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ABSTRACT Vehicle detection is important for the development of Intelligent Transportation Systems (ITS),
which has made great strides in recent years. However, at night, vehicle detection faces many difficulties
such as low illumination, street lights, and the appearances vehicle headlights, etc. In order to solve these
problems, we propose an improved nighttime vehicle detection algorithm based on Faster R-CNN. Firstly,
we combine the Deformable Convolutional Network with Faster R-CNN to improve the detection accuracy
features of night vehicles of different sizes and shapes. Secondly, to improve the prediction accuracy of
bounding box position information, we adopt Side-Aware Boundary Localization to replace the traditional
bounding box prediction. It can further obtain more accurate position information. At the same time, aiming
at the imbalance of samples in the training process, we use Oline Hard Example Mining(OHEM) to train
samples with a high probability of error to improve the learning effect of a few classes; and to improve
the accuracy of night vehicle detection. In addition, we use Soft Non-Maximum Suppression(Soft-NMS)
to reduce the number of missed vehicles. The improved algorithm efficiently improves the night vehicle
detection accuracy and reduces the model complexity. Furthermore, we verify the effectiveness of each
innovation module through ablation experiments and comparison experiments. Finally, the advantages of
the improved model in terms of nighttime vehicle detection accuracy are verified by experimenting on the
open-source intelligent traffic dataset UA-DETRAC and the open-source diverse automated driving dataset
BDD100K.

INDEX TERMS Nighttime vehicle detection, faster R-CNN, deformable convolutional network (DCNN),
side-aware boundary localization (SABL), intelligent transportation system (ITS).

I. INTRODUCTION
Nighttime vehicle detection plays a crucial role in the
Intelligent Transport System (ITS) [1], which has achieved
remarkable achievements. Nighttime vehicle detection helps
to monitor the condition of vehicles on the road section,
detect the abnormal behaviour and illegal operation of the
vehicles in time, and improve the level of road traffic safety.
The number and speed of vehicles can be monitored in real
time through night vehicle detection to optimize traffic flow
prediction [2] and reduce traffic congestion.

However, the accuracy of vehicle detection at night is
unsatisfactory. The main problems and challenges of night
vehicle detection are as follows: (1) the quality of vehicle
images taken under the condition of low light at night is
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poor, and it is difficult to detect vehicle features such as
vehicle details, color, and shape; (2) there may be noise in
night images taken under the condition of low light at night,
which will confuse the detection algorithm with the back-
ground, increasing false positive and false negative samples;
(3) vehicle lights such as headlights and taillights will
produce bright areas in the image, which will blur vehicle
boundaries or cause vehicle false detection. Therefore,
in order to improve the accuracy of night vehicle detection
to improve night traffic safety, optimize intelligent traffic
management and promote the development of intelligent
transportation system. We proposes an improved night
vehicle detection model based on Faster R-CNN.

The main contributions of this paper are as follows:
(1) in order to improve the detection accuracy of night
vehicle features of different sizes and shapes, Deformable
Convolutional Network [3] network combined with Faster
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R-CNN adaptively adjusts the shape and size of the receptor
field, so that more vehicle feature information can be captured
to improve the detection accuracy; (2) using edge sensing
boundary positioning instead of traditional boundary box
prediction can better capture vehicle body contour, window
edge and other details, more accurately locate the target
boundary, and improve the robustness and accuracy of the
model; (3) to solve the problem of unbalanced class samples
in the training stage, OHEM [4] was adopted to focus on
training samples with high error probability, improve the
learning effect of a few classes, reduce the false detection rate
of the model, and improve the training speed and detection
performance of the model.

II. RELATED WORK
Traditional machine learning algorithms start with the
extraction of object candidate boxes by sliding windows.
Then it depends on a convolutional neural network to extract
the relevant features of the region proposals, such as Harr
features [5], SIFT features [6], and HOG features [7]. Finally,
classifiers such as Support Vector Machines (SVM) [8]
and Adaboost [9] are used to predict the presence of the
object within regions and to recognize object categories.
R. Girshick et al. introduced a deep convolutional network to
object detection in 2014 by proposing the Regions with CNN
features (RCNN) [10]. Two-stage object detection algorithms
represented by RCNN, Fast-RCNN [11], Faster R-CNN [12],
Mask-RCNN [13]. One-stage object detection algorithms
represented by SSD [14], RetinaNet [15], YOLOv3 [16],
YOLO9000 [17], YOLOv5 [18].

