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ABSTRACT The ability to perform machine learning (ML) tasks in a database management system
(DBMS) is a new paradigm for conventional database systems as it enables advanced data analytics on
top of well-established capabilities of DBMSs. However, the integration of ML in DBMSs introduces
new challenges in traditional CPU-based systems because of its higher computational demands and bigger
data bandwidth requirements. To address this, hardware acceleration has become even more important
in database systems, and the computational storage device (CSD) placing an accelerator near storage is
considered as an effective solution due to its high processing power with no extra data movement cost. In this
paper, we propose Trinity, an end-to-end database system that enables in-database, in-storage platform that
accelerates advanced analytics queries invoking trained ML models along with complex data operations.
By designing a full stack from DBMS’s internal software components to hardware accelerator, Trinity
enables in-database ML pipelines on the CSD. On the software side, we extend the internals of conventional
DBMSs to utilize the accelerator in the SmartSSD. Our extended analyzer evaluates the compatibility
of the current query with our hardware accelerator and compresses compatible queries into a 24-byte
numeric format for efficient hardware processing. Furthermore, the predictor is extended to integrate our
performance cost models to always offload queries into the optimal hardware backend. The proposed
SmartSSD cost model mathematically models our hardware, including host operations, data transfers, FPGA
kernel execution time, and the CPU cost model uses polynomial regression ML models to predict complex
CPU latency. On the hardware side, we introduce the in-database processing accelerator (i-DPA), a custom
FPGA-based accelerator. i-DPA includes database page decoder to fully exploit the bandwidth benefit of
near-storage processing. It also employs dynamic tuple binding to enhance the overall parallelism and
hardware utilization. i-DPA;s architecture having heterogeneous computing units with a reconfigurable
on-chip interconnect also allows seamless data streaming, enabling task-level pipeline across different
computing units. Finally, our evaluation shows that Trinity improves the end-to-end performance of analytics
queries by 15.21× on average and up to 57.18× compared to the conventional CPU-based DBMS platform.
We also show that the Trinity’s performance can linearly scale up with multiple SmartSSDs, achieving nearly
up to 200× speedup over the baseline with four SmartSSDs.

INDEX TERMS Computational storage device, database, data analytics, end-to-end system, hardware
accelerator, machine learning, near-data processing, SmartSSD.
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I. INTRODUCTION
As the volume of data increases exponentially in the era of
big data [29], systems for scalable and efficient data analytics
play a critical role in a wide variety of domains such as
scientific explorations, finance, governance, health care, and
web analytics [45]. For this reason, database management
system (DBMS), an essential and fundamental platform
for large-scale data management, has begun to evolve for
analytics workloads [1], [2], [3], [4], [5]. In this new
paradigm, we observe that three important yet independent
technology trends have been emerged, as illustrated in
Figure 1.

First, data analytics extends beyond simple relational
query-based analysis, moving into advanced analytics using
machine learning (ML), referred to as ML-driven advanced
analytics. Traditional analytics queries employ relational
algebra such as filter, aggregate, and join in identify-
ing patterns and getting insights from data (e.g., finding
min/max/average values from a joined table). However,
as the size of data and the data complexity have increased,
analyzing data using only relational queries has reached its
limitation [60]. On top of many algorithms developed for data
analytics,MLfinally comes into play in various data analytics
applications such as classification [43], regression [52],
recognition [27], and prediction [44]. In line with this
trend, major enterprise DBMSs, including Microsoft SQL
Server [6], Google;s BigQuery [7], and Amazon Redshift [8],
try to integrate ML services inside. This integration allows
them to leverageML algorithms without sacrificing their own
benefits such as transparent scalability, fine-grained access
control, security, and high-availability [9]. Various open-
sourceML libraries for DBMS like ApacheMADlib [10] and
SparkML [54] are also emerging to widely support in-DBMS
ML inference and training.

Second, hardware acceleration is another big trend
in data analytics. Especially, accelerating database oper-
ations (e.g., sorting, joins, aggregates, etc.) with spe-
cialized hardware such as Graphics Processing Units
(GPUs) and Field-Programmable Gate Arrays (FPGAs) [11]
has been explored in many recent works. For example,
Casper et al. [30] proposed the hardware design for accel-
erating the various database operations such as selection,
merge join, and sorting. He et al. [36] also tried to utilize
a GPU as a database engine by modifying relational
operations into tensor computations. In addition, major
datacenter operators including Microsoft [31], Google [38],
and Amazon [12] have also utilized their own specialized
hardware for running enterprise-level data analytics. Notably,
the introduction of hardware accelerator in data analytics has
becomemore important as analytical workloads have become
more complex along with the integration on ML in DBMSs.
This is because conventional CPU-based systems are often
suffering from a huge performance degradation due to the
heavy computational demands of ML runtimes.

Lastly, near-data or in-storage processing has become
a major computer system architecture for accelerating

FIGURE 1. Three research cornerstones in data analytics.

data-intensive applications including data analytics. State-
of-the-art system architectures that integrate specialized
hardware can be grouped into two major categories from
the perspective of data movement [28]: out-of-the-wire and
bump-in-the-wire architecture (see Figure 2). The out-of-
the-wire architecture is the conventional accelerator model,
in which the host reads the data and sends them to the
specialized hardware for computation offloading. This is the
general system architecture that current GPU and FPGA
has. On the other hand, the bump-in-the-wire architecture,
which is also known as near-data or in-storage processing
architecture, places the specialized hardware between the
host and storage so that it can perform in-line processing on
the read data. Between these two models, as the volume of
data increases, the out-of-the-wire architecture suffers from
the time and energy overhead required for additional data
movement between the host and specialized hardware. As
a result, data-intensive applications such as recommendation
system [46], [62], nearest neighbor search [41], [42], and data
analytics [47], [53], [58] have been widely accelerated using
the bump-in-the-wire architecture.

These three technology trends are mostly studied in
isolation, but several works have been proposed in the
intersection of two. A few works (e.g., AQUOMAN [65],
Mondrian [34]) have tried to accelerate the data analytics
using specialized hardware with bump-in-the-wire architec-
ture, but they only focus on the conventional relational query
operations and have not considered in-DBMSML operations.
Some other works (e.g., Gorgon [61], DAnA [50]) have
tried to accelerate the ML-based advanced data analytics
with specialized hardware accelerator, but they chose the
conventional out-of-the-wire architecture in integrating their
specialized hardware to the system. Although they briefly
mention that the proposed accelerator can be applied to the
near-data processing, they do not describe any details on how
to use it in DBMS.

To the best of our knowledge, none of the previous
works successfully integrate the three cornerstones at once.
However, the unification of these three areas will enable
a faster and more efficient advanced data analytics in
DBMS, breaking the performance limitation of existing
database systems. Therefore, we propose Trinity, a system
that integrates all these three areas harmonically. Trinity is
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FIGURE 2. Two major models in the integration of specialized hardware:
(a) Out-of-the-wire architecture (b) Bump-in-the-wire architecture.

an in-database, in-storage platform that implements a deep
integration of ML inference pipelines (MADlib [10]) into
the state-of-the-art open-source DBMS (PostgreSQL [13])
for advanced data analytics. In particular, we use the
SmartSSD [14] that integrates a solid-state drive (SSD)
and a FPGA in the U.2 form factor as a new hardware
backend of the DBMS to enable near-data acceleration.
By placing an in-database ML accelerator directly on the
storage device, analytics queries can be processed where
data reside. In addition, Trinity can also free up the system
resources such as CPU, main memory, and bus bandwidth,
which can be potentially used for other tasks running on
the host. It is noteworthy that Trinity is the first end-to-end
in-DBMS and in-storage platform that not only utilizes the
bump-in-the-wire architecture for advanced data analytics but
also integrates a software stack for generating optimal query
plan and allowing to utilize the new hardware platform (i.e.,
SmartSSD) in conventional DBMS.

The main contributions of our work are as follows.
• We build the end-to-end in-database, in-storage accelera-
tion platform called Trinity for the first time that can speed
up both database and ML pipelines for complex analytical
query processing. To this end, we modify PostgreSQL;s
internal subsystems and harness SmartSSD for our target
in-storage acceleration platform.

