,k +
1
τp

σ 2

ρUL
nj,k

 , (2)

where Qj,k =
∑L

l ̸=j R
l
j,k +

1
ρUL

IM , IM denotes the identity

matrix, and σ 2 is the noise variance. The noise added
by the system is represented as 1

τp

σ 2

ρUL
nj,k . Based on the

MMSE technique, the channel estimation is performed by
minimizing the estimation error between the actual and
estimated channels and is expressed as elj,k = hlj,k − ĥlj,k .

B. RECEIVED SINR AND SPECTRAL EFFICIENCY
The DL signal received at k-th UE contains the desired
signal transmitted from the j-th BS, inter-cell and intra-cell
interference, and the system-added noise. The DL signal

received at the k-th UE from the BS located in the j-th cell
can be expressed as [3] and [28]

yj,k = z′j,ksj,k︸ ︷︷ ︸
Desired signal

+

L∑
l=1,l ̸=j

K∑
i=1

z′l,isl,i︸ ︷︷ ︸
Inter-cell interference

+

L∑
i′=1,i′ ̸=k

z′l,i′sl,i′︸ ︷︷ ︸
Intra-cell interference

+ nj,k︸︷︷︸
Noise

, (3)

where sj,k denote the transmitted signal from the j-th BS to
each k-th UE, z′j,k = E{zHj,k ĥ

j
j,k} denote the regularized zero-

forcing (RZF) precoding vector [29], and z′j,ksj,k represents
the actual transmitted DL signal to k-th UE.

The received SINR at the k-th UE from the j-th BS is
written as

λj,k =
pj,kαj,k∑L

l=1
∑K

i=1 pl,iβl,i + σ
2
, (4)

where pj,k , αj,k , and βl,i denote the DL transmit
power, the channel gain between the j-th BS and the k-th
UE, and the interference signal power received at the k-th
user from the l-th BS. The channel gain is given as αj,k =∣∣∣E{zHj,k ĥjj,k}∣∣∣2 while the interference term is given by

βl,i =


E
{∣∣∣zHj,k ĥlj,k ∣∣∣2} , if (l, i) ̸= (j, k)

E
{∣∣∣zHl,iĥlj,k ∣∣∣2}− ∣∣∣E {zHl,iĥjj,k}∣∣∣2 , if (l, i) = (j, k)

(5)

where E{·} denotes the expectation operator and (·)H denotes
the Hermitian transpose.

C. JOINT SPECTRAL-ENERGY OPTIMIZATION
According to Shannon’s theorem, the channel capacity is
defined as the maximum amount of information that can
be transferred over a channel [10]. The achievable channel
capacity of the established link between the k-th UE and the
j-th BS is expressed as

Cj,k =
τd

τc
log2(1+ λj,k ), (6)

where τd and τc denote the number of samples used for DL
data transmission and per coherence block, respectively.

1) DL SPECTRAL EFFICIENCY
The DL SE is defined as the total achievable data rate over
the available bandwidth in massive MIMO networks and is
measured in bits per second per Hertz (b/sec/Hertz). Based on
the received SINR in (4) and the achievable channel capacity
in (6), the total achievable SE in multi-cell massive MIMO
networks can be formulated as [11]

SEDL =

L∑
j=1

K∑
k=1

Cj,k . (7)
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2) NETWORK POWER CONSUMPTION MODEL
The total power consumption in the DL multi-cell massive
MIMO networks is the sum of the effective transmit power
pj,k allocated based on the PA technique and the circuit
power consumption PCR. The total consumed power can be
mathematically expressed as [3]

Ptotal =
L∑
j=1

K∑
k=1

pj,k︸ ︷︷ ︸
Effective transmit power

+

L∑
j=1

PCR︸ ︷︷ ︸
Circuit power

. (8)

The circuit power consumption of each BS in the massive
MIMO network comprises the constant power consumed at
BS denoted by PFIX and the constant power incurred during
the signal processing denoted by PSP. Therefore, the total
circuit power consumption of a BS can be expressed as

PCR = PCH + PCE + PBH + PED︸ ︷︷ ︸
Operating circuit power

+ PFIX + PSP︸ ︷︷ ︸
Fixed circuit power

. (9)

A large fraction of the power consumed in the network
comprises the power consumed at the BS [30]. The power
consumption of the BS comprises circuit powers required in
operations such as the number of transmit antennas, channel
estimation, and encoding and decoding [31]. In particular, the
circuit power due to the transceiver chain, which accounts
for the most power consumption, includes components such
as filters, mixers, digital-to-analog converters (DAC), and
analog-to-digital converters (ADC). The power consumption
of the transceiver chain component can be written as

PCH = MpBS + pLO︸ ︷︷ ︸
BS circuit components

+ KpUE︸ ︷︷ ︸
UE circuit components

, (10)

where pBS, pLO, and pUE denote the transmission power of a
single BS antenna, the local oscillator (LO), and the circuit
power coefficient of the UE, respectively. From (10), the
power consumption of the BS is proportional to the number
of antennas. Furthermore, the power consumed during the
channel estimation at the BS for each coherent block is also
taken into consideration [2]. The power consumption in terms
of the channel estimation can be calculated as

PCE =
3B
τcLBS

K Mτp +M2︸ ︷︷ ︸
MMSE

, (11)

where B and LBS denote the bandwidth and the computational
efficiency of the BS, respectively [32].

The circuit power consumed in the backhaul during the
uplink and DL data transmission can be expressed as

PBH = pBTTP, (12)

where pBT denotes the backhaul traffic power and TP
represents the achievable throughput within a cell. The
value of TP is calculated as B

∑K
k=1 Cj,k . Similarly, the

circuit power consumed in channel encoding and decoding
is denoted by PED and is given by

PED = (pENC + pDEC)TP, (13)

where pDEC and pDEC represent the power consumption
coefficients incurred during the encoding and decoding
processes, respectively.