In recent years, many researchers have proposed many
methods to solve the problem of detecting vehicles at
night. Cui et al. [19] proposed a self-supervised learning
based multi-task automatic transformation (MAET) model to
improve the object detection accuracy in dark environments.
However, due to the limited number of dark target samples
and insufficient image illumination, the multi-task automatic
transformation MAET model cannot learn enough about the
dark target and cannot effectively extract the key features
of the dark target. In addition, the MAET model needs to
handle multiple tasks at the same time, which increases the
training time and computational resource requirements of the
model. Yin et al. [20] proposed the combination of pyramid
network and YOLOv3 for dark object target detection.
However, the model using the image pagoda network is
more complex and will consume a lot of computational
resources. In addition, the robustness of the model is limited
when facing dark object detection in different environments.
Zhang et al. [21] proposed a dark target detection model
based on the transformer network structure for low-light
illumination. However, the dual-trunk transformer model
cannot effectively adapt to the complex low-light background
effectively, and it is easy to produce false detection or
missing detection. Moreover, there are obvious differences
between the images in the extremely dark environment
and the images in the routine daytime scene, which will

limit the generalization ability of the model and reduce the
performance in practical applications.

Therefore, this paper studies and improves the nighttime
vehicle detection algorithm based on the two-stage detection
algorithm Faster R-CNN, which improves the detection
accuracy of night vehicles at night.

III. METHOD
In this section, we elaborate on the proposed method of
nighttime vehicle detection. The overall architecture of the
proposed method is shown in Figure 1, which is based on the
Faster R-CNN [16] algorithm.

A. DEFORMABLE CONVOLUTIONAL NETWORK
1) DEFORMABLE CONVOLUTION
The mesh size of the traditional convolution kernel is
preset, and equation (1) is the definition of the traditional
convolution structure. Each point of the output feature map
corresponds to the center point of the convolution kernel.
x represents the features of the input, y represents the features
of the output, and Pn represents the offset of P0 within the
convolution kernel domain.

y(P0) =

∑
PnεR

w(Pn).x(P0 + Pn) (1)

However, in the environment of low light and limited
visibility at night, the vehicle shape will produce nonlinear
deformation and complex deformation. Deformable convo-
lution adjusts the position of the sampling points in the
convolution operation by introducing a learnable offset at
each point on the input feature x, which makes the model
better adapt to the vehicle deformation. Equation (2) is a
deformable convolution formula with a learnable offset:

y(P0) =

∑
PnεR

w(Pn).x(P0 + Pn + 1Pn) (2)

Deformable convolution adaptively adjusts the shape and
size of the receptive field according to the scale of the vehicle
in the input image, and the model can capture the feature
information from vehicles of different scales at night. The
edge information of vehicles at night is fuzzy and the contrast
is low, so it is difficult to extract the boundary information of
vehicles accurately. By adjusting the position and the shape of
the convolution sampling points, deformable convolution can
capture the boundary features of vehiclesmore accurately and
improve the detection accuracy of the night vehicle detection
model. In addition, there is a lot of background noise and
other interfering objects in the night image. The deformable
convolution reduces the interference of noise and objects by
introducing a learnable offset and receptive field and reduces
the false detection rate of the model.

Figure 2 shows the implementation of a deformable
convolution.

Therefore, as shown in Figure 1, we replace the 3 × 3
convolution of layers 3 to 5 of the backbone network
ResNet50 [22] with a deformable convolution. The replaced
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FIGURE 1. The overall framework of the proposed method.

FIGURE 2. The structure of deformable convolution.

convolution can learn an offset for each position of the input
feature, and can accurately position various deformed objects,
thus improving the detection accuracy of the model.

2) DEFORMABLE ROI POOLING
For the given input feature map and region of size w× h, the
RoI pooling will divide the feature map x into k × k bins,
and outputs the feature map y of size k × k , as shown in the
following equation (3):

y(i, j) =

∑
pεbin(i,j)

x(P0 + p)/nij (3)

where nij is the number of pixels in the bin.
Compared to traditional ROI pooling, deformable pool-

ing adds an offset, which can be seen in the following
equation (4):

y(i, j) =

∑
pεbin(i,j)

x(P0 + p+ 1Pij)/nij (4)

