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ABSTRACT Saliency detection is increasingly a crucial task in the computer vision area. In previous
graph-based saliency detection, superpixels are usually regarded as the primary processing units to enhance
computational efficiency. Nevertheless, most methods do not take into account the potential impact of errors
in superpixel segmentation, which may result in incorrect saliency values. To address this issue, we propose
a novel approach that leverages the diversity of superpixel algorithms and constructs a multi-layer graph.
Specifically, we segment the input image into multiple sets by different superpixel algorithms. Through
connections within and connections between these superpixel sets, we can mitigate the errors caused by
individual algorithms through collaborative solutions. In addition to spatial proximity, we also consider
feature similarity in the process of graph construction. Connecting superpixels that are similar in feature
space can force them to obtain consistent saliency values, thus addressing challenges brought by the scattered
spatial distribution and the uneven internal appearance of salient objects. Additionally, we use the two-stage
manifold ranking to compute the saliency value of each superpixel, which includes a background-based
ranking and a foreground-based ranking. Finally, we employ a mean-field-based propagation method to
refine the saliencymap iteratively and achieve smoother results. To evaluate the performance of our approach,
we compare our work with multiple advanced methods in four datasets quantitatively and qualitatively.

INDEX TERMS Manifold ranking, multi-layer graph, superpixel algorithm, saliency detection.

I. INTRODUCTION
Saliency detection can help people to find objects or regions
that effectively represent the scene, therefore it has become
a useful preprocessing step in complex vision problems,
such as image segmentation [1], image edition [2], image
classification [3], video compression [4], moving object
detection [5], image correction [6], unmanned aerial vehicle
detection [7], internet of surveillance thing [8], [9].

Over the past two decades, many saliency detection
algorithms have been proposed. These methods can be
divided into bottom-up methods and top-down methods.
Bottom-up methods are data-driven and top-down methods
are task-driven. The former attract much attention from vision
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researchers and arewidely used in previous saliency detection
works. Bottom-up saliency detection work can be traced
back to Itti’s biologically inspired model [10]. He presented
a central-surround difference operator to simulate human
vision and compute the saliency of each pixel. Due to a lack
of guidance from high-level knowledge, bottom-up methods
require taking advantage of some perceptual priors, such as
contrast prior [10], sparsity prior [11], background prior [12],
center prior [13], compactness prior [11], smoothness prior
and so on.

Recently, some successful graph-based saliency detection
methods have been introduced [14], [15], [16]. These meth-
ods represent images as graphs and leverage the relationships
and topological information within the graphs to enhance
model performance. Nodes in the graph represent pixels
or regions of the image, and edges are usually obtained
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by connecting neighboring nodes in the space. Manifold
Ranking is a graph-based semi-supervised learning method
that maps the graph into a manifold space, aiming at
discovering the streaming structure in the data. It exploits
the connections and similarities between nodes in the graph
by iteratively propagating labeling information between
labeled and unlabeled nodes and finally assigning labels
to previously unlabeled regions. Saliency detection based
on manifold ranking assumes that neighboring nodes with
similar appearances, i.e., belonging to the same manifold
structure, exhibit similar saliency. Initial labeled seed nodes
are selected based on heuristic assumptions. In the process
of labeling propagation, the graph structure plays a pivotal
role. It is crucial to construct a graph structure that can
truly reflect the characteristics of the manifold space. This
challenge necessitates a comprehensive consideration of data
distribution under various circumstances and the construction
of graphs to ensure the effective propagation of saliency
values throughout the graph. Given scenarios where objects
of the same class are scattered in different regions of
the image, or where the appearance of an object is not
smooth, resulting in the most similar superpixels not being
spatially adjacent, just connecting neighboring nodes is
insufficient to realistically represent the manifold structure in
the image. Consequently, it fails to propagate saliency values
effectively.

As the basic processing unit of a graph node, the shape of
superpixels has a significant impact on graph-based saliency
detection methods. Superpixels aggregate pixels with the
same semantics into a single unit, significantly reducing the
number of units to be processed, and can improve compu-
tational efficiency when performing saliency detection, e.g.,
[12], [15], [17]. Also, by combining spatially linked pixels
into a single unit, superpixels reduce the effect of noise in
the image, resulting in a smoother saliency map. Superpixel
algorithms typically balance feature similarity with structural
compactness. On the one hand, algorithms try to ensure that
pixels within a superpixel are similar in feature space. On the
other hand, algorithms also ensure that the superpixels are
more structurally compact to represent the object accurately.
The compactness of superpixels can lead to more regular
shapes and similar sizes, but this usually diminishes the
impact of feature similarity and results in missegmentation
where regions unrelated to the semantic content of the
superpixel are included, which can impair the final saliency
detection performance. Segmentations produced by different
superpixel algorithms can significantly differ in shape
and distribution. Consequently, graphs constructed using
superpixels as nodes exhibit distinct topological structures,
significantly impacting the propagation of label information
and ranking results. We have observed that saliency detection
methods perform better when superpixels are characterized
by regular shapes and similar sizes. However, when the
hyperpixels are regular in shape and similar in size, they

are prone to missegmentation. We would like to capitalize
on the differences in shape and distribution of superpixel
segmentations. The design of such a collaborative approach
needs to consider how to allow the nodes obtained from
different superpixel algorithms to interact with each other.
The design of such a collaborative approach needs to consider
how to allow the nodes obtained from different superpixel
algorithms to interact with each other.

