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ABSTRACT This article systematically studies the AlGaN/GaN MIS-HEMTs using the O2 plasma
alternately treated Al2O3 as gate dielectric. The X-ray photoelectron spectroscopy (XPS) analyses and
capacitance-voltage (C-V) measurement results show that the density of the border traps originating from the
Al-OH bonds in the ALD-Al2O3 gate dielectric can be significantly reduced after the O2 plasma alternating
treatment. Consequently, a low gate leakage current and a high field-effect mobility of 1680cm2/V·s are
achieved. The results also demonstrate that the fabricated AlGaN/GaN MIS-HEMTs with the O2 plasma
alternating treatment exhibit improved performances, having a high ON/OFF ratio of ∼1011, a steep
subthreshold slope of 74 mV/dec, a small hysteresis (1VTH) of 0.1 V and small ON-resistance (RON) of
6.0 �·mm. The device thermal stability was also improved within the tested temperature range. In addition,
the pulsed ID-VDS measurements with quiescent drain bias (VDS0) stress of 40 V present negligible current
collapse (2%) and low degradation of dynamic RON by 1.04 times the static RON.

INDEX TERMS AlGaN/GaN MIS-HEMTs, border traps, current collapse, plasma alternately treated gate
dielectric.

I. INTRODUCTION
The AlGaN/GaN-based high-electron-mobility transistors
(HEMTs) with metal–insulator–semiconductor (MIS) struc-
tures have been expected to be used in the next-generation
power switching applications due to their favorable material
characteristics, including high electron mobility, low on-
resistances, and high critical breakdown electric field [1],
[2], [3], [4]. The MIS structures can effectively suppress
the gate leakage current and increase the gate swing com-
pared to the conventional Schottky-gate HEMTs (S-HEMTs).
Various high-k materials, including Al2O3 [5], HfO2 [6],
AlN [7], SiNx [8] and SiO2 [9], have been used as gate
dielectrics for the AlGaN/GaN MIS-HEMTs in recent stud-
ies. Among them, Al2O3 has been the most preferable due
to its large dielectric constant, high breakdown electric field
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(∼10 MV/cm) and a large bandgap and conduction band
offset to (Al)GaN [10], [11], [12].

The atomic layer deposition (ALD) Al2O3 film using
trimethylaluminum (TMA) and water as precursors contains
a large number of hydroxyl (-OH) groups, which is associated
with the border traps in the gate dielectric. To reduce the den-
sity of -OH groups in Al2O3, related studies have proposed
using ozone as the oxidant [13], [14], [15]. However, using
ozone as the oxygen precursor might increase the carbon (C)
content in the Al2O3 film due to its high reaction activity [16],
[17]. Ryohei et al. reported suppressed electrical defects in
Al2O3 film by incorporation nitrogen into Al2O3 [18], but
dielectric constant has decreased. Wang et al. [19] demon-
strated high quality Al2O3 film can be obtained by utilizing
H2O and O2 plasma as oxidants in each cycle. However, the
O2 plasma could cause damage to the AlGaN surface during
the early stages of Al2O3 film deposition [20]. To address the
aforementioned limitation, this study proposes the O2 plasma
alternately treated Al2O3 to improve the Al2O3 quality. The
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FIGURE 1. (a) The cross-sectional schematic of the fabricated AlGaN/GaN
MIS-HEMTs. (b) The corresponding key process flow.

FIGURE 2. (a) Schematic diagram of the border traps in the ALD-Al2O3
gate dielectric. (b) The process flow charts of depositing the O2 plasma
alternately treated Al2O3 gate dielectric.

results indicate that the Al2O3 with the O2 plasma alternating
treatment can reduce the border trap density, yielding excel-
lent device performances.

II. DEVICE STRUCTURE AND FABRICATION
The cross-sectional schematic of the fabricated AlGaN/GaN
MIS-HEMTs is shown in Fig. 1(a). The sample used in
this work was comprised of a 5-µm carbon-doped GaN
buffer layer, a 180-nm GaN channel layer, and a 20-nm
Al0.25Ga0.75N barrier layer. The corresponding key process
flow is illustrated in Fig. 1(b). The mesa isolation region was
formed by the BCl3/Ar gas inductively coupled plasma (ICP)
etching. The ohmic contact was formed using Ti/Al/Ni/Au
metal stack, followed by rapid thermal annealing at 780◦C
for 30 s in nitrogen ambient. The contact resistance was
measured to be 1�·mm using transfer length method (TLM).