• We extend conventional query analyzer and optimizer to
address the challenges associated with physical separation
and variability in best performing hardware when employ-
ing an additional hardware backend. Our enhanced query
analyzer includes the capability to convert the extracted
query information into a compressed data format that is
suitable for our hardware accelerator. Furthermore, our
novel query predictor can dynamically select the hardware
backend that optimizes the overall system performance.
It makes Trinity to consistently execute queries with
the best performing hardware within the proposed CPU-
SmartSSD system.

• We develop the performance models for both CPU and
SmartSSD to estimate the processing time for a given
query to decide whether to offload it to the hardware
accelerator or not. These models are seamlessly integrated
in our extended query predictor. The SmartSSD cost model
provides a mathematical representation of our hardware
platform, and the CPU cost model leverages polynomial
regression ML models to predict complex CPU latency
with novel fine-tuning methodology.

FIGURE 3. System architecture of SmartSSD.

• We propose a custom hardware accelerator, in-Database
Processing Accelerator (i-DPA) that can accelerate the
in-database ML queries with three key ideas. First,
database page decoder is integrated in i-DPA to fully
leverage the bandwidth benefit of in-storage processing.
With database page decoder, i-DPA can also accelerate
the decoding process with parallel compute units. Second,
dynamic tuple binding is introduced in i-DPA to maintain
always high hardware utilization across various query
conditions. It can increase the tuple level parallelism up
to 8 times. Lastly, streaming-wise pipelined processing
are utilized in i-DPA. It allows i-DPA to simultaneously
process multiple tuples in parallel with its heterogeneous
computing units. Notably, our i-DPA can utilize all three
different levels of parallelism existing in data analytics:
1) page-level parallelism, 2) tuple-level parallelism, and
3) task-level parallelism.

• We evaluate the end-to-end performance of Trinity for
advanced analytics queries that invoke a wide variety of
ML models (i.e., linear/logistic regression, SVM, tree, and
MLP)with different datasets.We compare the performance
against a conventional CPU- and GPU-based DBMS and
provide in-depth analysis on our platform.

• We also increase the database to the terabyte domain
and scale up the Trinity to have multiple SmartSSDs.
Trinity shows a linear performance gain with the number
of devices.

II. BACKGROUND
A. IN-DB ML INFERENCE ACCELERATION
The focus of this paper is to design efficient software
and hardware architecture for in-database ML inference.
MADlib [37] is one of the state-of-the-art open-source
solutions for in-database ML by embedding UDAs/UDFs
into the database systems such as PostgreSQL [13] and
Greenplum [15]. MLlib [54] is Apache Spark’s open-source-
based machine learning library, consisting of universal ML
algorithms and utilities. Not only these open-source-based
DBMSs but also major DBMS vendors also provide their
own ML function packages [6], [7], [8], [16]. For instance,
Oracle [16] supports in-DBMS ML inference using its
PL/SQL packages, and Google’s Big Query [7] extends its
form of SQL syntax to support ML packages. In our work,
we utilize two popular open-source software, MADlib and
PostgreSQL, to build a tightly integrated software-hardware
system.
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FIGURE 4. System architecture of Trinity.

B. OUT-OF-THE-WIRE VS BUMP-IN-THE-WIRE
ARCHITECTURE
The out-of-the-wire architecture is an easy plug-in model of
the hardware accelerator to the CPU-based system. As the
main controller of the system, the CPU reads data from the
storage and relay it to the accelerator. This additional data
copy deteriorate the system performance. Intel HARP [55]
and most of the conventional accelerators including GPU
and FPGA fall in this architecture. In the bump-in-the-wire
architecture, the hardware accelerator reads the data and
process it directly without any intervention from the CPU.
Samsung SmartSSD [14], IBM Netezza [17], AWS F1 [12],
and Maxeler [30] adopt this architecture.

C. SMARTSSD: COMPUTATIONAL STORAGE DEVICE
Among many examples of the bump-in-the-wire architecture,
SmartSSD is an actively used devices both in academia
and industry [41], [42], [47], [53], [58]. As shown in
Figure 3, it integrates a Xilinx UltraScale+ FPGA with
4GB DRAM and 3.84TB NAND Flash arrays in the U.2
form factor for data processing in the storage device. The
FPGA chip contains 1.14 million logic cells, 1968 DSP
slices, and 34.6 Mbits on-chip SRAM. The SmartSSD device
is connected to the host CPU through the PCIe Gen3 ×

4 interface, which gives a theoretical maximum bandwidth
of 4 GB/s. One of themain features of the SmartSSD platform
is that there is a PCIe switch presented in the FPGA to provide
three-way paths: between the CPU and FPGA, between the
CPU and SSD, and between the FPGA and SSD. Especially,
the internal peer-to-peer (P2P) communication between the
FPGA and SSD enables in-storage processing with removing
unnecessary data copy to the host. The 4GB DRAM attached
to the FPGA can work as a buffer memory when data
moves between FPGA and CPU or between FPGA and SSD
because the FPGA does not have enoughmemory on the chip.
It provides a speed of 2400Mbps.

III. SYSTEM OVERVIEW
Figure 4 shows the high-level system architecture of Trinity,
which is a complete full-stack system for in-database
ML inference based on computational storage device

(i.e., SmartSSD [14]). To provide seamless integration of the
SmartSSD backend, the software stack of Trinity consists
of an extended version of the PostgreSQL database system,
dubbed PostgreSQL+, and Xilinx FPGA runtime (XRT [18]).

PostgreSQL is a widely used, advanced, open-source
object-relational database system known for its extensibil-
ity, allowing users to plug in their custom logic within
the DBMS. Our PostgreSQL+ modifies the PostgreSQL;s
internal subsystems, such as the query analyzer, optimizer,
and executor to enable the use of SmartSSD backend within
the DBMS. It also integrates MADlib [10], an open-source
library that supports scalable in-database ML operations for
both structured and unstructured data. When PostgreSQL+
analyzes and converts host queries for SmartSSD backend
utilization, the XRT platform takes on the crucial role of
configuring the hardware and delivering the commands to the
hardware for actual query processing. Specifically, the XRT
platform is a software interface that facilitates communica-
tions between the host CPU and SmartSSD. It involves a host
code that includes commands for device programming, buffer
allocation, data transfer, and kernel execution, and a device
code that describes the custom hardware accelerator. Based
on the XRT application programming interfaces (APIs), the
XRT Linux kernel driver executes the requested commands.
It manages memory allocation and maps the kernel virtual
address to the physical address. The XRT Linux kernel
driver also sets the configuration registers of the hardware
accelerator and controls the execution flow of FPGA. As the
main hardware platform of Trinity, SmartSSD is responsible
for storing the whole database in its high-capacity SSD.
In addition, its internal accelerator can perform processing
directly on the database without sending it to the host.

Overall, the XRT platform executes the following process
to run the hardware accelerator on FPGA. First, it allocates
buffers on the FPGA’s local DRAM for the input/model tables
and output data (➀). Afterward, the input and model tables
stored in a database of SSD are directly transferred to the
FPGA DRAM through the P2P communication [19] (➁).
Once the data are ready, the XRT platform sends the address
of each allocated buffer and the meta-data received from
PostgreSQL+ to the configuration registers of the hardware
accelerator (➂). Finally, it sends a run signal to operate
the hardware accelerator (➃). The hardware accelerator then
starts to process the query by referring to the configuration
registers. When the kernel execution is done, the XRT
platform brings the final results from the FPGA’s DRAM to
the host (➄).