As previously mentioned, the graph structure has a pro-
found impact on the label propagation process. In this paper,
we introduce a manifold ranking-based saliency detection
method built upon a multi-layered graph. Constructing a
multi-layered graph involves two key steps. Firstly, we con-
struct each layer of the graph independently. To ensure that
the graph reflects the true structure of the manifold space,
we connect not only neighboring nodes in the spatial domain
but also establish connections between neighboring nodes
in the feature space. This additional connectivity allows
for a more effective propagation of saliency values within
image regions with the same semantics, thereby enhancing
the completeness of detected salient objects. Subsequently,
we establish connections between single-layer graphs to
facilitate information exchange among different sets of
superpixels. Due to significant differences in shape and
distribution resulting from various superpixel segmentation
algorithms, some algorithms generate superpixels that are
regular in shape, and similar in size, but prone to over-
segmentation. Others produce more accurate segmentations
with fewer over-segmentation errors but generate superpixels
with irregular shapes and significant size variations. We aim
to fully leverage the complementary advantages of these two
scenarios, enabling them to collaborate to enhance saliency
detection. To achieve this goal, we employ edges to connect
intersecting superpixels from different superpixel sets and
calculate edge weights adaptively. These interlayer edges link
superpixels located at the same positions in different graphs,
ensuring consistency in saliency values. By constructing the
multi-layered graph, saliency values can be propagated across
different superpixel segments. Our method operates at a
single scale to simultaneously reduce the computational cost
of using multiple superpixel algorithms.

When calculating edge weights, we choose to measure the
similarity between superpixels using both color and texture
features. After constructing the graph, we utilize the manifold
ranking algorithm for saliency detection, which consists of
two stages. In the first stage, based on the background
prior, we select superpixels along the image borders as
background seeds and compute the correlation between each
superpixel and the background seeds as the background
probabilities. In the second stage, we threshold the results
from the first stage to select foreground seeds and calculate
the correlation between each superpixel and the foreground
seeds to determine foreground probabilities, which indicate
the saliency of each superpixel. Finally, we iteratively
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refine the obtained saliency map to achieve the ultimate
result.

The contributions of this paper are summarized as follows:

1) To mitigate the significance brought by superpixel
segmentation errors, We take advantage of the com-
plementary superpixel algorithms and construct a
multi-layer graph to propagate saliency among super-
pixels segmented by different superpixel algorithms.

2) In a single-layer graph, we connect both neighbors in
spatial space and feature space. Thus the propagation
path between superpixels is expanded and the saliency
can propagate globally and locally.

3) We propose a framework based on a multi-layer graph
and improve the results significantly. Especially, the
constructed multi-layer graph can be easily integrated
into existing graph-based salient object detection
works.

II. RELATED WORK
Many graph-based saliency detection methods have been
proposed and have achieved great success in the past few
years. In this section, we review these works briefly. The
framework of the graph-based method generally includes
graph construction, computation of similarity matrix, seed
selection, and saliency propagation.

Some graph models have been successfully applied for
saliency propagation. [14] constructs a pixel-level fully con-
nected graph and uses the equilibrium state of Markov chains
to calculate saliency maps. [15] proposes a two-stage graph
model based on manifold ranking [18], [19]. [20] brings a
novel view of theworkingmechanism of the diffusion process
and promotes each individual diffusion before integration.
[21] calculates a foreground probability and a background
probability of each node on absorbing Markov chain and
fuse them by cosine similarity measurement method. Since
graph-based methods usually get smooth results, they can be
treated as the post-processing of other methods, such as [22],
[23], [24].

Since saliency propagates along edges in the graph, a well-
constructed graph allows effective propagation. [25] connects
every superpixel to boundary nodes and computes a dense
similarity matrix based on geodesic distance. In [26], a four-
layer graph is constructed using multi-scale segmentation,
and a third rank is executed with obtained foreground
probability as features. [27] substitutes the conventional
k-regular graph with an adaptive irregular graph and proposes
a new seeding strategy. [28] considers regionally spatial
consistency, and connects all potential foreground nodes and
background nodes respectively. [29] propose a multi-graph-
based manifold ranking propagation framework to obtain a
coarse map, where the edges of each graph and weights
of edges are computed by color space and location space
respectively.