As shown in Fig. 2(a), there were high-density border traps
in the Al2O3 gate dielectric due to the incomplete reaction of
the TMA and water precursors. The O2 plasma alternating
treatment was used to reduce the border traps in the Al2O3.
The process flow charts of depositing the O2 plasma alter-
nately treated Al2O3 gate dielectric is presented in Fig. 2(b).
First, a 4-nm ALD-Al2O3 film was deposited using the TMA
and water as precursors in Sentech SI ALD system at the
substrate temperature of 300 ◦CC. Then, in situ O2 plasma
treatment was performed with 100 sccm O2 gas flow, 15
Pa gas pressure and a plasma power of 100 W for 2 min
at 300 ◦C. Finally, the first and second steps were repeated

FIGURE 3. The multi-frequency C–V characteristics of the MIS diode with
measurement frequency fm varying from 10 kHz to 10MHz (a) without and
(b) with O2 plasma alternating treatment. (c) Distribution of trap density
of the MIS diode. (d) XPS spectroscopy of the Al 2p peak of the Al2O3
film without (Upper) and with (under) O2 plasma alternating treatment.

five times. Afterwards, a 20-nm plasma alternately treated
Al2O3 gate dielectric was obtained. It should be noted that
if the deposited Al2O3 film in the first step was too thin, the
O2 plasma could cause damage to the (Al)GaN surface [21].
Finally, 40/200nm Ni/Au gate electrodes were deposited and
patterned after the source and drain via opening. The device
without O2 plasma alternately treated Al2O3 gate dielectric
was also prepared and served as a reference device. The
gate-to-source spacing LGS, gate length LG and gate-to-drain
spacing LGD were 4-µm, 2-µm, and 6-µm, respectively.

III. DEVICE CHARACTERISTICS AND DISCUSSION
The distribution of border traps was characterized using the
C–V measurement of the MIS diode fabricated on the same
wafer. The obtained C–V curves had two slopes, the first
slope was at a negative voltage corresponded to the formation
of the 2DEG channel, and the second slope was at a positive
voltage corresponded to the spill-over of the 2DEG. The
device without the O2 plasma alternating treatment exhibited
large frequency dispersions due to the existence of border
traps, as shown in Fig. 3(a). In contrast, for the device with the
O2 plasma alternating treatment, the frequency dispersions
were every small, as presented in Fig. 3(b), which indicated
that the border trap density was relatively low [22], [23]. The
second slope onset voltage frequency-dependent shift in the
C–V curves was used to calculate the distribution of border
traps as follows [24], [25]:

Dit = (EC − ET = 1ET_AVG) =
Cox1VON
q · 1Edis

−
Cox + CB

q2

(1)
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FIGURE 4. (a) The gate leakage current as a function of the voltage
biases. (b) The field-effect mobility extracted from the FAT-FET for the
samples with and without the O2 plasma alternating treatment.

FIGURE 5. Transfer curves measured at various VDS values of 2, 4,
and 10 V in the linear scale for the samples with and without the O2
plasma alternating treatment.

where q is the electron charge; Cox is the dielectric capaci-
tance;CB is the barrier layer capacitance;1Edis is differences
in energy levels at different measurement frequencies; 1VON
is the onset voltage frequency-dependent shift.

The distribution of border trap density (Dit ) obtained by (1)
is presented in Fig. 3(c). For the sample with the O2 plasma
alternating treatment, varied from 5 × 1012 cm−2 eV−1 to
1.6 × 1013 cm−2 eV−1 in the energy level range of 0.28-
0.45 eV below the conduction band edge, which was a
fairly low trap density compared to the up-to-date reported
data [26], [27], [28]. However, the sample without the O2
plasma alternating treatment exhibited high trap density espe-
cially within the range of shallow energy levels. The XPS
was performed on the Al2O3 sample both with and without
the O2 plasma alternating treatment to investigate the origin
of border traps in the Al2O3. The measured binding energy
was calibrated by correcting the adventitious C 1s peak to
284.8 eV. The Al 2p peak could be decomposed into two
components: the Al–OH bond at 75.5 eV and the Al–O bond
at 74.6 eV. As shown in Fig. 3(d), the content of Al–OH bonds
was significantly reduced, indicting the Al–OH bonds were
the main cause of border traps in the ALD-Al2O3 film [15],
[29].

Fig. 4(a) shows the gate leakage current density versus the
voltage biases of the MIS diodes. The MIS diode with the
O2 plasma alternating treatment exhibited a well-suppressed
gate leakage current density of 6.1×10−6 A/cm2 at a forward
bias of 10 V compared to the gate leakage current density
of 1.1 × 10−3 A/cm2 of the sample without the O2 plasma
alternating treatment. The forward breakdown voltage values
of the samples with and without the O2 plasma alternating

FIGURE 6. The transfer (left) and output (right) characteristics of the
MIS-HEMTs (a)-(b) with and (c)-(d) without the O2 plasma alternating
treatment.

treatment were 14.4 V and 12.6 V, respectively. The reduc-
tion in the leakage current and the increase in the forward
breakdown voltage further proved that the gate dielectric has
high quality after the O2 plasma alternating treatment.

The effective mobility µFE = LGGm/(WGCMISVDS )
extracted from a long-channel MIS-HEMT (FAT-FET) [30]
with the 44-µm LG, 50-µm WG, 2-µm LGS and LGD at VDS
= 0.1 V are shown in Fig. 4(b). The device with the O2
plasma alternating treatment had a relatively higher µFE with
a peak value of 1680cm2/V·s. For comparison, the maxi-
mum field-effect mobility for the device without O2 plasma
alternating treatment was 1596 cm2/V·s. The improved µFE
indicated the suppressed remote scattering of the border
traps [31], [32].