IV. SOFTWARE STACK FOR TRINITY
DBMS is responsible for checking the syntax of the current
query string and generating an optimal query plan based on
its cost estimates. In the conventional DBMS, the CPU is
the only platform for query processing, so the CPU has to
perform the above preprocesses and execute queries as well.
However, as the query involves lots of complex operations,
like ML, the time spent by the executor can be excessively
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FIGURE 5. Execution pipeline of PostgreSQL+.

long. Introducing a new hardware is a promising solution to
solve this problem, but utilizing the new hardware backend in
DBMS causes new challenges in overall system design.
Physical Separation: Hardware accelerators are usually

connected to the CPU via a PCIe system interconnect as
external devices. It means that the hardware accelerator
cannot directly know the current query information being
processed on the CPU side. For the hardware to know the
query information, DBMS should be able to transfer the
current query information into the hardware. Moreover, since
the custom hardware accelerator has its own interface to
communicate with the host, the extracted query information
should be able to be converted into the data format of
hardware.
Selective Query Offload: Since the hardware accelerator

has limited memory and compute resources, the hardware
accelerator has limitation in supporting all existing queries
of DBMS. Therefore, DBMS should be able to determine
whether queries can be supported in hardware or not based
on the hardware and query information. In addition, queries
that cannot be processed in hardware should be able to be
handled via conventional CPU executor.
Different Best Performing Hardware: Even query can

be executed in hardware accelerator, using a hardware
accelerator does not guarantee the best system performance
for entire queries. Depending on the query characteristics like
database size and model complexity, the optimal hardware
backend can be varied. Especially, since both data and model
characteristics are determined by the query presented at the
runtime, DBMS should make a runtime offloading decision
for better system performance based on the cost modeling.
Moreover, with the introduction of a new hardware backend,
the cost model should be able to predict the objective metrics
like latency to effectively compare the performance of two
different hardware options.
Our Approach: Trinity utilizes the SmartSSD as a new

hardware backend for accelerating advanced data analytics
query processing. Considering the above system-level chal-
lenges, we propose PostgreSQL+, an extended version of
PostgreSQL that can run the SmartSSD executor 1 along with

1In here, the executor means the hardware itself that processes the query.
SmartSSD executor, SmartSSD, and SmarSSD backend are identical.

TABLE 1. Parameters used in the SmartSSD cost model.

the CPU executor. To this end, the analyzer and optimizer of
PostgreSQL have been modified.

A. OVERALL EXECUTION PIPELINE
Figure 5 shows the overall execution pipeline of
PostgreSQL+. When the PostgreSQL+ receives the query
from the user, the extended analyzer first determines whether
the hardware accelerator can process the current query
or not. To this end, query extractor extracts the query
information from the query tree and query checker compares
this extracted information with internal hardware information
to identify whether the current query can be processed in
the hardware accelerator or not. The hardware information
contains the corner parameters that our hardware accelerator
can cover such as the maximum database size, maximum
number of attributes, and supported operations. If the current
query does not fit in this hardware restriction, the analyzer
marks the current query to be processed with the existing
CPU executor. Since PostgreSQL+ maintains backward
compatibility to PostgreSQL, normal CPU execution pipeline
is also available. As queries that cannot be supported by
the hardware accelerator skips the subsequent offloading
processes, they show almost identical performance with
conventional PostgreSQL execution. On the other hand,
if the query checker determines the current query can be
processed in our hardware accelerator, data reconstructor
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FIGURE 6. SmartSSD cost model accuracy with different database sizes.

converts the extracted query information (e.g., operation type,
table name, selected attributes) to the numeric data format of
the hardware accelerator using one-hot encoding and object
identifiers. These converted data are finally packed in six
4-byte meta-data (i.e., 24-byte). After that, the predictor of
extended optimizer determines the optimal hardware backend
between the CPU and SmartSSD executor by estimating the
execution time of each hardware. To this end, it includes the
performance cost model for each executor. By comparing
the estimated latency of two cost models, predictor makes
the query to be processed via hardware that exhibits faster
processing speeds. If the execution time of SmartSSD is faster
than that of CPU, the query is offloaded to the hardware
accelerator by transferring the generated meta-data to the
SmartSSD.

B. PERFORMANCE COST MODEL
The performance cost model for each executor predicts the
execution time of target hardware considering data, query
and system characteristics. Since the performance cost model
should be adaptable to various systems while maintaining
high accuracy for general usage of PostgreSQL+, we try not
to overfit the models into specific configurations. Therefore,
SmartSSD cost model has architectural parameters in math-
ematical formula, and we present online fine-tuning method
for CPU cost model.

1) SMARTSSD COST MODEL
The total execution time of the SmartSSD can be expressed
as sum of the host operation time, data transfer time, and
FPGA kernel time (1). Table 1 lists the parameters used in
the SmartSSD cost model.

Tsmartssd = Thost + Ttransfer + Tkernel (1)

Thost denotes the time spent to run XRT APIs in the host for
the communication between the host and the hardware kernel.
Among many function calls, clCreatebuffer that allocates a
desired size of buffer in the FPGA’s DRAM takes most of
the host time. Ttransfer represents the time spent for actual
data movement across the host, SSD, and FPGA. It can be
described as the sum of the time for fetching the selected
tables from the SSD to FPGA and the time for transferring
the final result from the FPGA to host. These two parameters
can be further represented as in (2).

Thost = Tbuf + Tothers, Ttransfer = Ts2f + Tf 2h (2)

The time for allocating buffer and transferring data is
proportional to the target database size. In order to reflect

this, Tbuf has an effective memory allocation rate Rbuf ,
which represents the time required to allocate a unit memory
size. Similarly, Ts2f and Tf 2h have effective data transfer
rates as sub-parameters. These variable rate parameters are
pre-measured in our system and we observe that they are
constant when the database size is over 0.5GB but linearly
decreases under it. Once the rate parameters are determined,
the memory allocation and data transfer time are given as
in (3).

Tbuf = Sdb × Rbuf
Ts2f = Sdb × Rs2f , Tf 2h = Sdb × Rf 2h (3)

The last term, Tkernel , represents the time spent on executing
the FPGA kernel. It can be represented by multiplying the
average number of pages processed by a core and the average
single page execution time of a core, as expressed in (4).
The former can be calculated by dividing the total number
of pages by the number of cores. The total number of pages
is calculated as the database size divided by the page size,
8KB. Note that the number of cores is determined by the
available user resources in the FPGA. If the target device has
a bigger FPGA, the number of cores will be higher. The latter
means the time spent on processing a given workload for a
single page data. In order to calculate this, the cycle count
required to process a single page is multiplied by the FPGA’s
clock period. The cycle count is extracted from the designed
hardware accelerator and is pre-stored in the cost model.

Tkernel = (Npage/Ncore) · (Ckernel/Cfrequency)

Npage = Sdb/8KB, Ncore = Floor(Ruser/Rcore) (4)

Figure 6 shows the accuracy of the proposed SmartSSD cost
model. We measure the execution time of SmartSSD when
the database size varies from 0.1MB to 15.3GB and compare
them with the predicted values by the model. As a result,
the cost model shows only 5.3% average error rate for the
experiment. It achieves a high accuracy because it predicts the
FPGA kernel operation time and considers both the host and
data transfer time for SmartSSD execution. In addition, since
the cost model reflects the variable rate parameters according
to the database size, reliable results can be obtained.

2) CPU COST MODEL
Unlike the SmartSSD’s performance cost model, the CPU’s
cost model is difficult to represent with a few linear equations
as it is a complex system with influences such as caching and
IO operations. In addition, the query processing time in CPU
shows different characteristics according to the complexity of
the query. Therefore, we triage the queries into a few groups
based on the complexity and use a polynomial regression ML
model in each group to predict the CPU latency. Figure 7-(a)
shows CPU cost model generation pipeline.

❶ Initial stage: At the initial stage, PostgreSQL+ executes
the queries on the CPU side to collect experimental
measurements. For each query, CPU cost model first stores
the executed query information (i.e., the number of tuple,
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FIGURE 7. (a) CPU cost model generation pipeline (b) CPU cost model
accuracy.

attribute, page, and execution time) in record buffer of
PostgreSQL+ and estimates the complexity of the query by
calculating the weighted sum of its tuple, attribute, and page
count.