Features are used to measure similarities of nodes, and
various features have been integrated into the saliency

detection model. [30] uses filtered edge information to
locate salient objects and converts the location information
into foreground probability features. [31] learns a transition
probability matrix with deep features and uses absorbed
time in the Markov chain to represent saliency value. [32]
integrates low-level and high-level deep features and learns
a set of hyperparameters to distinguish the importance
between different features. To learn amore adaptive similarity
matrix, some linear models are used to simulate the local
manifold structure. [33] adopts the locally linear embedding
(LLE) scheme to guide the propagation process. [34] uses a
local linear regression model to simulate the local manifold
structure and fuses two different level deep feature metrics
through cross-diffusion. [35] learn a joint affinity matrix
based on low-rank representation using multiple appearance
features and then compute diffusion-based compactness as
saliency values.

Seeds selection provides the initial saliency value of
nodes. Image boundary regions are usually regarded as initial
background seeds. Considering the boundary regions may
include salient regions, [36] removes the boundary which
has the biggest difference with other boundaries from seeds.
[37] constructs a superpixel-level graph with the addition of a
virtual background node representing the global information.
[38] compute the likelihood of each boundary superpixel
belonging to backgrounds and propose a two-stage detection
algorithm by combining complementary similarity metrics.

Previous methods usually use a single-layer graph for
saliency detection. Inspired by the complement of different
superpixel algorithms, we construct a multi-layer graph and
each layer corresponds to one superpixel algorithm. In every
layer, we fuse two k-regular graphs which are constructed in
spatial space and feature space.

III. METHODOLOGY
In this section, we detail the proposed algorithm. Our method
can be divided into four parts, including graph construction,
foreground query, background query, and iterative propaga-
tion optimization. The framework of our method is shown
in Fig.1. First, Our method segments the input image I
into superpixel sets with different superpixel algorithms and
constructs a multi-layer graph according to the rule sets. Then
features are extracted and similarities between superpixels
are measured. Once the graph is constructed, a two-stage
manifold ranking resolves saliency. In the first stage, the
background seeds are selected according to background
priors, and the background probability of each superpixel
is calculated by ranking superpixels. Since the summation
of background probability and foreground probability equals
one, low background probability means high foreground
probability. In the second stage, our method segments the
background probability map got in stage one to obtain
foreground seeds, and ranks superpixels to calculate the
saliency of each superpixel. Finally, our method optimizes the
obtained saliency map by propagation to get the final result.
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FIGURE 1. The framework of our method consists of three parts, including the construction of the multi-layer graph, the query of the foreground seeds
and the query of the background seeds.

A. CONSTRUCTION OF MULTI-LAYER GRAPH
1) GRAPH MODEL
Given an image I , we first segment it into L superpixel sets
with different algorithms. let S l denotes the superpixel set got
by the lth superpixel algorithm. Then our method treats each
superpixel sli as a node, and constructs an undirected graph
G = (V ,E) according to given connection rules, where V
represents the set of nodes and E represents the set of edges.
Connection rules will unfold in detail later. For each set S l ,
an adjacency matrix Al can be constructed to describe the
connection relationships between nodes. If superpixel sli and
superpixel slj are directly adjacent,A

l
ij = 1, otherwiseAlij = 0.

The edges used in previous methods are usually composed
of three parts, which are 1) edges connecting each superpixel
and its neighbors, 2) edges connecting each superpixel and its
2-hop neighbors, and 3) edges connecting superpixels at the
boundary. These rules have obvious limitations and can fail
in some circumstances. For example, when the distribution
of objects that belong to one class in an image is scattered,
saliency values can not diffuse between separate objects, such
as the flowers in the first line of Fig.2. The other case is that
the distance of adjacent belonging to one object may not be
the closest when the appearance features of the object are
unevenly distributed, such as the leaves in the second line
of Fig.2, which results in unsmooth saliency values in one
object. To deal with the above two cases, our method connects
each superpixel with its k nearest neighbors in feature space.
Finally, our method connects different sets of overlapping
superpixels, utilizing the complementarity between different
superpixel algorithms to mitigate the imprecision of results

from a single segmentation scheme. Overall, our method uses
five rules to construct edges. In the upper left corner of Fig.1,
we show these five connection rules with two examples of
superpixel segmentation. The above five rules are denoted by
R1, R2, R3, R4 and R5:

R1 : ε1 =

{(
sli, s

l
j

)
|Alij = 1

}
R2 : ε2 =

{(
sli, s

l
j

)
|Alir = 1,Alrj = 1

}
R3 : ε3 =

{(
sli, s

l
j

)
|sli, s

l
j ∈ Bl

}
R4 : ε4 =

{(
sli, s

l
j

)
|slj ∈ K l

i

}
R5 : ε4 =

{(
slmi , s

ln
j

)
|slmi ∩ slnj ̸= ∅,m ̸= n

}
(1)

where ε1, ε2, ε3, ε4, ε5 are edge sets corresponding to five
rules described above. Bl is the boundary superpixel sets
which are selected from S l . K l

i is the k nearest neighbors
of sli in feature space. R1 and R2 connect each superpixel
with its spatial neighbors, which ensures the connectivity of
the graph. Since adjacent superpixels have large probabilities
to belong to one object, they are more likely to have the
same saliency values. R1 and R2 can ensure that superpixels
belonging to one object get smooth saliency values. It is
observed that the background regions may be scattered on
different image boundaries, and R1 and R2 are not enough
to propagate saliency effectively values between background
regions on different boundaries. To solve this problem, our
method connects superpixels on all boundaries according
to R3. After connecting superpixels on the boundaries,
superpixels in the image center have the longest shortest
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FIGURE 2. Comparison between results without R4 and with R4. From left
to right: input image, ground truth, result without R4, result with R4.