Fig. 5 showed the transfer curves measured at various VDS
values of 2, 4, and 10 V for the devices with and without
the O2 plasma alternating treatment, suggesting both devices
have stable threshold voltages (VTH) at different VDS in the
linear scale. To facilitate the calculation of threshold hystere-
sis (1VTH) and ON/OFF ratio, the semilog scale was used to
definedVTH at IDS of 1µA/mm in the upsweepmeasurement.
As shown in Fig. 6, the transfer and output characteristics

of the MIS-HEMTs with the O2 plasma alternating treatment
yielded a small 1VTH of ∼0.1 V, steep subthreshold slope
(SS) of ∼74 mV/dec, high ON/OFF ratio (ION/IOFF) in the
order of ∼1011 and small ON-resistance (RON) of 6.0 �·mm.
For comparison, the MIS-HEMTs without the O2 plasma
alternating treatment exhibited a larger1VTH of∼0.2V, SS of
∼ 82 mV/dec, lower ION/IOFF ratio of ∼1010 and larger RON
of 6.8 �·mm. The improved RON of the device with the
O2 plasma alternating treatment could be attributed to the
increase in µFE mentioned above.

The transfer and output characteristics comparison of the
MIS-HEMT at RT (30◦C) and 150 ◦C were characterized in
Fig. 7. When the temperature was raised up to 150◦C, the
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FIGURE 7. The transfer (left) and output (right) characteristics of the
MIS-HEMTs at RT and 150◦C (a)-(b) with and (c)-(d) without the O2
plasma alternating treatment.

FIGURE 8. The pulsed ID VDS characteristics of the AlGaN/GaN MIS-HEMT
with various quiescent biases (a) with and (b) without the O2 plasma
alternating treatment. (c)-(d) The current collapse and dynamic RON at
different quiescent drain bias.

thermal shifts of VTH were 0.24 V and 0.55 V for the device
with and without the O2 plasma alternating treatment, respec-
tively. Moreover, The RON increased from 6.0 �·mm to 10.7
�·mm and from 6.8 �·mm to 12.4 �·mm for the device with
andwithout the O2 plasma alternating treatment, respectively.
The device also exhibited improved thermal stability that is
attributed to the high-quality gate dielectric.

A pulsed ID-VDS measurement with different quiescent
drain bias (VDS0) was performed to evaluate the dynamic
performance of the device [33]. The pulse period was set to
1-ms with a duty cycle of 1%. The maxima value of VDS0
was limited to 40 V because of the transient high power
and current during the hard switch. During the pulsed ID-
VDS measurement, the gate quiescent voltage (VGSQ) was
kept at OFF-state of 2V below the threshold voltage, and the

TABLE 1. Performance comparison of different treatment methods for
Al2O3.

drain quiescent voltage (VDSQ) was varied from 0 to 40 V
at VGS = 0. The pulsed output current corresponding to
(VGSQ = 0 and VDSQ = 0) was selected as the static state to
eliminate the self-heating effects [34]. Fig. 8 shows the pulsed
ID-VDS characteristics of the devices with and without the O2
plasma alternating treatment. The current collapse ratio was
evaluated as a decrease in IDS at VDS = 10 V, the dynamic
RON was extracted from the linear region (VDS: 0 to 1V) of
the pulsed output curve. The current collapse ratio and the
ratio of dynamic RON to static RON as a function of VDS0
are shown in Fig. 8(c) and 8(d), respectively. The dynamic
RON and current collapse increased with higher VDS stress
due to the enhanced electron trapping in the border traps of
the gate-dielectric [35], [36], [37]. The device with the O2
plasma alternating treatment suppressed the degradation of
dynamic RON by 1.04 times the static RON at the VDS0 stress
of 40 V, and dynamic RON was 1.06 times the static RON
for the device without the O2 plasma alternating treatment.
Similarly, a negligible current collapse (∼2%) was observed
for the devices with the O2plasma alternating treatment at
the VDS0 stress of 40 V, whereas the devices without the O2
plasma alternating treatment showed a larger current collapse
(∼4%) at the same VDS0 stress.

Table 1 showed the key characteristics of different treat-
ment methods for Al2O3 in the literature. The device
employing the O2 plasma alternating treatment exhibited the
most improved result in overall performances, which indi-
cated that it is an effective method to improve the quality of
gate dielectric.

IV. CONCLUSION
In this study, the O2 plasma alternately treated Al2O3 tech-
nique is proposed to reduce the border trap density in the gate
dielectric. The off-state leakage current, 1VTH, SS, ION/IOFF
ratio, RON and the thermal stability are improved, and the
dynamic RON and current collapse are suppressed in the
AlGaN/GaN MIS-HEMTs with the O2 plasma alternat-
ing treatment. These analysis results indicate that the O2
plasma alternating treatment technique could be an effec-
tive approach for fabricating high performance GaN-on-Si
HEMTs for power device applications.
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