❷ Grouping query stage: Based on this query complexity,
the recorded queries are divided into the cost group that
includes the current complexity cost value. Then, if the
CPU cost model gathers all the user-defined number of
measurements for each cost group, it finally generates
third-order polynomial curves for each group. Figure 7-(2)
shows the example of our grouping query process when
the cost model is set to have three cost groups whose
range are 0-100, 100-1K, and the rest. We also assume that
the minimum measurement points for each group is three.
When the recorded measurement points of each cost group
exceed the three, CPU cost model starts to generate the
polynomial graph for each group, and finally it has three
distinct performance model. The number of measurement
points, total group counts and cost range of each group

are hyper-parameters of CPU cost model that users can
define in initial stage. As the total number of groups and
measurement points increases, the accuracy of the entire cost
model becomes high, while the time required for cost model
generation increases. By making this trade-off relationship
adjustable, our CPU cost model can generate the optimal cost
model considering the current user’s situation.

❸ Online fine-tuning stage: Since the initial cost ranges
are determined by the hyper-parameters set by users, the
value may or may not work well with current CPU system.
To handle this issue, we propose an online fine-tuningmethod
that adjusts the cost ranges to minimize the total amount of
errors between the polynomial models and themeasurements.
The fine-tuning starts from the first two cost groups. As
represented in the red box of Figure 7-(3), It first selects
the closest point to the borderline from each group, i.e., the
largest from the first group and the smallest from the second
group and moves the borderline either to the left to let the
second group include the largest of the first group (blue: ①)
or to the right to let the first group include the smallest of
the second group (green: ②). For each scenario, the CPU cost
model regenerates the polynomial curves and recalculates the
errors. Based on the errors, it decides to move the borderline
toward where the total error decreases. Once it decides the
direction, it repeats the above borderline moving process until
the total error does not decrease anymore.

❹ Final stage: The cost model applies this range adjust-
ment to all borderlines in ascending order. Then, the CPU
cost model can generate the final cost models for current CPU
system.

Figure 7-(b) shows the changes in accuracy by the pro-
posed fine-tuning method when the number of measurements
in each cost group is set to 4 and 14. We initially set
PostgreSQL+ to have three cost groups whose range are
0-3K, 3K-300K, and the rest. The experiment is conducted
on the Intel Xeon Gold 6226R CPU. When the polynomial
model of each cost range is generated by only four mea-
surements, the cost model shows 21.58% error on average
and there was no improvement with the fine-tuning due
to the small number of measurements. On the other hand,
the model’s average error is measured 14.54% when the
number of measurements is 14. With the online fine-tuning
method, the error is further reduced to 12.97%, which is
1.12× improved. Although the online fine-tuning requires
additional time in range adjustment and polynomial fitting,
it does not affect the overall performance because it happens
only once during the system bring-up time. It is worthwhile
because the accurate performance modeling is the key in
PostgreSQL+’s runtime offloading decision.

3) OFFLOADING ACCURACY
Based on the estimated times from our cost models, the
predictor finally determines whether it offloads the query
to the SmartSSD executor or not. Due to our sophisticated
performance models, the predictor successfully offloads

VOLUME 12, 2024 11951



J.-H. Kim et al.: Trinity: In-Database Near-Data Machine Learning Acceleration Platform

FIGURE 8. Overall i-DPA microarchitecture (red and blue line represent
the control and data path, respectively).

169 out of 176 micro-benchmarks queries to the optimal
hardware backend, yielding 96% accuracy.

V. HARDWARE FOR TRINITY
The hardware accelerator implemented in the FPGA of
SmartSSD processes the queries offloaded by PostgreSQL+.
For taking advantage of in-storage acceleration and enabling
efficient in-DBMS ML inference acceleration, following
observations are considered in hardware design.
In-DBMS ML Query Characteristic: We first analyze

the in-database ML queries supported by the MADlib to
define the operations that the hardware accelerator should
support. AlthoughMADlib supports variousMLmodels such
as linear/logistic regression, k-nearest neighbors, and tree
methods, we find that there are two primary operations:
linear and tree-based operations. By covering these two ML
operation types, the hardware accelerator can handle four out
of six model categories in the supervised learning section
of MADlib. Moreover, among various relational operations
(i.e., sorting, join, filtering and aggregation), we confirm
that filtering and aggregation operations are appropriate to
support in the SmartSSD. Given that the SmartSSD has
limited DRAM capacity and same in/out bandwidth, the
other operations like sorting, join, and group-by are not
suitable because they require a larger output bandwidth
or a large DRAM capacity to store partial results during
the computation. Based on these observations, our custom
hardware accelerator is finally designed to support linear and
tree-based ML operations with filter- and aggregate-based
relational operations.
3-levels of Parallelism: ML-based advanced data analytic

has huge computations with large input data table, suggesting
the need for a parallelization. We confirm that there exist
three different levels of parallelism that hardware can utilize
in query processing. First, since the database stores the data
table with the unit size of the page (8KB), the multiple
pages can be processed in parallel (page-level parallelism).
In addition, as the single page includes multiple tuple data
and there are no dependency between the input data in

FIGURE 9. Example of page layout and block diagram of database page
decoder.

ML inference, multiple tuple data can also be processed
simultaneously (tuple-level parallelism). Lastly, task-level
parallelism is possible if input data are pipelined across the
computing units. The proposed hardware accelerator utilizes
all these three different levels of parallelism to process the
query faster.
Pre-Determined Page Format: We confirm that all the

pages in DBMS have its own pre-determined layout format.
The host CPU performs this page decoding in the conven-
tional CPU-based DBMS platform for query processing, but
since the database pages stored in the storage device need
to be directly processed on the FPGA in our SmartSSD, the
hardware should be able to decode them without the help of
CPU to keep bandwidth benefit of in-storage processing.

A. IN-DATABASE PROCESSING ACCELERATOR
Based on these, we present the in-Database Processing
Accelerator (i-DPA) that can accelerate the in-database ML
queries with three key ideas. First, i-DPA employs database
page decoder to fully leverage the bandwidth benefit of
in-storage processing and accelerate the decoding process
with parallel compute units. Second, i-DPA utilizes dynamic
tuple binding to enhance the number of tuples that run in
parallel andmaintain the high hardware utilization for various
query conditions. Lastly, i-DPA processes the tuple data
with streaming-wise pipelined operation. It allows i-DPA
to simultaneously process multiple tuples in parallel with
its heterogeneous computing units. Figure 8 shows the
overall architecture of i-DPA. It consists of control unit,
N + 1 database page decoders, and N query processing
cores. i-DPA processes input tuple data in a streaming fashion
across the heterogeneous computing units and the final
results are transferred back to the host through the output
direct memory access (DMA) module of the top aggregation
unit. In the following section, we explain the details of
microarchitecture.

B. MICROARCHITECTURE
1) CONTROL UNIT
The control unit controls the overall execution of i-DPA.
It consists of configurations registers, controller and
scheduler. When i-DPA receives start signal from the host,
the configuration register is first set to the 24-byte meta-
data (see Figure 5) received from the host. Then, the
controller decodes each operation and conditional field to
determine the hardware configuration. Especially, the routing
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FIGURE 10. Dynamic tuple binding.

of reconfigurable on-chip interconnect is configured based on
the relational and ML operation code field. The controller
figures out the query’s entire operation flow by decoding
9 bits of operation code and selects all computing units
to process the current query. Based on this, it routes the
selected computing units in a right order by changing the
connection of switches in the on-chip interconnect. It allows
i-DPA to support various queries having different execution
flow. The other hardware configurations like the number
of iteration that core to run and specific conditional values
of several computing units are also determined by the
controller. With these hardware configurations, the scheduler
selects the proper finite state machine to process the current
query and controls overall execution of i-DPA. Considering
that instructions for data analytics can be complex and
large due to the various computations and dataflows of
query processing, our 24-byte meta-data with hardware-side
interpreting solution can significantly reduce the time
overhead for generating and transferring the instructions.