3) ENERGY EFFICIENCY
The EE of the DL massive MIMO network is the ratio of SE
to the total power consumption and can be formulated as

EEDL =
SEDL

Ptotal
. (14)

To evaluate the joint optimization in the multi-cell massive
MIMO networks, simultaneously SE and EE must be
optimized. Let us define a joint objective function of SE and
EE byF (SEDL,EEDL). Thus, the joint optimization problem
can be formulated as [5]

max
pj,k

F (SEDL,EEDL)

s.t. 0 < pj,k ≤ Pmax, ∀j, k, (15)

where Pmax denote the maximum transmit power. The
transmit power (pj,k ≥ 0) that affects both SE and EE
is defined as a constraint and is required in the joint
optimization problem [33]. The joint optimization problem
in (15) is classified as multi-objective non-convex and
NP-hard and requires high computations [13], [18].

FIGURE 2. Illustration of policy convergence in the MORL algorithms
driven by preference weights for solving the MOO problem.

III. MORL ALGORITHMS AND TRANSFORMATION
TO SOO
In this section, we first briefly present the background of the
MORL techniques for MOO problems. Then, the detailed
description of the MOMDP is presented to transform the
MOO problem into the SOO problem, which is later utilized
in allocating power using the proposed MO-A3Cs model.

A. MORL TECHNIQUE FOR MOO PROBLEM
Numerous studies have adopted and validated the DRL
algorithms for PA to achieve enhanced performance in
wireless networks. However, it is challenging to achieve
better performance complexity trade-offs in the emerging
MORL algorithm [19], [20]. Compared to DRL, the MORL
algorithms utilize multiple rewards in the form of reward
vectors to maximize multiple objectives. To effectively tackle
these reward vectors, the representative MORL algorithm
uses the PFA strategy [24], [25] and MOO transformation
to the SOO problem [34], [35]. The PFA approach utilizes
the reward vectors of the selected actions to determine the
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optimal point among multiple objectives based on Pareto
dominance and Pareto fronts. The collected data from
agent-environment interactions are used to construct a Pareto
set and derive the required solution for the MOO problem.
This approach requires a considerable buffer memory used
to generate the Pareto set. Moreover, the Pareto fronts [36]
used to determine the optimal solution require significant
training time in large-scale environments such as massive
MIMO systems [37].

On the other hand, the transformation approaches that
transform MOO problems into SOO problems employ
strategies such as weighted sum [34] and constraints [35] and
preference-driven approaches. Fig. 2 illustrates the process of
determining the optimal policy for solving MOO problems
using a MORL algorithm that uses preference weights to
determine the optimal solution. In the initial stage of the
MORL algorithm, a hypervolume is generated between
multiple objectives through interactions between the agent
and the environment, as shown in Fig. 2(a). In addition,
Fig. 2(b) and (c) present the illustration of weight updates
and the selection of optimal points for multiple objectives by
using the relative priorities ω1 and ω2. This transformation
strategymay achieve faster convergence compared to the PFA
approach. However, it can lead to limited training efficiency
due to a bias towards specific objectives and the potential
for converging to sub-optimal solutions depending on the
preference weight settings [38].

To this end, various methods have been suggested to
effectively determine preference weights for the MORL
algorithm. These methods include the utilization of uni-
form weights [39], random weights [40], and dynamic
weights [41]. The uniform and random approaches have
limitations in that the convergence of the MORL model must
be verified through various experiments to train the optimal
points for the MOO solution. On the other hand, the dynamic
weight approach allows for dynamically determined weights
to optimize the policy designed to solve the MOO problem.
However, this method requires additional buffer memory to
update the weights for each objective.

Therefore, we propose a novel MORL algorithm to solve
multi-objective functions and trade-off problems between
SE and EE. The proposed model employs a MOMDP
framework and integrates a Bayesian rule-based technique
for updating preference weights, a multi-objective advantage
function, and a balanced reward aggregation method. The
multi-objective advantage function allows for the individual
evaluation of action value for each objective. Moreover,
the balanced-reward aggregation method aggregates rewards
considering each preference weight, ensuring amore efficient
approach to action selection by the agents.

B. MOMDP-BASED TRANSFORMATION OF MOO TO SOO
TheMOMDP is an extension of theMDP and deals with mul-
tiple rewards in the form of a reward vector. In addition, the
MOMDP can be defined as a tuple ⟨S,A,P,R, γ ⟩, where

S,A,P(s′|s, a) denotes the state space, action space, and the
transition probability of taking action a for state transitions
from s to s′, respectively. The reward vector R consists of
the respective objective rewards for SE and EE. Thus,R can
be expressed as {Ro| ∀o ∈ {1, 2 . . . ,O}}, whereO represents
the total number of objectives. Similarly, the discount factor
γ , which determines howmuch the agent considers long-term
rewards, is defined as γ ∈ [0, 1). Furthermore, we employ
preference weights {ωo| ∀o ∈ {1, 2 . . . ,O}} indicate the
relative priority of each objective [42], [43].

The action space A consists of feasible DL transmission
powers between all BSs and UEs. However, defining the
action space as the set of all possible transmission powers in a
multi-cell massive MIMO network, the dimensionality issue
arises [21], [44].