path to every boundary among all superpixels, which means
R3 satisfies the central prior in fact. R4 connects each
superpixel and its k neighbors in feature space so that
connections are not limited to local connections. It can be
seen from Fig.2 that when salient objects and backgrounds
are scattered, the addition of R4 improves the visual effect.
R5 connects overlapping superpixels in different sets. This
connection guarantees that pixels that have the same location
in different sets could obtain close saliency values. Besides,
two regions that are not neighbors in one superpixel set may
be neighbors in another superpixel set. Thus the introduction
and connection between different superpixel methods can
diversify the propagation path between two regions, which
can improve the diffusion efficiency.

B. COMPUTATION OF SIMILARITY MATRIX
1) FEATURE EXTRATION
Saliency detection can be seen as a classification problem,
and the ideal features should minimize intra-class variation
while maximizing inter-class variation. As the most com-
monly used feature, color means can bring a good classifying
effect, although it is simple to extract. However, due to the
loss of detail information, it is difficult for color means to
deal with complex situations such as textures and gradations.
Color histogram contains the distribution information of
colors, thus retaining more detail. Therefore we use color
histogram instead of color means. To further reduce the loss
of detail, our method uses the Leung-Malik(LM) filter library
to extract texture features. The LM filter library consists
of 48 filters with multi-scale and multi-direction and has
good application effects in image processing. Let hlci and hlti
denote color histogram and texture histogram respectively of
sli . Distance d

l
ij between superpixels sli and s

l
j is a weighted

summation which can be seen in (2):

d lij = λ1X2(hlci , h
lc
j ) + λ2X2(hlti , h

lt
i ) (2)

where λ1, λ2 are control parameters, and X2(·) represents
the chi-square distance. The distance d lij is normalized to
[0, 1]. Fig.3 compares the results computed by two features
separately and their weighted summation. It shows that when
the salient object and the background have close colors, the
combination of these two features can accurately find the
salient object.

FIGURE 3. Comparison between results using different features. From left
to right: input image, ground truth, results with color means, color
histogram, and LM filter histogram respectively, and results with a
weighted combination of the color histogram and LM filter histogram.

We construct a combined similarity matrix W ∈ R2 to
adapt to multiple superpixel sets.W is composed of two kinds
similarity matrix,W l

∈ R2 andW lm,ln
cl ∈ R2.W l characterizes

the similarities between superpixels in set S l .W lmln
cl describes

the similarities between superpixels from different set S lm and
S ln . Firstly, how to construct the internal similaritymatrices of
one superpixel set is described as follows. If there is an edge
between sli and s

l
j , the similarity is an exponential function of

their distance and if there is no edge, the similarity is zero.
As mentioned above, εl1, ε

l
2, ε

l
3, and ε

l
4 connect superpixels

inner S l . We split these four rules into two group E lB and E lK .
E lB is consisted of εl1, ε

l
2, and ε

l
3. Let W

lB and W lK denote
similarity matrices corresponding to E lB and E lK separately.
W lB
ij is calculated as follows:

W lB
ij =

 exp

(
−
d lij
σ 2
1

)
if
[
sli, s

l
j

]
∈ E lB ,

0 otherwise.

(3)

Since W lB
ij = W lB

ji , W
lB is a symmetric matrix. Similarly

to (3), we compute W lK . Then W l can be get by adding W lB

and W lK :

W l
= W lB +W lK (4)

According to (4), the similarity matrices W 1, . . . , WL are
constructed.

Next, how to construct the similarity matrices between
superpixel sets is described. According to rule R5, if si and
sj overlap, then an edge is connected between them, and
the weight W lm,ln

cl (slmi , s
ln
j ) is set to the mean of ratios of the

overlapping areas:

W lm,ln
cl (slmi , s

ln
j ) =

area
(
slmi ∩ slnj

)
area

(
slmi
) +

area
(
slmi ∩ slnj

)
area

(
slnj
)

 /2
(5)

According to (5), When calculating the similarity matrices
between superpixel sets, the symmetry of the similarity
matrices is guaranteed by taking the mean. Then, the
combined similarity matrix W is obtained by splicing two
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FIGURE 4. Comparison between results using different superpixels. From
left to right: input image, ground truth, results of SLIC and ERSS
respectively, averaging results of SLIC, ERSS, and results with inter-layer
connections added.

kinds of similarity matrices that are constructed above as
follows:

W =

W
1

· · · W 1,L
cl

...
. . .

...