2) DATABASE PAGE DECODER
The database page decoder loads database pages to i-DPA’s
page buffers and extracts the tuple data from them by
decoding the DBMS-formatted page. This tuple extraction
offloading gives Trinity the bandwidth benefit of in-storage
processing and the opportunity to accelerate the page
decoding. Figure 9 shows the PostgreSQL;s page layout and
the detailed block diagram of the proposed database page
decoder. The page layout consists of three main blocks:
page header, line pointer array, and tuple array. The page
header contains general page information, and the line pointer
array contains the offset address and the length of each tuple
data. The tuple array is a set of actual data and it also has
a structured tuple header having tuple information and the
offset to the start of raw tuple data. The page processing

FIGURE 11. ML compute units: (a) Linear compute unit (b) Tree compute
unit.

unit (PPU) of database page decoder extracts raw tuple data
with two decoding stages: 1) page header processing and 2)
tuple header processing. To this end, it includes the register
files (RF) to store temporal extracted data and arithmetic
units (ALU) to calculate address and offset of the tuple data.
Once the 8KB of page data is loaded through the input
DMA module of PPU, it starts to extract the start pointer
of the free space from the page header to know the number
of line pointers in the page. Then, PPU brings the line
pointer sequentially from the page buffer and calculates the
address and size information of each tuple data using internal
arithmetic units. Lastly, PPU consecutively brings the tuple
data and extracts the raw tuple data by calculating the offset
of the raw tuple data based on the information of the tuple
header. This decoding process is pipelined until all raw tuple
data are extracted from the page. However, as an input query
does not always need all the attributes of tuple data, the
data processing unit (DPU) is responsible for reconstructing
the tuple data to contain only the necessary attributes for
actual processing. It receives the raw tuple data from the PPU
via FIFO and filters only the valid attributes based on the
bit-vector of the attribute mask received from the host. The
selected attributes are packed into the final tuple data and
stored either in the input or weight memory of the processing
core. The i-DPA has total N + 1 decoders. Among them, N
decoders are allocated for the input data and one is used for
the model weight data. Therefore, the multiple input pages
can be decoded simultaneously through separated decode
channel. Moreover, since the following N query processing
cores process the input data from multiple pages in parallel
while sharing the weight data, N pages can be processed
simultaneously in i-DPA (page-level parallelism).

3) QUERY PROCESSING CORE
The query processing cores are the main computational
blocks that execute the requested computations of the
offloaded queries. It consists of two big ML and database
processing units. The database processing unit includes
filtering and aggregation unit, and the ML processing
unit includes linear and tree compute unit with special
function unit. These compute units are fully-connected by the
reconfigurable on-chip interconnect that enables flexible data
streaming among different compute units.
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4) TUPLE FETCHER
The tuple fetcher has a 8KB of input and weight memory
to store the input and model data. It prefetches multiple
tuple data from each memory and binds them in a single
word to increase the parallelism of the tuple processing.
The i-DPA processes the tuple data based on the unit of
a 1024-bit word, in which each tuple element is a 32-bit
floating point number. However, the size of the entire tuple
can be varied as each query can select a different number
of attributes for processing. In this condition, if the query
processing core can process only a fixed number of tuples
without considering the tuple size, the compute utilization
would decrease especially when the number of attributes
is small. To solve this issue, the dynamic tuple binder
dynamically adjusts a tuple packing density of a current
1024-bit word based on the number of attributes that each
tuple has. Figure 10 shows the four cases of dynamic tuple
binding. Based on the number of attributes, the 1024-bit
word can be divided into multiple sub-words having different
bit-width (CASE 0-3). Each sub-word includes a tuple, and
the sub-words are processed in parallel. For this setting,
dynamic tuple binder fetches a 1024-bit word from each
of the input and weight memory, and distributes them into
the sub-words according to the number of attributes. If the
number of attributes is less than 5 (CASE 0), it aligns the read
data into 8 tuples with zero padding. Likewise, if the number
of attributes is 5-8 (CASE 1), 9-16 (CASE 2), and 17-32
(CASE 3), it aligns the data into 4 tuples, 2 tuples, and 1 tuple,
respectively. Through the dynamic tuple binding, i-DPA can
supply different numbers of tuples to the underlying compute
units. As a result, dynamic tuple binding increases i-DPA’s
tuple-level parallelism up to 8× when the tuple size becomes
smaller and increases its average hardware utilization from
56.25% to 87.5% when i-DPA processes various queries
having different number of attributes.

5) LINEAR COMPUTE UNIT
The linear compute unit performs dot products between the
input and weight tuple. As shown in Figure 11-(a), it consists
of eight processing element (PE) arrays and a configurable
aggregation unit, in which a single PE array includes four
PEs and an adder tree. Each PE can multiply two 32-bit
floating-point tuple elements, and the adder tree accumulates
all the multiplication results of the array. The configurable
aggregation unit consists of multiplexer array and multiple
adders. It configures the proper aggregation links based on the
number of tuples that are processed in parallel and performs
additional aggregation across the PE arrays.

6) TREE COMPUTE UNIT
As shown in Figure 11-(b), the tree compute unit is composed
of eight tree PEs, in which each tree PE comprises an address
generator and comparator. For tree traversing, the address
generator calculates the memory address to access current
node’s data information (i.e., index, threshold, prediction)

FIGURE 12. i-DPA’s task-level parallelism.

and load them from weight buffer. The comparator compares
the input data value against the current node’s threshold value
and decides the next node to traverse based on this result.
However, if the comparator determines that the current node
is a leaf node, it returns the final classification result and
finishes the process. The tree compute unit repeats the above
process for all input tuples.

7) SPECIAL FUNCTION UNIT
The special function compute unit handles the sub-operations
required for ML inference. It contains various floating-point
arithmetic units that can support addition, subtraction,
multiplication, and exponential operation. For the logistic
regression, it performs exponential operation on the dot
product results to compute the final possibility and for
multi-layer perceptron, it performs input normalization and
activation functions.

8) DB COMPUTE UNIT
The relational compute unit comprises filtering and aggre-
gation unit. The parameters like threshold value and filter-
ing/aggregate column are received from the configuration
registers. For the filtering operations, the filtering unit
determines whether it processes the current input tuple or
not based on the filtering value and column information.
If it decides not to process the current tuple, it deactivates
the entire unit using the valid signal. The aggregation unit
performs various aggregate operations such as count, max,
min, avg, and sum. It first extracts the selected column data
and performs aggregate operation on all the incoming tuples,
while storing the intermediate results in the internal registers.

9) TASK-LEVEL PARALLELISM
These compute units can process input tuple data indepen-
dently and each compute unit is designed to process the nest
tuple right after the current tuple. For seamless data stream-
ing, each compute unit is connected with reconfigurable
on-chip interconnect via first-in-first-out (FIFO) and employs
double buffering to prevent stalls. As shown in Figure 12,
it makes different tuple data be processed in parallel across
the different computing units (i.e., task-level pipelining).
Consequently, the i-DPA can achieve maximum 5× higher
throughput than conventional tuple-by-tuple processing.
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FIGURE 13. In-DBMS ML queries to evaluate Trinity.

VI. EXPERIMENTAL EVALUATION
In this section, we evaluate the benefits of Trinity on analytics
queries that invoke ML inference over real-world datasets.
First, we compare Trinity with the baseline CPU-based
PostgreSQL (Section VI-A). Then, throughout a set of
micro-experiments, we show the effect of Trinity’s near-
data processing (Section VI-B) and give detailed analysis
of Trinity in various aspects (e.g., dataset complexity,
data operations, ML models) in Section VI-C along with
above terabyte database size (Section VI-D), and multiple
SmartSSDs (Section VI-E). We also compare Trinity against
the GPU-based system (Section VI-F).
System Setup: We use two in-database ML platforms for

evaluation: the baseline (CPU-based) DBMS and Trinity.
We use PostgreSQL v12.6 [20] for the baseline DBMS
and integrate MADlib v1.17.0 [10] in both platforms. The
CPU-based platform runs on the server with two Intel Xeon
Gold 6226R CPUs (2.9GHz, 32 threads), 192GB DIMM,
and 1TB SSD. The Trinity system runs on the computational
storage server that has two Intel Xeon Silver 4210 CPUs
(2.2GHz, 10 threads), 156GB DIMM, and SmartSSD.
Datasets: We chose four datasets for evaluation,

which have different numbers of attributes: Higgs [21]
(28 attributes), Algerian Forest [22] (13 attributes), Wilt [23]
(5 attributes), and Haberman’s survival [24] (3 attributes).
All the datasets are publicly available from the UCI machine
learning repository [25]. For a fair comparison, we replicate