To this end, we utilize a discretization strategy using
quantization [45] of transmit power between Pmin and
Pmax with a specific quantization level to select action at .
The discretized action space based on quantization can be
expressed as

A =
{
0,Pmin,Pmin

(
Pmax

Pmin

) 1
|Q|−2

, . . . ,Pmax

}
, (16)

where |Q| denotes the quantization level, which indicates the
degree at which the transmission power range between Pmin
and Pmax be divided into discrete values. This discretization
approach allows an increase in the power at each |Q| level and
effectively generates a variety of power action space between
Pmin and Pmax.

The states st , which facilitate the observation of various
features related to the problem in (15), can be defined as

st = {αtj,k ,C
t
j,k , at }, ∀j, k, (17)

where αtj,k , C
t
j,k , and at denote the channel gain, achievable

channel capacity, and selected action at the time step t ,
respectively. These state st are utilized by an agent to
efficiently observe the SE and EE while interacting with the
DL multi-cell massive MIMO network.
The joint optimization problem in (15) is transformed and

can be rewritten as

max
at

fω1 (SEDL(at ))+ fω2 (EEDL(at )),

s.t. ω1 + ω2 = 1, ω1, ω2 ≥ 0, (18)

where f ωo(Ro) = ωo×Ro represents the weighted sum [34]-
based scalarization function for the reward vector. In addition,
the ω1 and ω2 denote the preference weights that indicate the
relative priorities of SE and EE, respectively.
Finally, the immediate reward vector obtained through the

interaction between the agent and environment in a massive
MIMO network at a certain time instant can be expressed as

rt =
[
SEDL(t),EEDL(t)

]
, (19)

where SEDL(t) =
SEDL
L (t), EEDL(t) =

EEDL
L (t) denote

average SE and EE, respectively. In general, the total value
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FIGURE 3. The proposed MO-A3Cs based transmit PA framework for joint SE and EE optimization in the DL multi-cell massive MIMO
networks.

of SE is higher than the EE, which can lead to convergence
instability and extend the training duration. Thus, we used the
average SE and EE to reduce the variability of rewards and
ensure smoother convergence during the model training.

IV. PROPOSED MO-A3Cs TECHNIQUE FOR POWER
ALLOCATION IN MASSIVE MIMO NETWORKS
In this section, we introduce the proposed MO-A3Cs model-
based PA framework. This framework includes a Bayesian
rule-based preference update, a multi-objective function
with a reward aggregation method, and optimization of
each single-actor and multi-critic network. The proposed
MO-A3Cs model uses the multi-critic network to consider
multi-objectives and estimate the expected value for each
objective. The single actor determines the optimal power
value for different objectives by aggregating the predicted
values from each critic model. The proposed DL PA
framework based on MO-A3Cs along with the training
strategy is illustrated in Fig. 3. During the initial training
process, each local agent copies key parameters from the
global network with initialized preference weights. The
experiences and trajectories obtained from these independent
interactions ensure a diversity of training data for the
global network. Unlike the conventional MORL-based MOO
approach, each local agent i.e., the single-actor multi-critic
networks asynchronously updates the global network and
provides a range of experiences without the need for a replay
buffer. Our proposed approach is inspired by the fundamental
asynchronous advantage actor-critic (A3C) model, which

consists of an actor network that selects actions and a critic
network that evaluates the chosen actions.

In the basic A3C model, the actor and critic networks
interact with each other and decide whether to take a specific
action at from the available action space A at a particular st .
Conversely, the critic evaluates the selected action at by the
actor using the value function Vφ(st ). The update process of
the actor network is given as

θ ← θ + η

T∑
t=1

(Rt − Vφ(st ))×∇ logπθ (at |st ), (20)

where θ , η, t , and T denote the policy parameters of the actor,
learning rate, time step, and maximum number of episodes,
respectively. Moreover, theRt =

∑
∞

i=0 γ
irt+i represents the

accumulated reward computed based on the discount factor
γ , Vφ(st ) is the value function for state st , and∇ logπθ (at |st )
denotes the gradient of the actor network. The network aims
to maximize the expected reward by utilizing the advantage
function, which is based on the difference between Rt and
Vφ(st ) for a given state st .

The critic aims to minimize the error between the
accumulated reward from the actor and its predicted value.
Hence, the value of the selected action at is evaluated based
on

φ← φ + η
∂(Rt − Vφ(st ))2

∂φ
, (21)

where φ denotes the critic network parameters and
∂(Rt−Vφ (st ))2

∂φ
is the gradient of the squared error.
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The MO-A3Cs model integrates the extension of the
A3C [46] along with the proposed Bayesian rule-based pref-
erence weight update, multi-objective advantage function,
and balanced-reward aggregation method presented next.

A. BAYESIAN RULE-BASED PREFERENCE UPDATES
The weight update strategy ensures diverse experiences for
global network training without relying on potentially biased
experiences from initially collected data and helps in the joint
optimization of multi-objectives. In theMORL algorithm, the
preference weights are typically assumed to be uniformly and
randomly initialized [41] and each objective is assigned an
equal weight as follows

ωo =
1
O
, ∀o = 1, 2, . . . ,O. (22)