WL,1
cl · · · WL

 (6)

Note to let Wii = 0 to avoid self-inforcement. If we set
W l1l2

cl to zero, the connections between different superpixel
sets will be disconnected and our method will degrade to
computing results with superpixel algorithms separately and
then averaging these results directly. Fig.4 compares the
results of different superpixel algorithms, directly averaged
version, and our combination strategy. It is observed that
saliency values are more smooth and salient regions are more
complete with our combination strategy.

C. COMPUTATION AND PROPAGATION OF SALIENCY MAP
Saliency detection divides an image into foreground and
background. If some superpixels are known to be back-
ground, then the background probabilities of other superpix-
els can be evaluated by their correlations to known back-
ground superpixels. Similarly, if some superpixels are known
to be foreground, then the foreground probability of other
superpixels can be obtained, which can represent saliency
values. The process to obtain a salient map is divided into two
stages. In stage one, the background probability is calculated
by using background prior to selecting background seeds.
In the second stage, the background probability map obtained
in the first stage is segmented to select the foreground seeds,
and the saliency values of each superpixel are obtained.
We use manifold ranking to calculate correlations between
labeled data and unlabeled data. Then, the resulting saliency
values are further propagated to smoother saliency maps.
Lastly, we integrate thesemaps and get the final saliencymap.

1) QUERY THROUGH BACKGROUND PRIOR
According to the background prior, our method selects
boundary superpixels as the background seeds. Then man-
ifold ranking is used to rank correlations between other
superpixels and seeds. Let F denote the needed background

probabilities, the cost function in this stage is:

F = arg min
F

 z∑
ij=1

Wij
∥∥fi − fj

∥∥2 + µ

z∑
i=1

di

∥∥∥∥∥fi − ybgi
di

∥∥∥∥∥
2

(7)

where F = [f1, f2, . . . , fz]T is the desired background
probability, z is the number of superpixels, di =

∑
jWij,

which is the sum of the similarities between si and it’s
neighbors. Let Ybg denotes background seeds indication
vector, where ybgi = 1 if si belongs to image boundary,
otherwise ybgi = 0. The cost function consists of two items.
The first term is a binary smoothing term, which punishes the
inconsistent value of connected superpixels. The weight is the
similarity of the two connected superpixels, which ensures
that connected similar superpixels obtain consistent saliency
values. The second item is a unary retention term, which
punishes the case that the ranking result is inconsistent with
the indication vector Ybg, which ensures values of superpixels
that have more support from their neighbors will not change
a lot. (7) is a convex optimization problem and the optimal
solution is:

F = (D− αW )−1Ybg (8)

where D is a diagonal matrix, and the diagonal elements
are di. α =

1
1+µ . Let Y

l
bg denote seed indication vector

corresponding to lth superpixel sets, concatenated seed
indication vector Ybg =

[
Y 1
bg, . . . ,Y

L
bg

]
. After obtaining the

background probability of each superpixel, we normalize it to
[0, 1], and saliency values Fbg can be obtained by subtracting
background probabilities from 1:

Fbg = 1 − F (9)

Since superpixels located on different boundaries usually
belong to different objects, selecting all boundary superpixels
as background seeds simultaneously will lead to high
variance inside seeds, which results in inaccurate background
probability results. It is observed that the variance between
the superpixels in one boundary is much smaller, so our
method computes saliency values using each boundary
respectively. According to (7) and (9), F t

bg, F
b
bg, F

l
bg, F

r
bg

corresponding upper, lower, left and right boundaries are
calculated. F ′

bg is obtained by multiply these four results:
Fbg = F t

bgF
b
bgF

l
bgF

r
bg.

2) QUERY THROUGH FOREGROUND SEEDS
In this stage, our method segments result Fbg obtained in the
first stage to select foreground seeds, and then the saliency
values are obtained by computing the correlations between
all superpixels and foreground seeds. The segmentation
threshold is set to Fbg which is the mean of Fbg, and
superpixels that have higher or equal values than the threshold
are selected as foreground seeds. The indication vector Yfg is
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constructed as follows:

yfgi =

{
1 if f bgi ≥ Fbg
0 otherwise.

(10)

Similarly to querying through background prior, the
foreground probability is obtained by minimizing the cost
function of manifold ranking. The optimal solution is:

Ffg = (D− αW )−1Yfg (11)

Ffg could be taken apart into F1
fg, . . . , FL

fg, which
corresponds to different superpixel algorithms, according to
the splicing order ofW .