FIGURE 14. Implementation result of Trinity’s i-DPA.

each of the datasets to have the same tuple numbers: 0.5k,
11M, 25M, or 110M. The database sizes vary from 32KB to
15.3GB.
Queries: Figure 13 lists the 11 queries we used in

evaluation. All of these queries are real in-database ML
queries supported by the Apache MADlib, covering a diverse
range of ML algorithms: linear regression (Linregr), logistic
regression (Logregr), support vector machine (SVM), multi-
layer perceptron (MLP), and tree model (Tree). For the
mixed queries having both ML and relational operations,
we also include the queries having filtering and aggregation
operation on top of the linear and logistic regression models.
The linear/logistic regression and SVM workload require the
same number of model parameters as the attribute number of
input tuple. In the case of MLP workload, the default model
configuration is three fully-connected layers, where the
hidden layer has the same size as the input layer (i.e., Higgs:
28-28-2, Algerian forest: 13-13-2, Wilt: 5-5-2, Haberman:
3-3-2). The default tree depth is set to four, with a total of
15 tree nodes.
FPGA Resource Utilization: Figure 14 shows the FPGA

resource utilization for the Trinity’s i-DPA implementation on
the SmartSSD. As the proposed architecture allows multiple
query processing cores for higher throughput, we success-
fully integrated two cores with the given FPGA resource. The
current design is bounded by the LUT logic resource with
more than 65% utilization at 170MHz operating frequency.

A. END-TO-END TRINITY EVALUATION
In this section, we evaluate Trinity in comparison with
the baseline CPU-based DBMS to verify its effectiveness.
We measure the query processing time of 11 in-DBMS ML
queries on the four datasets when the number of tuples varies
among 0.5k, 11M, 25M, and 110M.

1) END-TO-END SYSTEM PERFORMANCE
Figure 15 shows the end-to-end query processing times of
the CPU-based DBMS and Trinity. The measured latency

VOLUME 12, 2024 11955



J.-H. Kim et al.: Trinity: In-Database Near-Data Machine Learning Acceleration Platform

FIGURE 15. End-to-end query processing times and speedups of Trinity over the baseline.

in y-axis is represented in log scale. The Trinity’s query
processing time includes the time spent on the host side by the
full stack of PostgreSQL+. We confirm that the host time is
relatively constant throughout the experiments to 2.96ms on
average. It accounts for 53.7% of the total time at the smallest
tuple number (i.e., 0.5K), but occupies less than 0.1% in other
cases with more than 10M tuples. Except when the tuple
number is too small, the overall latency is proportional to the
number of tuples.

The CPU-based DBMS shows a similar trend with Trinity.
It shows faster processing speed as the dataset becomes
smaller and simpler with less attributes. It takes a longer
time to process a larger database with more tuples and
more complex ML models. One big difference is that the
CPU-based DBMS shows performance degradation when the
dataset size becomes large due to the caching inefficiency,
whereas Trinity shows a linear performance scaling to the
database size. In the CPU-based DBMS, it takes 20.8×
more latency in processing 110M tuples than the case of
11M tuples on the Higgs dataset. It is 2.08× slower than
the ideal scaling from the 11M tuple size. In addition,
we confirm that the query with aggregate operations takes
a longer time in the CPU-based DBMS compared to the
query having only ML operations. Unlike in Trinity, the
CPU-based DBMS does not have parallel processing units
for each computation. Therefore, the increase in computation
by aggregate operations negatively affects the CPU’s query
processing time. We also observe that the CPU-based DBMS
takes longer time in Q9, Q10, and Q11 than the other queries,
especially when the database size is small. This is because
the initial processing time for activating these queries on
the MADlib (e.g., transforming to the executable queries)
dominates the overall latency.

2) COMPARISON
Figure 15 also shows the speedup of Trinity compared to
the CPU-based DBMS using red dots. The speedup varies
from 0.85× to 57.18× and shows 15.21× faster query
processing on average than the CPU-based DBMS. It is
noteworthy that the Trinity shows better results over the
CPU-based system even in the small size of database except
only one case (i.e., Q8 in Haberman with 0.5k tuples).

FIGURE 16. End-to-end time breakdown results.

FIGURE 17. (a) System diagram of CPU-based DBMS and Trinity (b) Query
processing time and host CPU utilization for performing basic scan
operation.

Even though the CPU-based DBMS works well when the
dataset becomes smaller and simpler, Trinity still outperforms
by using abundant parallelism. We also check the time
breakdown results for a detailed analysis. The latency of
both systems can be divided into data preparation time for
database movement with page decoding and compute time
for processing given workloads. Trinity requires additional
host time to operate SmartSSD, but it only occupies less than
10% of the entire processing time. As shown in Figure 16
(y-axis: log scale), the data preparation time and the compute
time are largely reduced by 72.7% and 91.8% on average,
respectively. As Trinity can reduce the data to the host by
92.8% in anMLPworkload through near-data processing and
decode multiple page simultaneously, the data preparation
time can be significantly reduced. Similarly, the compute time
can be significantly reduced due to the abundant parallelism
of the i-DPA.

B. NEAR-DATA PROCESSING
Unlike the CPU-based DBMS, the Trinity’s in-storage
accelerator performs direct page decoding and other database
operations on the data so that it can send only the extracted
raw or processed data to the host CPU (Figure 17-(a)).
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FIGURE 18. Micro-benchmarks results: (a) Query processing time for different datasets. (b) Latency variance according to the number of tuples. (c) Time
breakdown when the number of tuples changes and when the relational operation is included in query. (d) Latency variance according to the model
complexity.

It can both reduce the total amount of data to be sent to
the host as well as save the host’s computation resource.
To verify these advantages, we run the full database table
scan which reads all the raw data from the database.
Figure 17-(b) shows each system;s query processing time
(left) and the host CPU utilization (right). We use the Higgs
dataset with varying tuple number from 11M to 110M.
As a result, Trinity shows a 5.4%, 7.8%, and 9.7% less
latency than those of the CPU-based DBMSwhen the number
of tuples is 11M, 25M, and 110M, respectively. This is
mainly because of the two reasons: 1) i-DPA’s hardware
decoding is faster than the CPU’s and 2) the raw data size
is decreased by 14% compared to the original table size
so does the data transfer time. Considering that the data
table scan achieves little data reduction compared to other
operations such as ML and aggregation, 14% data reduction
is a minimum gain that Trinity can achieve from near-data
processing. In case of aggregation, Trinity can reduce the
data traffic by more than 95%. Moreover, given that the
scan operation is necessary for entire DBMS operations, this
result implies that Trinity can achieve better performance
even in unsupported operations such as sorting and join
by utilizing SmartSSD as a page decoder in entire CPU-
SmartSSD system. Another significant benefit is that the
CPU usage of Trinity is significantly low due to the effect of
offloading the decoding. Throughout the scanning 11M tuple
data, the CPU-based DBMS shows an average of 98% CPU
utilization while Trinity shows an average of 16.5%. We also
observe that Trinity’s CPU utilization converges to almost
zero once it finishes SmartSSD’s device setup. These freed
CPU resources can be potentially used for other activities.

C. MICRO-BENCHMARKS
In this section, we analyze the measured results in terms
of dataset complexity, data scalability, data operation, and
model complexity.

1) DATASET COMPLEXITY
We check the query processing time of each ML model for
the datasets having different attribute numbers. Figure 18 (a)
shows the measurement results of the four datasets when the
number of tuples is 11M.We do not depict the results from the

other sizes as they have the same tendency. In this experiment,
Trinity shows faster query processing time when the dataset
becomes simpler with fewer attributes. This is because the
dynamic tuple binding increases parallelism of the i-DPA and
the accelerator can access fewer pages to process the same
number of tuples when the dataset has a smaller number of
attributes.