However, the equal preference weight initialization in solving
the SE-EE trade-off problem leads to more frequent updates
of the weights due to the interaction of the local agent
with the distinct and independent multi-cell massive MIMO
environment. Hence more training overhead is needed to
find the joint optimization policy. To deal with this issue,
we proposed an adaptive update mechanism using Bayesian
rules with random preference initialization. The preference
weight is initialized from uniform distribution as ωo ∼
U(0, 1). To quantify the relative priority of the objectives, the
prior probability given a particular trajectory is given by

p(xo|ψ0) =
ωo∑O
o=1 ωo

∀xo ∈ {SE,EE}, (23)

where xo represents the o-th objective function, and ψ0
denotes the corresponding initial trajectory capturing the
sequence of interactions between the agent and the envi-
ronment. The initial trajectory at time step t is ψt =
(s1, a1, r1, . . . , st−1, at−1, rt−1, st , at , rt) and prior probabil-
ity derive from weight normalization process facilitates the
comparison of the relative importance of each objective. The
likelihood function for each objective can be expressed as

p(ψt |xo) =
T∏
t=1

p(st , at |xo), (24)

where the likelihood p(ψt |xo) represents the probability of
observing the trajectory ψt , which consists of states st ,
actions at , given the objective function xo. This metric help
the agent to asses whether the trajectory ψt of the current
state st sufficiently aligns with which objective function xo.
As the samples in the trajectory ψt change at step t , the agent
adaptively adjusts the weight ωo using the Bayesian rule and
is given by [47] and [48]

ωo = p(xo|ψt ) =
p(ψt |xo)p(xo)∑O
o=1 p(ψt |xo)p(xo)

, (25)

where the prior probability and the likelihood function are
given in (23) and (24), respectively. The proposed preference
weight update mechanism overcomes shortcomings of the
conventional interpolation-based and buffer memory-based
dynamic weights update approaches.

B. MULTI-OBJECTIVE ADVANTAGE FUNCTION AND
BALANCED-REWARD AGGREGATION
The fundamental A3C model predicts the Vφ(st ) from the
current state st in the critic network and employs the
advantage function to evaluate and update the actor-critic
network. This single objective advantage function measures
the difference between theRt and Vφ(st ) for a specific action
at taken on the current state st . It is beneficial to evaluate
the value of the chosen action at [46]. However, such an
advantage function is optimized for training a single objective
and is ineffective for solving MOO problems. To solve the
MOO problem, we extend the single objective advantage
function to a multi-objective advantage function. Let O be
the number of objectives, then the multi-objective advantage
function can be expressed as

Go = Ro
t − Vφo (st ) =

∞∑
i=t

γ i−tδoi , o ∈ {1, 2, . . . ,O}, (26)

where Ro
t , Vφo (st ) indicate the multi-objective accumulated

reward and value function, respectively. The extended
temporal difference error (TD error) [49] is represented by
δot = rot+1 + γVφo (st+1) − Vφo (st ). Using Go, the value
of actions is independently assessed for each objective i.e.,
SE and EE. The single actor network is updated according to
the proposed balanced-reward aggregation method utilizing
Go.
In the MORL algorithm, reward aggregation follows the

summation ofmulti-objective rewards based on the scalarized
function f ωo and their relative priorities [50]. Generally,
where the trade-off between objectives is not considered, all
the objective rewards are summed in a single reward function
and can be expressed as

θ ← θ + η

T∑
t=1

(
O∑
o=1

Go

)
×∇θ logπθ (at |st ). (27)

For SE and EE as objectives, the single-objective DRL
model does not utilize preference weights ωo, making it
challenging to train joint optimization policies. To incorpo-
rate ωo, a combined-reward aggregation is applied to MORL
algorithms [51] to reflect the preference weights in each
objective, and is written as

θ ← θ + η

T∑
t=1

(
O∑
o=1

G̃o

)
×∇θ logπθ (at |st ), (28)

where G̃o = f ωo(Ro
t ) − Vφo (st ) denotes the aggregation of

the accumulated reward Ro
t based on the scalarized function

f ωo applied in the multi-objective advantage function.
Unlike (27), this approach allows the consideration of
priorities for each objective and provides a more effective
way to address SE-EE trade-off problems. However, this
method does not incorporate the ωo for each objective
in the value function Vφo (st ). This means that the agent
might select biased actions towards a specific objective and
not consider the preferences for both SE and EE due to
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asymmetric updates to the value function Vφo (st ) in each
critic network. For instance, if the value function for SE
is considered more important than that for the function of
EE, and without preference weights ωo, the agent focuses on
prioritizing actions that maximize SE, which may potentially
lead to EE degradation. To cope with this, we consider a
balanced-reward aggregation given by

θ ← θ + η

T∑
t=1

(
O∑
o=1

f ωo(Go)

)
×∇θ logπθ (at |st ). (29)

This method applies preference weights ωo to Ro
t as well as

Vφo (st ) which leads to more efficient training to determine the
optimal PA policy and jointly optimizing the SE and EE.

C. OPTIMIZATION OF MO-A3Cs UPDATES
This section presents the update loss functions for the
single-actor and multi-critic networks for the proposed
MO-A3Cs model. The update for the single actor network to
decide the optimal action at in the MO-A3Cs model is done
by minimizing the loss function given by

L(θ ) = −
1
N

N∑
i=1

(
O∑
o=1

f ωo(Go)

)
× logπθ (at |st ), (30)

where N , i, and πθ (at |st ) denote the number of trajectories,
trajectory index, and the probability of selected at for state st
according to policy πθ , respectively.

Algorithm 1 The Proposed MO-A3Cs Model Training
Procedure for Each Single-Actor Multi-Critics Thread
Initialize global parameters θ and φo, o ∈ {1, 2, . . . ,O}.
Initialize global shared counter T = 0.
Initialize local thread step counter t ← 1.
Initialize random preference weights ωo using (23).
while T < Tmax do

Reset gradients: dθ ← 0 and dφo← 0.
Synchronize specific parameters: θ ′ = θ and φ′o = φo.
tstart = t .
Get state st extracted from massive MIMO networks.
repeat

Perform action at according to policy π (at |st ; θ ′).
Collect reward vector rot and update state to st+1.
t ← t + 1.
T← T+ 1.

until terminal st or t − tstart == tmax;
for i ∈ {t − 1, . . . , tstart} do

Update cumulative rewards asRo
i ← Ro

i + γR
o
i+1.