3) PROPAGATION OF SALIENCY
In order to get a smoother salient map, our method performs
iterative propagation to adjust saliency values. Propagation
matrix P is constructed first. The distance d ′

ij between
adjacent superpixels si and sj is calculated according to (12):

d ′
ij =

 1 − exp

(
−
dij
σ 2
2

)
if Aij = 1

0 otherwise

(12)

Then the shortest path dmin
ij between any two superpixels

are calculated. The similarity Pij between si and sj is
calculated as follows:

Pij = exp

(
−
dmin
ij

σ 2
3

)
. (13)

Note to set elements on the diagonal elements of P to 0.
Next iteratively propagation of F lfg is carried out. In order to
simplify the expression, we have omitted the superscript l.
Let F0 = Ffg. Here, our method makes a slight modification
on the commonly usedmean field-based propagation (14) and
obtains (15).

f ni = δf n−1
i + (1 − δ)

∑
Pijf

n−1
i∑
Pij

. (14)

Then after n iterations, the final result f ni is:

f ni = δf n−1
i + (1 − δ)

∑z
ij Pijψ

(
f n−1
i − thr

)
f n−1
i∑z

ij Pij
.

(15)

ψ(x) =

{
x if x > 0
0 otherwise.

(16)

where δ is a weight parameter, and thr is a threshold
parameter. ψ (·) is a positive operation that takes 0 for all
values less than 0. (15) consists of two parts, the first part
is the retention item, which ensures saliency values are
consistent with the original value; the second part is the
propagation term, which receives influences from similar
superpixels. The second part can be regarded as adjusted
saliency values, where thr takes a small value. Superpixels

whose values are below thr are considered to belong to
the background. After adjustment, the contrast between
background and foreground is increased. After assigning each
pixel the value of the superpixel they belong to, propagated
Ffg can be visualized to L saliency maps. The final saliency
map SM is got by averaging these maps. The main steps of
our methods are summarized in Algorithm 1.

Algorithm 1 Saliency Detection via Manifold Ranking on
Multi-Layer Graph
Input: Input image I and parameters: λ1 and λ2 in (2),

σ 2
1 , σ

2
3 , σ

2
3 in (3)(12)(13) respectively, µ in (7), δ and

thr in (15), the number of nearest neighbors k and
propagation iterations number t .

Output: Saliency map SM , each value indicating the
saliency value.

1: Segment I using into superpixel sets S =
{
S1, . . . , SL

}
.

2: Construct graph G using rules R1, R2, R3, R4 and R5, and
compute similarity matrixW using (6).

3: In stage one, construct background seeds indication
vector Ybg, compute saliency values according to (7),
(9) using each boundary as seeds respectively and get
saliency vectors F t

bg, F
b
bg, F

l
bg, F

r
bg. Multiply these four

vectors element-wise to get saliency vector Fbg.
4: In stage two, construct foreground seeds indication

vector Yfg according to (10), and compute saliency vector
Ffg using (7), and then split Ffg into F1

fg, . . . , F
L
fg.

5: Propagate F1
fg, . . . , F

L
fg using equation (15) by t times.

6: Visualize adjusted saliency vectors to get a saliency map
and average them to obtain the final result SM .

IV. EXPERIMENT
A. DATASETS
We experiment on four commonly used datasets, including
ECSSD [39], MSRA10K [17], PASCAL-S [40] and DUTS
[41]. These databases all have pixel-level labels. ECSSD
consists of 1,000 images selected from the BSD dataset
and every image contains at least one salient object. The
MSRA10K contains 10,000 images randomly selected from
the MSRA dataset and is an extension of MSRA1K. The
PACSAL-S has been carefully designed to avoid design
biases consists of 850 complex scene images and contains
a small number of images without any salient objects.
It is one of the most challenging datasets available. DUTS
[41] is currently the largest saliency detection dataset. It is
composed of two subsets DUTES-TR and DUTES-TE and.
DUTES-TR is usually used to train deep models and contains
10553 images. DUTES-TE is usually used for testing and
contains 5019 images.

B. EVALUATION CRITERIA
Evaluation criteria commonly used for saliency detection
include precision-recall (PR) curve, F-measure curve, MaxF,
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WF, MAE, and S-measure. Images can be segmented into
salient regions and background regions with a threshold.
Precision is defined as the area of the correctly detected
salient region over the area of the detected salient region.
The recall rate is defined as the ratio of the correctly
detected salient region over the area of the ground truth.
By changing the threshold from 0 to 255, we can get
multiple pairs of precision and recall. The PR curve can
be drawn with recall as the X-axis and precision as the
Y-axis. F-measure is the weighted harmonic of precision

and recall:
(
1+β2

)
×precision×recall

β2×precision+recall
. By changing the threshold,

we can get F-measure curves. MaxF is the max value of
the FM curve. WF is obtained by setting β2 to 0.3, which
improves the influence of accuracy [42]. The larger the
value of F-Measure, the better. MAE is the sum of squared
differences between the saliency map and ground truth. The
S-measure evaluates the structure similarity of the predicted
saliency map and the ground truth. It takes object-aware
structural similarity measure and region-aware structural
similarity measure into consideration: S = (1 − α)Sr + αSo,
we set α = 0.5 according [43].