2) DATA SCALABILITY
Figure 18 (b) shows the query processing time of 11 queries
when the number of tuples changes from 0.5k to 110M.
We depict only the results of the Higgs dataset as a repre-
sentative. In this graph, we confirm that the latency increases
almost linearly when the number of tuples increases from
11M to 110M, but it does not scale in that way for small tuple
sizes such as 0.5k. This ismainly because of the host overhead
of using SmartSSD. As shown in Figure 18 (c)-(left), the
dominant operation changes depending on tuple numbers.
Since the host setup time is relatively constant regardless
of the tuple number, the host operation dominates the entire
latency when the tuple size is small, but the kernel execution
time becomes dominant as the tuple size gets large. This
variation makes Trinity to have linear relationship in latency
only when the tuple size is big enough (i.e., > 0.1M).

3) DATA OPERATIONS
Figure 18 (c)-(right) depicts another time breakdown result
showing how relational operations affect the overall perfor-
mance. We plot the results of three queries that have the
same ML operation but with different relational operations
(Q5: nothing, Q6: filter, Q7: aggregate) for the Higgs dataset
with 25M tuples. Trinity shows faster speed when the query
includes the relational operations because the total output
size to be transferred to the FPGA’s DRAM and the host is
reduced by discarding the input tuples or accumulating partial
sums within the hardware. Moreover, as the small output size
requires a small buffer size on the FPGA;s DRAM, the host
setup time is also decreased.

4) ML MODEL COMPLEXITY
We also find out that the execution time has a dependency
on model complexity. Figure 18 (d) depicts the latency
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FIGURE 19. (a) Terabyte measurement results (b) Scaled-up performance.

results for various linear models and tree models (depth =

2, 4, 6) for the Higgs dataset with 11M tuples. Based on the
results, we observe that the execution times of linear/logistic
regression, and SVM are similar within the same dataset,
as their computational loads are similar. However, if the
computational load is significantly large, like theMLPmodel,
the query processing time becomes long as well. We also
confirm that the overall latency marginally increases as the
tree depth becomes deeper.

D. BEYOND TERABYTE DATABASE
Trinity can handle datasets up to 3.84TB with a single
SmartSSD, which is the capacity of SmartSSD device.
Although we already show that the end-to-end query time
with Trinity increases linearly with the dataset size, we try to
confirm this result with expanding the dataset size up to the
terabyte level. Figure 19-(a) shows the experimental results of
the linear regression workload when the dataset size increases
up to 1.5TB. Eventually, Trinity takes 5047.59s to process
the 1.5TB database, and it still shows the linear increase in
latency as the database size becomes above terabytes. Based
on this result, we can estimate that Trinity will take 12893s
to process the maximum 3.84TB of database. Considering
the CPU-based DBMS tends to be much slower for a large
database, e.g., hundreds of gigabytes, due to its inefficient
memory sub-systems, Trinity will easily outperform it in the
domain of terabyte databases.

E. TRINITY WITH MULTIPLE SMARTSSDS
As the database size increases, enterprise-level DBMSs
optimize the database performance on a single node and scale
out to a distributed storage system to satisfy a tight service-
level-agreement. To this end, current CPU-based DBMS
tries to use multiple threads to improve the single node
performance, but the gain is often marginal. In addition,
this excessive burden on the CPU hinders the scaling out to
multiple nodes as the CPU is required to control network
and storage devices. Trinity, on the other hand, is a better
solution for performance scale-up in a single node and further
scale-out. It can easily extend to have multiple SmartSSDs
with low CPU maintenance due to its U.2 form factor.
Figure 19-(b) shows the latency of the five different ML
models in the Higgs dataset with 110M tuples when the
number of SmartSSDs varies from 1 to 4. In order to utilize
multiple SmartSSDs, we uniformly distribute database in
each devices. As the number of devices becomes double
and quadruple, the latency reduces by 1.85× and 3.66× on

FIGURE 20. Performance comparison against GPU-based system with
latency breakdown results.

average, respectively. This shows that Trinity achieves almost
linear performance improvement in processing the same
query on multiple devices. Comparing this result with the
previous evaluation results, Trinity with four SmartSSDs
achieves nearly 200× speed up over the CPU-based DBMS.

F. COMPARISON AGAINST GPU SYSTEM
Lastly, we compare the Trinity against the GPU-based
system. Although MADlib has started to support GPU using
the internal deep learning package since MADlib v1.20.0,
we observe that it is difficult to use for the baseline of
the GPU system due to the lack of optimization. When we
process the MLP query with 0.75M Higgs dataset using the
deep learning package of MADlib, it shows 2.18× slower
speed than the conventional CPU-based system. Therefore,
in this experiment, we measure the database transfer time
from SSD to the host and add the time required for GPU
processing. We use TITAN RTX GPU for measuring the
GPU processing time. Figure 20 shows the latency of two
different systems when we perform linear regression, logistic
regression, and MLP workload with 110M Higgs dataset.
As shown in the graph, Trinity shows the higher performance
than the GPU-based system in the models that require
low computational amount like linear regression, logistic
regression and SVM. It shows 1.14× faster processing speed
on average than the GPU-based system. However, GPU
shows 4.4× higher processing speed than the Trinity for the
MLP model that requires high computation amount. For the
detailed analysis, we also represent the latency breakdown of
two different systems for the representative linear regression
and MLP model. In terms of data transfer time from storage
to hardware accelerator, Trinity shows 1.3× faster speed
than the GPU-based system on average due to the benefit
of SmartSSD’s near-data processing. However, GPU shows
a much faster kernel execution speed (almost 150×) than
the Trinity. This is because GPU has abundant hardware
resources having over 100×more significant computing units
and 42× higher DRAM bandwidth. However, SmartSSD’s
lack of hardware resources can be compensated through
the better scalability of SmartSSD. SmartSSD is easier to
scale up than GPU due to its U.2 storage form factor
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(i.e., 48 SmartSSDs vs 4 GPUs in a 2U server). When we
project this 12× higher scalability in previous measurement
results, Trinity can achieve 14.13× and 2.69× faster query
processing speed in both ML models than the GPU-based
system.

VII. DISCUSSION
A. ADVANCED ANALYSIS
1) POWER EVALUATION
To evaluate the Trinity;s energy efficiency, we conducted
power measurements on SmartSSD. We confirm that
SmartSSD consumes 20.9W power on average for processing
our in-DBMS ML queries. This makes Trinity consume
almost 2.5× higher power consumption than the conventional
CPU system equipped with the SSD having same 3.84TB
capacity and external bandwidth. Nevertheless, as Trinity
shows 15.21× higher query processing speed on average than
the conventional CPU-based system, it can achieve nearly
6.1× higher energy-efficiency compared to the CPU-based
system. Furthermore, GPU (i.e., TITANRTX) shows roughly
14× larger power consumption than the SmartSSD. When
we apply this to our GPU evaluation results, Trinity can
achieve 7.01× and 1.39× higher energy-efficiency for data-
intensive and compute-intensive workloads, respectively, the
GPU-based system.

2) COST EVALUATION
For the datacenter enterprises, Total Cost of Ownership
(TCO) is also an important metric for system implementation
considerations. In this context, we compare the Trinity to
traditional CPU-based DBMS in terms of performance-per-
dollar. Upon surveying publicly available pricing data for
SSDs and SmartSSD, we confirm that SmartSSD is approxi-
mately 5.5× more expensive than its SSD counterparts with
equivalent storage capacity and bandwidth. Based on this,
we incorporate this cost information in our evaluation results.
Consequently, Trinity shows 2.77× higher performance-per-
dollar ratio than CPU-based DBMS. As Trinity maintains
linear performance improvement as the number of SmartSSD
increases, this advantage remains consistent even in scaled-up
system. In summary, Trinity can outperform the traditional
CPU-based DBMS in performance-per-dollar even if the
additional costs are required to introduce the new hardware
in DBMS.