Update the weights ωo with the Bayesian rule (25).
Compute multi-objective advantage function by (26).
Apply the balanced-reward aggregation using (29).
for o ∈ {1, 2, . . . ,O} do

Update multi-critic networks for φ′o using (31).

Update single actor network for θ ′ using (30).
Asynchronous global update of θ and φo with θ ′ and φ′o.

The structure of the MO-A3Cs model has a separate critic
network for SE and EE which leads to a more accurate
estimation of the value function Vφo (st ) for each objective.
The loss function computes the difference between the
expected value function and the actual reward using the
multi-objective advantage function and the balanced-reward
aggregation methods. Hence, it updates the action policy by
considering the preference weightsωo for each objective. The
update loss function of the multi-critics can be written as

L(φo) =
1
N

N∑
i=1

(Vφo (st )−Ro
t )

2, (31)

where φo represents the parameters of the critic network
for the o-th objective. Each critic network is updated
independently for each objective and the value function
estimation of one objective does not influence the other and
vice versa. This extended multi-critic enables the estimation
of the optimal value function Vφo (st ) for each objective and
facilitates a more appropriate balance between the trade-off
of two objectives i.e., SE and EE.

In order to avoid premature or early convergence to
sub-optimal solutions and enhance long-term convergence
performance [52], action distribution entropy is utilized to
encourage agents to select and explore various actions in a
multi-cell massive MIMO network environment. The action
distribution entropy is expressed as

H (πθ ) = −
∑
A
πθ (at |st ) logπθ (at |st ). (32)

The larger entropy value of H (πθ ) enables the agent to
explore the environment and search the expanded action
space to collect diverse trajectories which result in effective
training of MO-A3Cs. The final loss function represented in
terms of action distribution entropy is used in the proposed
MO-A3Cs model and is rewritten as

Ltotal = L(θ )+
O∑
o=1

L(φo)+ µH (πθ ), (33)

where L(θ ) and L(φo) denote the single actor loss function,
and multi-critic loss function, respectively, while µ with
value ranges between 0 and 1 is a weight used for regularizing
the action distribution entropy, and is set to 0.001.

The training procedure of the MO-A3Cs model for each
thread is given in Algorithm 1. The algorithm initializes
by synchronizing the key parameters between the global
network and local agents followed by the preference weight
initialization. For each time instant of the local thread,
random preference weights are assigned to each local agent
based on a distinct environment. The collected trajectories
from each agent are leveraged and the global network is
updated asynchronously. This training strategy benefits from
the independent evaluation of SE and EE by the multi-
critic network, distinct from existing MORL algorithms.
This evaluation directs the joint optimization policy updates
through the proposed balanced reward aggregation function.
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Ultimately, by integrating a MARL-based training strategy
and the proposed innovative MORL algorithm.

V. SIMULATION RESULTS AND ANALYSES
In this section, we present the simulation setup, and
the performance of the proposed MO-A3Cs-based PA in
comparison with the other benchmarks in DL multi-cell
massive MIMO networks.

A. SIMULATION PARAMETERS AND HYPERPARAMETERS
OF MO-A3Cs ARCHITECTURE
In the simulation setup, we consider 16 square cells each
with an area of 250 m × 250 m, and on a BS is deployed
per cell. All the UEs are equipped with a single antenna
and are randomly and uniformly distributed in each cell. The
minimum distance between the BS and the UE is set to 25 m.
The channel gain at a distance of 1 km is −148.1 dB, and
the path loss exponent is set to 3.76. The noise power and
noise figure of each BS are set to −94 dBm and 7 dBm,
respectively. The parameters considered in the simulation
setup are listed in Table 2.
The simulation setup is implemented in Google Colab.

To enable the asynchronous training of multiple local
agents at various instances of the multi-cell environments,
a multiprocessing package is employed. Furthermore, the
DL multi-cell massive MIMO network environment is
constructed using the OpenAI Gym toolkit, which allows
the definition of the MOMDP components and facilitates the
design of custom reinforcement learning environments. The
proposedMO-A3Cs model is implemented in Python version
3.10.12 and PyTorch version 2.1.0.

TABLE 2. System parameters of the DL multi-cell massive MIMO setup
with the circuit power consumption model [3], [13].

The proposed MO-A3Cs model comprises four fully
connected layers, including two hidden layers and an input
and output layer. The state space size is utilized as an input
to the first layer, and the size of both the first and second
hidden layers is 128 and uses a ReLU activation function. The
single actor network outputs the probability of possible action
at given the state st using the softmax function and the two

TABLE 3. Hyperparameters of the utilized DRL and MORL models.

FIGURE 4. The average cumulative multi-objective reward achieved by
the proposed MO-A3Cs model for various quantization levels |Q|.

critic networks are used. The hyperparameters of each model
used in the training and performance evaluation are given in
Table 3.

B. BENCHMARK METHODS
The performance of the proposed PA scheme is com-
pared with the existing benchmarks, including iterative
algorithm-based PAmethods, conventional DRLmodels, and
MORL model-based PA techniques.