C. PARAMETER SETTING
λ1 and λ2 in (2) are set to 0.4, 0.6 respectively. σ 2

1 , σ
2
3 , σ

2
3

in (3), (12), (13) are set to 0.1, which is consistent with [40].
µ in equation (7) is set to 0.1, which controls seed retention
items and the boundary retention items respectively. µ in
equation (7) is set to 0.1. δ and thr in (15) are set to 0.76 and
0.1, and the number of propagation iterations is 5. k is set to
3 by experience when selecting the nearest neighbors for R4.
The superpixel algorithms chosen are SLIC, and ERSS [44].

D. COMPARISON WITH OTHER METHODS
We provide a quantitative and qualitative comparison
between our method and high-level salient object detection
methods including MR [15], DRFI [45], PISA [46], DSR
[11], GraB [25], MILPs [47], EASD [30]2017, AMC_AE
[31], CFSOD [48], GLJAF [35], LEGS [49], U2Net [50] to
support the Contribution 3) mentioned in section I. Here MR,
Grab, and EASD use a similar framework with us. The results
are obtained by either running codes from paper homepages
or downloading from paper homepages.

Fig.5 shows the PR curves and the F-measure curves of
our method and other methods, where ‘ours’ is the result of
our method. It can be seen that the PR curve of our method
is superior to all other methods except for AMC_AE in
different datasets. Our method even surpasses the supervised
method DRFI, indicating that our method is very competitive.
The F-measure curve of our method also surpasses methods
that are based on graphs. Considering the complex scene
of PASCAL-S, it is not surprising that AMC_AE surpasses
our method by a large margin in PASCAL-S as it uses deep
features. Table 1 compares the F-measure and MAE results.
It can be seen that the F-measure of our method is improved,

which surpasses other methods other than AMC_AE. The
MAE results are not very satisfactory due to the large
area of low salient values in the background region. If the
superpixels lie across the boundary between the object and
the background, saliency will propagate from salient objects
to backgrounds. How to deal with this phenomenon will be
considered in our future work.

Fig.6 compares salient maps qualitatively. Examples are
selected based on several tricky situations. The first and
second rows contain two different salient objects. In the
third and fourth rows, salient objects are partially obscured
by the background. In the fifth row, the salient objects and
the background have similar appearance properties. In the
sixth and seventh rows, the salient objects are located on
image boundaries. It can be seen that due to the simple
background seed selection mechanism, although most of
the salient regions are detected, the salient regions close
to the boundary are not highlighted. In the sixth row, the
background has complex textures. In the eighth and ninth
lines, the background is composed of heterogeneous parts.
In terms of visual contrast, the edge of the results of our
method is kept well, and more complete salient objects are
detected, and better results are obtained.

E. ABLATION ANALYSIS
In this section, we verify the effectiveness of each part by
ablation analysis. Ablation analysis experiments on ECSSD.
Experiments are divided into decremental experiments and
incremental experiments. The effects of each part can be
clearly viewed by contrasting these experimental results.
We use MR [15] as the benchmark. Fig.7(a) shows the
PR curves of the decremental experiments. ‘wo.MS’ means
only SLIC is used. ‘wo.CL’ means that there is no edge
connection between the superpixel sets. ‘wo.MF’ means
that only the color mean is used as the feature. ‘wo.KNN’
means edges between k-nearest neighbor in feature space
is not added to the graph structure. ‘wo.P’ means without
propagation optimization. Fig.7(b) shows the PR curves
of the incremental experiments. ‘w.MF’ means multiple
features are used. ‘w.KNN’ means edges between k-nearest
neighbor in feature space are added to the graph structure.
‘w.MS’ means multiple superpixel algorithms are used.
‘w.MS_CL’ means multiple superpixel algorithms are used
and inter-layer connection are added. ‘w.P’means (15) is used
for adjustment. Here ‘wo.MS’, ‘wo.CL’, ‘wo.P’, ‘w.MS’,
‘w.CL’, and ‘w.P’ are used to support the Contribution 1)
mentioned in section I, and ‘wo.MF’, ‘wo.KNN’, ‘w.MF’,
and ‘w.KNN’ are used to support the Contribution 2)
mentioned in section I.

As can be seen from Fig.7, the averaging results of
multiple superpixel algorithms can bring an improvement
as expected. Connections between superpixel sets further
improve the performance by a large margin.We would design
experiments to show performance variation of different
superpixel combination strategies.
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FIGURE 5. Quantitative comparison. The first and second rows are PR curves and F-measure curves. From left to right are results on ECSSD, MSRA10K,
PACSAL-S, DUTSTE.

TABLE 1. Comparison of maxFM, WF, mae, and SM.

Fig.8(a) shows results of different superpixel algorithms,
where ‘SLIC’, ‘ERSS’, ‘LSC’ [51], ‘EdgeBox’ [52], and
‘SEEDS’ [53] are the name of used superpixels algorithms.
Among these algorithms, SLIC, EdgeBox, and SEEDS
prefer regular shape, ERSS prefers edge retention, and LSC
produces regular superpixels in smooth regions and irregular
superpixels in texture regions. As shown by Fig.8(a), SLIC
works best, which proves the effectiveness of SLIC.