3) RESOURCE PERFORMANCE TRADE OFF
Trinity employs a SmartSSD as a new hardware platform for
processing data analytics query processing. By integrating
a new hardware backend, Trinity can reduce host CPU
and memory usage with achieving faster query processing
speed. For example, CPU utilization decreases from 98%
to an average of 16.5%, and the average query processing
speed increases 15.21×. Therefore, resource in SmartSSD
gives significant impact on overall system performance.
The key elements are FPGA resources, DRAM bandwidth,
and storage-FPGA internal bandwidth. Increasing FPGA

resources and DRAM bandwidth reduces the overall pro-
cessing time of i-DPA. Increasing FPGA resources enables
I-DPA to integrate more query processing cores within a
single device, and boosting DRAM bandwidth enhances
I-DPA;s speed in accessing page data in DRAM.As each core
requires different pages and processes them independently
in parallel, almost linear performance improvements can
be achieved.In contrast, increasing storage-FPGA internal
bandwidth reduces data transfer time of SmartSSD. Greater
internal bandwidth minimizes data transfer time between
storage and FPGA;s local DRAM, maximizing the benefits
of neat-storage processing. However, practical constraints
related to strict storage form factor and cost limitations may
restrict these enhancements in SmartSSD implementation.

B. TRINTIY’S LIMITATION AND FUTURE WORKS
1) SYSTEM SCALABILITY
Due to the U.2 storage form factor of SmartSSD, it is
easy to scale-up to 24 or 48 cards using a commer-
cially available storage server. This scalability advantage
is one of the key features of SmartSSD. In the scenario
of employing 48 SmartSSDs, the server can leverage
96 query processing cores with 184.32TB storage and
192GB DRAM. In Section VI-E, we confirm that linear
performance improvement can be achieved when each device
has model data locally, and the substantial input data is
evenly distributed across all devices. However, in reality,
data can be located in storage with a variety of ways, and
it can affect in overall system;s performance. For example,
if model data is distributed across devices to maximize
storage efficiency and the system requires the data transfer
among multiple devices to access required data, the large
data transfer costs limit the Trinity;s ideal linear performance
improvement. To address this challenge, advanced scheduling
methods are required to hide the data movement latency
among multiple devices. Furthermore, efficient hardware
resource management and workload allocation strategies are
required for successful system scale-up. These aspects are
significantly important, but are left for future works aimed
at constructing an advanced Trinity system.

2) FAULT TOLERANCE AND SECURITY
Fault tolerance and security are important factors for a
robust DBMS. However, the introduction of SmartSSD into
DBMS for faster query processing speed introduces potential
challenges in maintaining DBMS;s high fault tolerance
and security. As Trinity inherently supports full backward
compatibility of the existing CPU pipeline, it can address
the unexpected the hardware;s failure by detouring to CPU
pipeline. However, regarding security, the raw page data
movement from storage to SmartSSD;s FPGA can create a
vulnerability in data security. Addressing these issues are
important in real-world system implementation. To enhance
fault tolerance, implementing checkpoint mechanisms for
storing intermediate processing results can significantly
reduce hardware failure overhead. For increased security,
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we can directly use encrypted pages in SmartSSD. This
approach requires the integration of additional hardware logic
for decryption. Additionally, exploring the implementation
of homomorphic encryption, which enables data processing
while maintaining encryption, stands as a promising strategy
to mitigate data security vulnerabilities. These are left for the
further works for maturation of the Trinity system.

3) LONG-TERM MAINTENANCE
ML models for data analytics are continuously advancing.
MADlib, utilized in Trinity, also consistently deploys the
updated version to support the latest ML algorithms.
While linear and tree operations dominate the modern ML
algorithms for advanced data analytics, there is a need to
accommodate new operations as time progresses. This entails
two key modifications. First, a new compute unit should be
designed and integrated in i-DPA. It requires the expertise
in hardware description languages like SystemVerilog. How-
ever, I-DPA;s heterogeneous computing unit architectures
and separate control and data unit minimizes the complexity
of hardware modification. In addition, PostgreSQL+ should
be modified to support the new operations. The SmartSSD
cost model should include the hardware information for
this operation. Although the introduction of SmartSSD in
DBMS requires additional modification to support new
operations or update the system, the existing designs of
i-DPA and PostgreSQL+ minimize this complexity through
straightforward software and hardware implementation.

4) OTHERS
Trinity’s current primary focus is on demonstrating the ben-
efits of computational storage devices within the ML-based
advanced data analytics. As a result, Trinity is still in its early
development stage and holds substantial potential for future
enhancements, even excluding the above scalability, fault
tolerance, security, and long-term maintenance. At present,
Trinity’s functionality is limited to specific operations.
However, real-world analytics queries often have various
operations, including sorting, join, matrix-matrix multipli-
cation, and convolutional operations. Expanding trinity’s
capabilities to accommodate a wider range of ML and
database queries is a necessary step to increase the versatility
of Trinity. In addition, Trinity currently concentrates on
ML inference. Nevertheless, there is a growing interest in
conducting ML model training within a database manage-
ment system for secure advanced data analytics. Given that
trinity’s CPU-SmartSSD system can effectively handle the
increased computation and memory requirements of ML
training through near-storage processing, extending Trinity’s
scope to include ML model training can also be a valuable
prospect.

VIII. RELATED WORKS
A. HARDWARE ACCELERATION FOR DATABASE SYSTEMS
Many recent works [26], [30], [32], [34], [35], [36], [40],
[47], [49], [57], [59], [63], [64], [65], [66] have tried to

accelerate relational database queries with ASIC, FPGA, and
GPU. Q100 [64] and Andrea et al. [49] are typical database
accelerator composed of ASIC tiles for each database
primitive. Many prior works [30], [32], [35], [59], [63]
have accelerated several relational operations using various
hardware architectures on FPGA. BlazingSQL [26], He et al.
[36], and TCUDB [66] similarly use a GPU as a SQL engine
with modifying relational operators into tensor computations.
However, these previous works suffer from unnecessary data
copies to the host due to their out-of-the-wire-architecture.
Several works [33], [34], [40], [47], [56], [57], [65] have
tried to accelerate the database operations using near-data
processing. Mondrian [34] and Tiago et al. [40] use Hybrid
Memory Cube (HMC), integrating SIMD units for processing
queries. AQUOMAN [65] presents a general analytic query
processor that can directly access the NAND flash arrays.
Lee et al. [47] and NASCENT [57] also use the SmartSSD
for accelerating filtering and sort operations. However,
all of above works only focus on the legacy database
operations, not including ML operations for advanced
analytics. Their dedicated computing units for database
operations and general CPU cores cannot handle ML
operations and not enough to handle compute intensive ML
operations.

B. IN-DATABASE ML ACCELERATION
Several works [28], [39], [50], [61] have tried to accelerate
the ML-driven advanced analytics. Zahra et al. [28] and
ColumnML [39] try to accelerate certain ML algorithms in
DBMS using the FPGA. On the other hand, DAnA [50]
and Gorgon [61] propose general hardware architectures that
can support various ML algorithms. Although DAnA have
assumed the direct page access from FPGA to database buffer
pools, it only achieves a 4× speedup over CPU-based DBMS.
Gorgon can achieve a high performance by using ASIC’s
abundant hardware resources, but its ideal performance is
limited by up to 80% of its peak performance due to
the IO bottleneck. Moreover, these accelerators have no
system-level considerations to be integrated in real database
systems. To our knowledge, Trinity is the first work that
presents not only the in-database ML accelerator but also the
full software stack to utilize a new hardware backend in a
real DBMS. Additionally, not for a data analytics, but there
are several works [48], [51] to accelerate the ML algorithms
with near-storage processing. However, their direct NAND
flash access system architecture is hard to justify due to
the SSD’s strict form factor and their array-type hardware
architecture are not suitable for in-database ML acceleration
because majority of in-database ML queries is traditional ML
algorithms not deep learning algorithms like convolutional
neural network.

IX. CONCLUSION
In this paper, we present Trinity, an in-database, in-storage
platform that integrates ML pipelines into a popular DBMS
on top of the CSD device. Starting with the development of an
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effective software stack that can dynamically determine the
optimal hardware backends, we have developed the hardware
accelerator that can directly unpack the storage’s data pages
and perform analytics operations with parallel computing
units. Finally, Trinity improves the end-to-end performance
of analytics queries by 15.21× on average and up to 57.18x
compared to the conventional CPU-based DBMS platform.
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