1) ALGORITHMIC APPROACHES
The considered benchmark algorithms are 1) an equal PA
method [53] which allocates equal DL transmission power,
and 2) theDinkelbach algorithm-based PA [54]. Typically, the
Dinkelbach algorithm addresses the fractional programming
problem [55]. For Dinkelbach algorithm, the problem in (15)
is transformed into maxx

f (x)
g(x) ≃ maxx SE

EE , where x =
pj,k indicates the DL transmission power. This fractional
programming problem exhibits non-linear and non-convex
characteristics. In the Dinkelbach algorithm, the problem is
transformed into a sub-problem of the form maxx[f (x) −
κg(x)] and then solved in an iterative manner based on
an arbitrary scalar value κ updated in each iteration. This
value is updated until the optimal solution x∗ is obtained at
each stage. Moreover, the iterative process is conducted by
gradually adjusting the transmission power from {0 < pj,k ≤
Pmax}. The Dinkelbach-based DL PA method optimizes
the pj,k until the ratio of SE to EE in the transformed
sub-problem becomes less than the predefined parameter ζ .
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TABLE 4. Impact of quantization levels |Q| on training efficiency the proposed MO-A3Cs in terms of total training time.

FIGURE 5. Training efficiency analysis of MO-A3Cs with varying local agents up to the maximum training iterations; (a) average SE,
(b) average EE.

FIGURE 6. Training efficiency of MO-A3Cs as a function of weight initialization and preference update techniques: (a) Average SE reward
and (b) Average EE reward for different initialization methods; (c) Average SE and (d) Average EE reward with various preference update
mechanism.

Considering the computational complexity and accuracy of
the Dinkelbach algorithm, the value ζ is set to 0.001.

2) REINFORCEMENT LEARNING APPROACHES
For a fair comparison, the DRL and MORL techniques
such as SE-DQN [13], EE-DQN [56], and the PFA-based
DQN (PQN) [57] are considered as a benchmark, where the
SE-DQN and EE-DQN follow a single objective optimization
and maximize SE and EE, respectively. However, the PQN
model deals with the multi-objective problem to jointly
optimize SE and EE. During training, these models use
the ϵ-greedy algorithm, and an exploration and exploitation
strategy [58]. The value of ϵ ∈ (0, 1) and the remaining
hyperparameters for each model are set according to Table 3.
In the DRL models, the state space of SE-DQN includes

channel gain and DL user rate, while the EE-DQN model
state space consists of power consumption and computed EE.
Similarly, the same state space as PQN is considered by the
proposed MO-A3Cs.

C. PERFORMANCE COMPARISON AND ANALYSES
In this section, we evaluate the performance of the proposed
MO-A3Cs-based PA in terms of training efficiency, SE, EE,
and the trade-off between SE and EE in the DL multi-cell
massive MIMO network.

1) TRAINING PERFORMANCE EVALUATION
Fig. 4 illustrates the training performance of the MO-A3Cs
model at various quantization levels |Q|. Fig. 4 shows that at
|Q| = 50 the model achieved the lowest average cumulative
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FIGURE 7. Training efficiency analysis; (a) the average SE reward for various aggregation methods, (b) the average EE reward for various
aggregation methods, (c) the average SE reward comparison of the MORL models, (d) the average EE reward comparison of the MORL
models.

rewards for SE and EE i.e., 10.66 and 6.67, respectively.
However, |Q| = 100 results in a 0.86 increase in SE, but a
0.38 decrease in EE compared to |Q| = 50. Further, increasing
to |Q| = 200 results in higher SE and EE achieving values
of 13.16 and 7.04, respectively. Furthermore, within the
range of utilized |Q| levels, the proposed model achieves the
maximum SE and EE rewards of 14.04 and 7.75, respectively,
for |Q| = 300.

Table 4 shows the training efficiency of the MO-A3Cs
model for different values of |Q|. It is clear from Table 4
that for |Q| = 50, the fastest convergence is achieved in
11.21 minutes. In contrast, for |Q| = 500 the proposed model
took 203.54minutes to converge which indicates a significant
increase in training time and duration. In addition, varying
|Q| from 200 to 300 requires 5,106 more steps, and 19,302
more steps are required for convergence when changing
|Q| from 300 to 500. The experiment demonstrates that
the most balanced setting between performance and training
complexity for the proposed MO-A3Cs model is setting |Q|
= 300. Table 4 concludes that using high quantization levels
|Q| can lead to exponential increases in the discretized action
space [21], [44] and hence leads to high training time.
The MO-A3Cs architecture allows each local agent to

interact independently within a DLmulti-cell massiveMIMO
network, collecting diverse trajectories and training the global
network. Fig. 5 analyzes the impact of the number of
local agents on the training performance of the proposed
MO-A3Cs model. It can be observed in Fig. 5(a), that
4 agents have limited diversity in the collected samples which
results in relatively lower training performance. In contrast,
employing 16 agents provides an enhanced average SE
reward, outperforming 4 and 8 agents by 9.48% and 3.37%.
Similarly, Fig. 5(b) depicts that a higher average EE reward

is achieved by 16 agents compared to the 4 and 8 agents
and outperforms the counterpart by 7.97% and 3.83%,
respectively.

Fig. 6(a) and (b) present the impact of uniform and random
initialization methods in average SE and EE rewards in
the MO-A3Cs model training, respectively. The simulation
results demonstrate that utilizing the random method in
the proposed MO-A3Cs model achieves 1.57% and 1.55%
higher SE and EE rewards than the uniform initialization
and is more effective in the proposed Bayesian rule-based
preference update mechanism. Similarly, Fig. 6(c) and (d)
present the average objective rewards of the MO-A3Cs
model for various preference weight update methods. It is
worth noting that the uniform update method sets both
preference weights to 0.5 while the random update method
adjusts preference weights randomly between 0 and 1. The
exp update method adjust preference weights based on
ωo(t) = exp (−υo × t), where, υo is the weight decrease
rate. The simulation results show that the proposed Bayesian
rule-based preference weight update technique outperforms
other methods in terms of objective rewards. Fig. 6(c)
shows that the proposed Bayesian rule provides improved
SE reward of 0.55%, 1.58%, and 5.95% compared to the
exp, uniform, and random methods, respectively. Similarly,
Fig. 6(d) depicts that the proposed Bayesian rule provides
improved EE reward of 3.16%, 7.88%, and 12.75% compared
to the exp, uniform, and random methods, respectively.
Conventional update methods in the MORL algorithm tend
to prioritize SE over EE due to relatively higher values,
leading to a decreased priority for EE. On the other hand,
our proposed Bayesian rule-based update method adaptively
adjusts the weights based on trajectories obtained from an
interaction between the agents and the environment.
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FIGURE 8. Comparative analysis of average cumulative multi-objective
reward achieved by the various DRL and MORL models training.