In the top path of deformable pooling, the feature map is
still generated by conventional RoI pooling. Then, a fully
connected layer generates a normalized offset 1Pij, which
makes the offset learning independent of the RoI size.
Finally, deformable convolutional pooling is implemented
in the bottom path to output the rectangular region as a

feature map with improved offsets. In night vehicle detection,
the night light is weak and the field of view is limited,
the vehicle will undergo non-rigid deformation, and the
detailed information such as the texture, color, and logo
of the vehicle is difficult to extract. Deformable pooling
can learn offsets and flexibly adjust sampling positions to
better adapt to vehicle deformations and capture vehicle
details. In addition, deformable pooling can adapt to different
vehicle sizes by adjusting the sampling position and size.
Therefore, we replace the RoI Pooling in Faster R-CNN with
Deformable RoI pooling in Figure 1. In this way, the pooling
operation can be deformed according to the shape of different
targets, which can improve the adaptability to the receptive
field, to improve the accuracy and robustness of the night
vehicle detection model.

B. SIDE-AWARE BOUNDARY LOCALIZATION
The mainstreammethod of bounding box prediction is shown
in Figure 3. The green box indicates a suggestion box, and the
blue box indicates a prediction box. It is based on the offset
between the bounding box and the center of the proposal
to determine the target position. Figure 3 shows Side-Aware
Boundary Localization. To improve positioning accuracy,
SABL divides the target space into multiple buckets by
calculating each edge of the bounding box. The gray rectangle
represents the bucket, and the orange rectangle represents the
prediction and estimation of the bucket.

The pipeline of SABL for the Faster R-CNN network is
shown in Figure 4. The specific implementation steps are as
follows:

First, four boundary features Fleft , Fright , Ftop and Fdown
are obtained from the ROI feature extracted from rpn by
two 1 × 1 convolution and normalization. Then, for a given
proposal box, its boundary is enlarged by a factor of σ (σ > 1)
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FIGURE 3. Bounding box prediction method.

FIGURE 4. Bounding box prediction method.

so that it covers the whole object. The candidate region is
divided into 2k bucket regions, with each boundary centerline
corresponding to a bucket. Binary classification is used to
determine which bucket the bounding box boundary is closest
to. Then, the exact regression positioning of the boundary
is performed. Finally, the resulting boundary coefficient is
multiplied by the value of the classification score as the NMS.
The fourth part is the feature reuse module, which aims to
reduce the amount of computation.

When the light is insufficient at night, the vehicle’s
boundary is not clear enough, and the traditional boundary
frame cannot accurately locate the target vehicle. By extract-
ing the boundary information of the target vehicle, SABL
can more accurately locate the target boundary and better
adapt to the non-rigid deformation of the vehicle. The
accuracy and robustness of the detection model are improved.
By extrapolating and locating the boundary edge of the
night vehicle, the details of the body contour, window edge,
etc. can be captured, and the detection accuracy of the
model can be improved. Therefore, we adopt the SABL to
replace the traditional bounding box regression in the Faster-
RCNN network. By replacing the way of predicting the
bounding box regression with a SABL after output proposals
of rpn of Faster R-CNN. Each edge of the bounding box is
positioned separately by SABL to improve the accuracy of
target boundary positioning.

C. ONLINE HARD EXAMPLE MINING
Vehicle detection performance will decrease in low light and
weak light conditions at night. During the training process,
OHEM will focus on difficult samples. It can improve the
detection ability of the model in difficult scenes such as low
light at night, and improve the robustness and accuracy of the
model. Due to the lack of light at night, the detailed features
of vehicles are difficult to capture and identify, and there
are many incorrect samples in training. OHEM will focus on
training these false samples to reduce the false detection rate
of the model. Aiming at the problem that the selected night

vehicle data set is large, which reduces the training efficiency
of the detection model. OHEM can eliminate simple samples
that are easy to classify, and train limited samples that are
more difficult to avoid repeated training. In addition, OHEM
selects difficult samples to train during the training process
to improve the adaptability of the model in different complex
scenarios.

To improve the detection speed and accuracy of Faster
R-CNN on night vehicles, OHEM is applied to Faster R-CNN
in this paper. OHEM is applied to the classification loss part
of rpn, that is to say, all the region proposals are sent dierctly
to the ROI pooling when calculating the classification loss of
RCNN. OHEM can automatically select some samples with
diversity and hard examples for training. It can effectively
improve the training speed and detection performance of the
model for night vehicle detection.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTING
1) DATASET AND IMPLEMENTATION DETAILS
The UA-DETRAC [23] dataset contains 82085 images in
the training set and 56,167 images in the test set. 878 night
scene training images and 220 night scene test images are
extracted from the training and test sets, respectively. The
UA-DETRAC dataset was divided into four categories: car,
bus, van, and other. There are 100,000 images in the road
target boundary box of the BDD100K [24] dataset. 10,500
night vehicle images are selected from the 70,000 images in
the training set as the training set, and 1,500 night vehicle
images are selected from the 20,000 images in the test set
as the test set. We keep only cars, buses, bicycles, trucks,
motorcycles, and trains in six categories.