To find out the optimal combination, we experiment with
different combinations of superpixel algorithms. In Fig.8(b),
we show results of different number and combination
strategies, where legends without postfix ‘_CL’ means
averaging results of different superpixel algorithms and

legends with postfix ‘_CL’ means inter-layer connec-
tions are added. Among combinations of two, three, and
four algorithms, it is hard to say which combination
is the best, so we select some representative combina-
tions, which are ‘SLIC_ERSS’, ‘ERSS_SEEDS_EdgeBox’,
‘ERSS_LSC_SEEDS_EdgeBox’ respectively. As shown in
Fig.8(b), ‘ERSS_SEEDS_EdgeBox’ works best in all com-
binations. Unexpectedly, it is not true that more super-
pixel algorithms bring better results. In summary, the use
of three superpixel algorithms works best, which brings
minor improvement over two superpixel algorithms. Four
superpixel algorithms don’t bring any enhancements. Dis-
appointingly, the use of five superpixel algorithms slightly
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FIGURE 6. Qualitative comparison. Each row from top to bottom corresponds to one example image selected from ECSSD. The first and second
columns are input image and ground truth, and the third to ten columns correspond to the results of MR, DRFI, PISA, GraB, MILPs, AA, and HLR
respectively, and the last column is the result of our method.

FIGURE 7. Ablation experiments on ECSSD. (a) Decremental experiments. (b) Incremental experiments.

degrades the effect. It is speculated that the used superpixel
algorithms are not sufficiently diversified and there are much
more algorithms preferring regular shapes. These algorithms
with the same preference produce similar segmentation
errors. Because wrongly segmented algorithms are more
than rightly segmented algorithms, misclassified superpixels

receive fewer constraints from correctly segmented superpix-
els and more support from wrongly segmented superpixels.
This kind of error can’t be attenuated effectively. In fact,
since superpixel algorithms weigh between consistency and
compactness, two algorithms that are prone to compactness
and consistency respectively would be enough. As mentioned
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FIGURE 8. PR curves on ECSSD. (a) Different superpixel algorithms. (b) Different combinations of superpixel algorithms, where the solid lines
are the results that use inter-layer connections, and the dashed lines are averaging results of different superpixel algorithms. (c) Different
values for K in the K nearest neighbor connection.

FIGURE 9. Failure cases. Rows from top to down are input images,
ground truth, and the results of our method.

before, SLIC produces regular superpixels while ERSS
produces irregular superpixels but preserves edges very well,
and ‘SLIC_ERSS’ works best in the combination of two
algorithms. In Fig.8(b), we also find that although averaging
results of two algorithms are much worse than three, once
inter-layer connections are added, combinations of two and
three obtain similar results, which proves the effectiveness of
the inter-layer connections.

In order to find out the optimal number of nearest
neighbors, different values of k are used for experiments.
Fig.8(c) shows the results when k varies from 0 to 6, 0 means
that no similar superpixels are connected. As can be seen,
when more neighbors are connected, the performance is first
improved and then degraded. This is because when k takes
a large value, superpixels that belong to different objects
are likely to be connected mistakenly. In order to balance
between good performance and lower computation cost, our
method sets k to 3.

F. FAILURE CASES
Although our method gains great improvement, it still
fails in some difficult images. Fig.9 shows some failure
cases. In these images, some complex situations bring great
challenges, including objects having similar appearances to
the background, objects or backgrounds being composed of

heterogeneous parts, objects touching the image boundary,
and backgrounds having complex textures and combinations.
One way to cope with these tricky cases is optimizing
background seeds and extracting more descriptive high-level
features.

V. CONCLUSION
In this paper, a graph-based salient object detection method
is proposed, which improves the accuracy of detection by
optimizing the graph structure. With the newly constructed
multi-layer graph, saliency values diffuse across different
superpixel sets, which integrates different superpixel algo-
rithms naturally and attenuates the influence of segmentation
errors that occur near the edge. Besides, by connecting k
neighbors in feature space, saliency values can propagate
globally and the obtained saliency map is smoother, and
detected salient objects are more complete. We evaluated
our method on several datasets and compared it with a
variety of high-level methods qualitatively and quantitatively.
Experimental results demonstrate the effectiveness of our
method.

All previous methods use one superpixel algorithm to
segment images at multiple scales. Thismeans themulti-layer
map constructed by our method is complementary with most
existing graph-based methods, and the combination of the
multi-layer map and existing methods is expected to improve
results. In addition, there are two obvious flaws in our
work. First, we use handcrafted features and it works not
well enough in complex scenes. Manual features are usually
low-level and lack of high-level semantic information and
diversity, and deep features provide diverse features from
low-level to high-level. Therefore, future work also includes
the use of deep features and integrating multiple features
adaptively. Secondly, we use all superpixels in the boundary
as background seeds. If salient objects are located in the
image boundary, it might be disastrous in such a simple way.
So a background seeds filter will be of vital importance and
it will be included in our future work. As mentioned before,
how to deal with large areas of low salient background will
be considered in our future work.
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