TABLE 5. Comparison of trade-offs optimization in DL transmit PA
methods across varying numbers of transmit antennas. (M = [20, 100]).

TABLE 6. Comparison of trade-offs optimization in DL transmit PA
methods across varying maximum transmit power. (Pmax = [20, 60]).

Fig. 7(a) and (b) illustrate the training performance of
various aggregation methods such as sum-reward, combined-
reward, and the proposed balanced-reward. The simulation
results reveal that the sum-reward method mainly focuses
on increasing SE during model training and overlooks the
trade-off between SE and EE. In contrast, the combined-
reward method, which reflects preference weights provides
enhanced performance with 3.24% and 11.10% improvement
for EE and SE compared to the sum-reward method. Further-
more, our proposed balanced-reward method outperformed
other aggregation methods with an improved EE and SE
of 5.23% and 17.92% compared to the sum-reward method
and 1.93% and 6.13% compared to the combined-reward
method. Fig. 7(c) and (d) present the training performance
of the proposed MO-A3Cs model in comparison to the PQN
model, a representative method of the MORL algorithm.
The simulation results indicate that the average SE reward
of MO-A3Cs was approximately 2.26% lower while its EE
reward was about 7.56% higher than the PQN model. This
concludes that the proposed MO-A3Cs model achieves more
effective joint optimization of the average SE and EE rewards
compared to the PQN model. Furthermore, the PQN model
converges rapidly to a sub-optimal solution for average EE

reward due to reliance on samples from replay buffers,
while the MO-A3Cs model employs a multi-agent strategy
that enhances sampling efficiency without utilizing buffer
memory.

Fig. 8 depicts the average cumulative rewards achieved for
each SE and EE during the training process of the utilized
DRL and MORL models. The SE-DQN aims to maximize
SE only and achieve the highest average cumulative reward
of 14.39 for SE. Similarly, the EE-DQN focuses only on EE
maximization and achieves an EE reward of 7.75. However,
these single-objective models tend to maximize one target
reward at the expense of other objectives. In contrast, the
proposed MO-A3Cs achieved average cumulative SE and
EE rewards of 12.96 and 7.08, respectively. Furthermore,
The difference between the average cumulative SE and EE
rewards is 5.88 for MO-A3Cs, 8.88 for SE-DQN, 3.56 for
EE-DQN, and 6.38 for the PQN model.

2) SPECTRAL AND ENERGY EFFICIENCY EVALUATION
Table 5 demonstrates the trade-off optimization performance
for each PA method with varying numbers of transmit
antennas from 20 to 100. The equal PA technique shows
the lowest performance across all metrics, as it does not
undertake efficient DL power control. In addition, the optimal
points for the SE-DQN and EE-DQNmethods were recorded
as (28.16, 4.38) and (19.87, 6.72), respectively. These
methods can maximize specific objectives while sacrificing
other objectives. In contrast, the Dinkelbachmethod achieved
points of (25.08, 5.16). Moreover, the proposed MO-A3Cs
model-based PA technique recorded the most balanced point
(25.69, 5.26), while the PQN showed a slightly higher SE
value of (25.84, 4.89) than theMO-A3Cs. However, a notable
difference is observed in EE values. Regarding average SE,
the PQN method approximates the performance of SE-DQN
with a value of 29.70, while the MO-A3Cs record a slightly
lower at 29.60. For average EE, the MO-A3Cs achieve an
improved value of 4.37, representing a 0.22 enhancement
over PQN. This suggests that the MO-A3Cs model-based DL
transmission PA technique optimizes most effectively at a
trade-off problem between SE and EE.

Table 6 presents the SE-EE trade-off optimization perfor-
mance with the number of antennas fixed at 40, while the
maximum transmission power ranges from 20 to 60 dBm.
These changes in transmission power constraints directly
impact the action space and the policy performance of the
utilized models. The simulation results demonstrate that
the proposed MO-A3Cs method achieves the most efficient
optimal points at (24.22, 4.63). In contrast, the PQN appears
to closely approximate the performance of the SE-DQN.
Moreover, with its adopted PFA approach, the PQN method
requires diverse samples to generate the Pareto set and
approximate the Pareto front, especially with changes in key
parameters such as Pmax. This implies a need for expanded
buffer memory and training duration, in contrast to our
proposed MO-A3Cs method.
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FIGURE 9. Performance analysis of the proposed PA technique in multi-cell massive MIMO networks; (a) Total power consumption
vs. numbers of antennas per BS, (b) CDF of average SE, and (c) CDF of EE.

FIGURE 10. SE and EE trade-off for different PA techniques in massive MIMO networks with L = 16, K = 10, and M ranges between
20 to 80: (a) Equal, (b) Dinkelbach, (c) SE-DQN, (d) EE-DQN, (e) PQN, and (f) MO-A3Cs.