Our detection models are built on the MMDetection
framework, which is a library of target detection tools based
on PyTorch. MMDetection includes dozens of advanced
models and methods and provides a very suitable high-level
interface for researchers to perform secondary development.
This makes it easier for us to experiment. We choose
ResNet50 with FPN [25] as the backbone of Faster R-CNN.
All the experiments were done on a single NVIDIA GeForce
RTX3090 GPU.

2) EVALUATION METHOD
We use the following commonly used vehicle detection
indicators to evaluate the experimental results.

(1) The accuracy rate P refers to the probability that the
positive sample is correctly predicted among all the predicted
samples. The calculation equation is as follows:

Precision = TP/(TP+ FP) (5)

(2) Recall ratioR refers to the probability of being correctly
predicted as a positive sample among all real positive
samples. The calculation equation is as follows:

Recall = TP/(TP+ FN ) (6)
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(3) Average accuracy (mAP) is the sum of AP values of all
categories of vehicles and then calculate the average value.
mAP is an indicator to measure the average accuracy of target
detection, and its calculation equation is as follows:

mAP =

∑
PclassAve
Nclasses

(7)

(4) F1-score is an evaluation index that integrates precision
and recall. It is the harmonic average of precision and recall,
and its value ranges from 0 to 1. The calculation equation is
as follows:

F1 − score =
2.precision.recall
precision+ recall

(8)

AP is averaged across all categories. AR refers to the
maximum recall in a given fixed number of detection results
in each image, which is averaged over all IoUs and all cate-
gories. TP is the positive sample that was correctly predicted;
FP is the positive sample that is incorrectly predicted; TN
is the negative sample that was correctly predicted; FN is
the negative sample that was incorrectly predicted; Nclasses
is the total number of target classes;

∑
PclassAve is the sum of

the average accuracy of all classes.

B. THE RESULTS OF COMPARISONS
To verify the superiority and validity of the proposed method
on the selected BDD100K dataset and UA-DETRAC dataset.
We use the most advanced testing methods, including Faster
R-CNN, RetinaNet, Cornernet [26], Centernet [27], FCOS
[28], and Detr [29]. The learning strategy of Centernet,
FCOS, and RetinaNet is 1x. The optimization algorithm is
SGD, and the learning rate is set to 0.005, the momentum
factor to 0.9, and the weight attenuation factor to 0.0001.
The initial learning rate is 0.001, which gradually increases
linearly over the first 500 iterations and decreases at the 8th
and 11th epochs. In total, 24 epochs were trained. The
learning strategy of an SSD is 2x, which means that the
learning rate changes to 0.0025. The learning rate decreases
in the 16th and 22nd epochs. The optimization algorithm for
the Detr model is AdamW, where the learning rate is set to
0.0001 and the total number of training rounds is set to 14.
The optimization algorithm of the Cornernet model is Adam,
the learning rate is 0.0005, and the total number of training
rounds is 24.

TABLE 1. The comparisons of different detection approaches on the
selected BDD100K dataset.

As is shown in Table 1, the model Detr based on
transformer architecture has the lowest accuracy values and
recall rates. Due to the self-attention mechanism of the
transformer model, Detr is relatively poorly adapted to

complex shapes and unconventional targets. As a result,
Detr has poor detection effectiveness when dealing with
target vehicles of different sizes or shapes. Compared with
Faster R-CNN in terms of detection accuracy, Centernet
and Cornernet are not particularly ideal. Because Cornernet
is a target detection model specifically designed to detect
corner points of objects. For small and medium-sized targets,
complex shapes and targets with unconventional shapes, the
Cornernet model makes it difficult to correctly detect the
corner points of these targets. Its detection effect is far less
than the traditional bounding box representation method,
so therewill be false detection ormissing detection. Centernet
is a model based on central point detection. There are lots
of overlapping or occluded targets in the BDD100K dataset,
so the model is not accurate in locating and classifying
the center points of such targets. Compared with Detr,
Cornernet, and Centernet, RetinaNet realizes the correct
detection of small targets by using the focal loss function
to solve the problem of category imbalance and difficult
detection of small targets in target detection. Meanwhile,
multi-scale feature maps and specific regression branches
are used to improve the accuracy of target localization and
classification. However, compared with our method, the
results of RetinaNet are not very satisfactory in all aspects.
Our method uses OHEM and SABL to solve the problem
of sample class imbalance and border positioning so that
the detection accuracy of small targets can be achieved.
Our method also uses the deformable convolutional network
to solve the problem of poor adaptability of the model to
complex shapes and unconventional images and improves
the detection accuracy of the model to objects with different
shapes. So our method has good performance in night vehicle
detection and can improve the detection accuracy of night
vehicles. In addition,our method also achieves the maximum
F1-score.

TABLE 2. The comparisons of different detection approaches on the
selected UA-DETRAC dataset.

As shown in Table 2, our method achieves the maximum
F1-score compared to other models, indicating that our
model has the best quality. Compared with other detection
methods, RetinaNet obtains the maximum mAP value and
the maximum AP@0.75, but the detection performance is
poor under small and medium vehicle sizes. The use of
multi-scale feature maps by RetinaNet will overlap and block
different targets, resulting in poor detection effects on dense
targets. FCOS is better than RetinaNet in AP@S and AP@M .
FCOS can improve the adaptability of targets with different
shapes by adaptive prediction of target center point and
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boundary frame size. Detr is an end-to-end object detection
model based on transformer. The performance of Detr is
not very good compared to other methods. However, our
method shows the best performance in all aspects, especially
in the detection performance of small and medium objects.
As shown in Table 2, the best performance can be obtained
when these three modules are applied to the baseline.

C. QUALITATIVE ANALYSIS
To verify the validity of the proposed method, we performed
visual comparisons on the selected BDD100K dataset and
the selected UA-DETRAC dataset. Some representative
scenarios are selected for detection. Figure 5 and Figure 6
show the detection results of dataset BDD100K, Figure 7 and
Figure 8 show the detection results of dataset UA-DETRAC.
The number on the outside of the target detection box
indicates confidence. A higher confidence level indicates the
model’s estimate of the sample mean and the population
mean. The closer the confidence level is to 1, the more
accurately the model estimates the sample mean and the
population means.

FIGURE 5. Detection results of dark scene from BDD100K. (a) Faster
R-CNN, (b) Centernet, (c) Cornernet, (d) Detr, (e) RetinaNet, (f) Ours.

Figure 5 is an extremely dark scene with small dark
targets at a distance. Figure 6 is a relatively dark scene with
interference from street lights and car lights. As shown in
Figure 5, there are redundant detection cases on the left
side of Figure 5(a), and there are false detections and more
detection cases on the right side of the distant dark small
target. The left side of Figure 5(b) has a significant missing
detection. Figure 5(c) also has missed and false checks.
Figure 5(d) and (e) have a large number of redundant tests.
Figure 5(f) shows the detection results of our proposedmodel.
The proposedmodel can accurately detect vehicles. As shown
in Figure 6, Figure 6(a), Figure 6(c), Figure 6(d) and
Figure 6(e) all have cases of false detection and redundancy
detection, while Figure 6(b) has cases of missing detection.
Figure 6(f) shows the detection results of our proposed
model, which achieves accurate detection and has the highest
confidence.

FIGURE 6. Detection results of dark scene from BDD100K. (a) Faster
R-CNN, (b) Centernet, (c) Cornernet, (d) Detr, (e) RetinaNet, (f) Ours.

FIGURE 7. Detection results of the headlight scene from UA-DETRAC.
(a) Faster R-CNN, (b) Detr, (c) FCOS, (d) RetinaNet, (e) SSD, (f) Ours.

Figure 7 is the scene of the vehicle’s headlights refracting
on the road. Figure 8 shows the scene of a small target
vehicle with headlights at a distance. As shown in Figure 7(a),
Figure 7(c), Figure 7(d), and Figure 7(e) all have a lack
detection due to the influence of vehicle’s headlights.
Figure 8(b) shows a large number of false detections.
Figure 8(f) shows the detection results of our proposed
model, which can be accurately detected and has the highest
confidence. As shown in Figure 8, there are redundancy
detection and false detection in Figure 8(a), Figure 8(b)
and Figure 8(d). In Figure 8(c), there is a case of missing
detection. Although the vehicle is detected in Figure 8(e), its
confidence is not as high as that in Figure 8(f). Our proposed
method not only accurately detects vehicles, but also has a
confidence level of 1 for each.