Fig. 9 presents the performance of the proposed MO-A3Cs
model-based PA in terms of total power consumption,
average SE, and EE. Fig. 9(a) illustrates the total power
consumption of the proposed MO-A3Cs in comparison with
the benchmark PA techniques while settings L = 16, K =
10, and varying transmit antennas M between 20 and 100.
It can be observed that total power consumption increases
with increases in the number of antennas. In addition, the
average power consumption for the SE-DQN, EE-DQN,
Dinkelbach, and PQN methods across this range of antennas
are 60.37 dBm, 54.76 dBm, 58.32 dBm, and 58.13 dBm,
respectively. Furthermore, the proposed MO-A3Cs-based PA
showed an average consumption of 57.68 dBm, which is
about 4.66% lower than the SE-DQN and 5.07% higher than
the EE-DQN. It also consumed approximately 0.78% and
1.11% less power than the PQN andDinkelbach, respectively.

Fig. 9(b) and (c) present the cumulative distribution
function (CDF) of the SE and EE for various PA tech-
niques under the settings. In Fig. 9(b) depicts that the SE

performance of the proposed MO-A3Cs-based PA technique
is approximately 2.19% lower than the PQN method. How-
ever, compared to EE-DQN and the Dinkelbach techniques,
MO-A3Cs achieve performance gains of 9.07% and 5.39%,
respectively. The enhanced SE performance of the PQN
compared to the MO-A3Cs can be attributed to differences
in their training policies, leading to different optimal DL
transmission powers. Similarly, Fig. 9(c) indicates that the
EE performance of the MO-A3Cs is close to the EE-DQN
method. However, in terms of average EE both PQN
and Dinkelbach perform 8.79% and 6.32% lower than the
proposed MO-A3Cs, respectively. It can be concluded from
Fig. 9(b) and (c) that the proposed MO-A3Cs-based PA
technique provides the optimized SE and EE performance
while ensuring the trade-off between them in multi-cell
massive MIMO networks.

Fig. 10 illustrates the trade-off curves for various algo-
rithms and the proposedMO-A3Cs-based PAmethods for the
different numbers of transmit antennas. It can be observed
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FIGURE 11. Execution time comparison of each DL PA for different
numbers of UEs and L = 16, and M = 40 including pre-trained models.

that the equal PA technique resulted in the lowest perfor-
mance for both objectives with the achievable trade-off point
of (22.31, 4.46) for SE and EE. The SE-EE trade-off points
for SE-DQN and EE-DQN are (27.17, 4.59) and (21.10,
6.39), respectively, which indicates that maximizing one
performance metric comes at the expense of other metrics.
In contrast, Dinkelbach’s optimal points are determined to
be (26.17, 4.99), showing a more balanced solution between
SE and EE compared to SE-DQN and EE-DQN. Moreover,
the PQN achieves an optimal trade-off point between SE
and EE of (26.96, 4.84) with an improvement in SE by
0.79 and a decrease in EE by 0.15 over the Dinkelbach-
based PA. Finally, the proposed PA method achieves an
optimal trade-off point of (26.81, 5.16) between SE and
EE which has a slightly lower SE of 0.15 than the PQN
model but exhibits the highest EE performance among all
the PA techniques consideringMOO. In addition, considering
the power consumption of the MO-A3Cs model-based PA
method as presented in Fig. 9(a), it is observed that it
consumes the least DL transmission power among the PA
benchmarks for achieving MOO, while also achieving the
SE-EE trade-off most efficiently.

Fig. 11 presents the execution time of the pre-trained
proposedMO-A3Cs model-based PAmethod as a function of
K in comparison with the other PA techniques. Fig. 11 depicts
that the execution time for the Dinkelbach-based PA method
increases exponentially with the number of UEs whereas
the DRL, MORL-based, and equal PA techniques have less
computational complexity even for a higher number of UEs.

These simulation results show that the proposed
MO-A3Cs-based PA framework provides reduced compu-
tational costs compared to the iterative algorithms while
ensuring robust and joint optimization of SE and EE
in dynamically changing DL multi-cell massive MIMO
networks.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a transmit PA technique based
on the MO-A3Cs model to achieve the SE-EE trade-off
in DL multi-cell massive MIMO networks. The proposed
MO-A3Cs model learns the optimal joint policies to optimize
the SE and EE by integrating the MARL-based training

strategy with the proposed MORL algorithm. Unlike deep
learning and iterative algorithms, trial-and-error-based rein-
forcement learning maximizes the rewards, takes optimal
action through real-time interactions with the environment,
and ensures adaptability and robustness in various network
scenarios.

Comprehensive simulation results demonstrate that our
proposed MO-A3Cs-based PA method optimizes the SE-EE
trade-off more effectively and outperforms the conventional
MORL algorithm with the PFA approach in terms of joint
SE-EE optimization in a dynamic environment. Furthermore,
the proposed approach is capable of achieving an optimal
EE of 5.16 and SE of 26.81 in multi-cell massive MIMO
networks with less computational complexity compared to
the iterative algorithms.

In spite of the gains achieved by the proposed approach,
there remains a challenge in considering the continuous
action space. This work considers a discretized action space,
which may not yield the optimal DL transmit power that
might be achievable in a continuous action space. Neverthe-
less, the MORL algorithm is easily scalable and addresses
issues related to training strategies with replay memory
usage. There is a need to study the training patterns of action
space and policies within heterogeneous network scenarios
with different cell characteristics. Moreover, to enhance the
practical applicability of our proposed architecture, we need
to validate it in real-world scenarios. To this end, we also
plan to implement a software-defined radio (SDR)-based
testbed. This will enable us to validate our architecture in a
setting that closely resembles real-world multi-cell massive
MIMO networks. As for future work, we aim to extend the
proposed MO-A3Cs framework to a continuous action space
and address a broader spectrum of complex MOO challenges
in 5G network resource allocation.
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