D. ABLATION STUDY
To investigate the contribution of different components to
the overall network, we performed ablation experiments
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FIGURE 8. Detection results of the headlight scene from UA-DETRAC.
(a) Faster R-CNN, (b) Detr, (c) FCOS, (d) RetinaNet, (e) SSD, (f) Ours.

on the selected dataset BDD100K and the selected dataset
UA-DETRAC. We use Faster R-CNN as the baseline, which
uses ResNet50 with FPN as the backbone. We apply DCNN,
SABL, and OHEM to the baseline respectively, and the
performance is shown in Table 3 and Table 4.

TABLE 3. Ablation results of each module on the selected BDD100K
dataset.

TABLE 4. Ablation results of each module on the selected UA-DETRAC
dataset.

As is shown in Table 3, it can be seen that DCNN
improves the baseline. Firstly, this paper combines the DCNN
with Faster R-CNN to improve the ability of the model to
extract night vehicle features of different sizes and shapes.
ResNet50 with FPN is introduced to perform multi-scale
feature fusion of night feature mapping. By replacing the
traditional bounding box regression with SABL, the accuracy
of the bounding box can be improved. As a result, a
3.0% improvement in mAP and a 4.4% improvement in
AP@0.75 improvement are obtained in Table 3, illustrating
the advantage of adding the two components. Similarly,
mAP increased by 2.1% and AR increased by 1.5% in
Table 4. Secondly, we combine DCNN with Faster R-CNN,
and we also use OHEM to train samples with high error
probability to improve the learning effect of a few classes,

to improve the night vehicle detection accuracy. As a result,
a 2.2% improvement in mAP and a 3.2% improvement in
AP@0.75 are obtained in Table 3, which illustrates the
advantage of adding the two components. In the same way,
mAP is improved by 1.5% and AR is improved by 1.8% in
Table 4.
Thirdly, we apply the SABL to the baseline to improve

the detection accuracy of vehicle targets. To improve the
detection speed and accuracy of Faster R-CNN on night
vehicles, OHEM is applied to baseline in this paper. As a
result, a 2.0% improvement inmAP and a 3.4% improvement
in AP@0.75 are obtained in Table 3, which illustrates the
advantage of adding the two components. Meanwhile, mAP
increased by 1.3% in Table 4. Finally, we add these three
modules to the baseline. In Table 3, these three modules
can effectively improve mAP by 3.1% and AP@0.75 by
4.1% compared to the baseline. In Table 4, these three
modules can effectively improve mAP by 2.6% and AR
by 2.3% compared to the baseline. In conclusion, different
components contribute to the improvement of detection
accuracy.

V. CONCLUSION
This paper proposes an improved nighttime vehicle detection
method based on Faster-RCNN, which can obtain accurate
vehicle detection results. It can be seen from Table 1
that our method has excellent detection performance on
the BDD100K dataset. Compared to baseline, RetinaNet,
Centernet, Cornernet, and Detr, the detection accuracy of
our method was improved by 3.1%, 2.6%, 7.7%, 10.3%,
and 13.5%, respectively. The recall rate increased by 7%,
2.9%, 5.1%, 8%, and 16.2%, respectively. The recall rate
increases by 7%, 2.9%, 5.1%, 8%, and 16.2%, respectively.
As shown in Table 2, the detection performance of our
method on the UA-DETRAC dataset is also excellent.
Compared to basline, Detr, FCOS, RetinaNet, and SSD,
the detection accuracy of our method increased by 2.6%,
17.6%, 5.2%, 4.4%, and 29.6%, respectively. The recall
rate increased by 7.4%, 13.5%, 8.3%, 7.2%, and 18.2%,
respectively. By integrating the three modules into the
baseline, the method can effectively improve the detec-
tion accuracy of night-time target vehicles and partially
occluded vehicles photographed at a distance. Comparedwith
other advanced detection methods, our method has strong
advantages.

In future work, the existing night vehicle datasets are small
in scale and single in scene. We plan to build a larger, more
diverse set of scenarios and a more refined vehicle annotation
dataset. The real word scene is complex and diverse, there are
some extremely dark and distant night scenes such as almost
no light, and it is difficult to achieve correct and fast detection.
This paper plans to use infrared images for night vehicle
detection in the next step to further improve the detection
performance and robustness of the model. To improve the
detection performance of the model in snow, fog, rain, and
other complex environments.
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