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ABSTRACT This article proposes a singularity-free fixed-time neuro-adaptive control strategy for robot
manipulators, with the goal of addressing trajectory-tracking challenges presented by model uncertainties,
external disturbances, and input saturation. To mitigate the impact of input saturation, an auxiliary system
is introduced. Combining the backstepping technique, a fixed-time neuro-adaptive controller is designed to
ensure that tracking errors converge within a small region around the origin within a fixed time, with the
upper bound of convergence time being independent of initial conditions. Notably, the direct avoidance of
singularity is achieved by constructing quadratic-fraction functions in both the virtual controller and the
actual controller, eliminating the need for filters or piecewise continuous functions. This simplifies and
streamlines the stability analysis process. To validate the effectiveness of this strategy, numerical simulations
are conducted.

INDEX TERMS Robot manipulators, adaptive control, fixed-time convergence, neural network, input
saturation.

I. INTRODUCTION
Robot manipulators have received extensive applications
across industries such as manufacturing, medical treatment,
cargo handling, and space exploration, contributing sig-
nificantly to enhanced automation and efficiency. Within
the realm of robot manipulator dynamics, intricate inher-
ent attributes come into play, including load fluctuations,
hysteresis, friction, and coupling. These intricacies impart a
challenging and multifaceted nature to the control aspects,
requiring sophisticated and nuanced solutions. To this end,
advanced control strategies have been proposed over the
past few decades. These strategies encompass a wide range
of approaches, including decentralized control [1], feedback
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linearization [2], PID control [3], H∞ control [4], robust
control [5], neural network and fuzzy system [6], [7],
and sliding mode control(SMC) [8]. In the aforementioned
literatures [1], [2], [3], [4], [5], [6], [7], and [8], it has been
demonstrated that these control methods achieve asymptotic
convergence of position tracking errors, signifying that the
convergence time is infinite.

Aswidely acknowledged, convergence performance serves
as a pivotal metric for evaluating system quality. In recent
years, there has been significant progress in enhancing the
convergence speed of systems through the development
of finite-time control methods [9]. Finite-time control
guarantees that system errors converge to an equilibrium
point or a neighborhood around it within a finite time,
making it a widely adopted approach in various nonlinear
systems [10], [11], [12], [13], [14], [15], [16], [17].
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Yu et al. [15] introduced a continuous finite-time control
scheme based on the terminal sliding mode surface (TSMC)
for rigid robot manipulators, aiming to achieve faster
and highly precise tracking performance. Luan et al. [16]
presented an adaptive neural finite-time control strategy for
nonlinear robot manipulators by incorporating the sliding
mode technique into the design of adaptive laws and feedback
control. Zhai and Xu [17] devised a novel non-singular
terminal sliding mode controller to address the trajectory
tracking challenge in robot manipulators affected by internal
uncertainties and external disturbances, ensuring global state
convergence to the origin within a finite time. Nevertheless,
it is important to note that the convergence time in the
literatures [9], [10], [13], [14], [15], [16], and [17] depends on
the system’s initial conditions, implying that the convergence
time may vary under different initial conditions.

To amend the weakness of finite-time control, the
concept of fixed-time stability was initially introduced by
Polyakov [18], where the upper bound of the settling time
became independent of initial conditions. Due to its notable
advantages, fixed-time control schemes have been docu-
mented in the context of various nonlinear systems [19], [20],
[21], [22]. For instance, Zuo [19] investigated the fixed-time
consensus tracking problem for second-order multi-agent
systems in networks with directed topology. Chen et al. [20]
devised an adaptive nonsingular fixed-time sliding mode
controller to address the attitude stabilization of uncertain
rigid spacecraft coping with inertia uncertainties, external
disturbance and actuator saturation. Van and Ceglarek [21]
proposed a robust fixed-time fault-tolerant control strategy
for robot manipulators, which combines a fixed-time second-
order sliding mode observer and a fixed-time sliding mode
control design approach. Zhang et al. [22] introduced an
adaptive fault-tolerant approach with a fixed-time sliding
mode for trajectory tracking of uncertain robot manipulators
afflicted by actuator effectiveness faults. However, it’s worth
noting that many of the aforementioned finite and fixed-time
control strategies [15], [16], [17], [18], [19], [20], [21], [22]
were grounded in sliding mode control, which can potentially
lead to undesirable chattering. As is well known, the singu-
larity problem has become a common problem in fixed-time
control design. Thus, this problem should be released during
the control design for robot manipulators because it can
lead to unbounded control torque and even the instability
of robot manipulator systems. Moreover, these fixed-time
control schemes typically address the singularity problem
by incorporating piecewise continuous functions. In contrast,
aside from slidingmode control, the backstepping design rep-
resents an alternative technique to achieve fixed-time control
performance. A fixed-time backstepping control approach
has been developed by integrating command filtered control
and disturbance observer to tackle the trajectory tracking
problem in surface vehicles [23]. However, the inclusion
of a command filter may introduce challenges in stability
analysis. As far as current knowledge is concerned, the
task of designing a singularity-free fixed-time backstepping

controller without relying on filters or piecewise continuous
functions remains a challenging endeavor.

In addition, to address the inherent uncertainties in
the system dynamics, two prominent artificial intelligence
techniques, namely neural networks (NNs) and fuzzy logic
systems (FLSs), have been integrated into the controller
design (refer to [24], [25], [26], [27], [28], [29] and the
related references). He et al. [28] introduced an adaptive
neural network control approach for solving the tracking
control problem of uncertain n-link robots, where neural
networks were harnessed to effectively manage system
uncertainties and disturbances. Wang et al. [29] devised a
neural network-based terminal sliding-mode control scheme
for robot manipulators, encompassing actuator dynamics,
with the utilization of radial basis function neural networks to
approximate the nonlinear dynamics of the robotmanipulator.
However, it should be noted that the literature mentioned
above [28], [29] only guarantees either asymptotic or
finite-time convergence of trajectory errors.

Inspired by the preceding discussions, this article
presents a singularity-free fixed-time neuro-adaptive control
(SFFTNAC) strategy for robot manipulators aimed at
addressing the challenges of position tracking in the presence
of model uncertainties, external disturbances, and input
saturation. The primary objective is to ensure that tracking
errors converge to the vicinity of the origin within a
fixed time. The main contributions of this article can be
summarized as follows.

1) In contrast to the existing finite-time control strate-
gies [10], [11], [12], [13], [14], [15], [16], [17], this article
systematically introduces a fixed-time backstepping control
approach. This approach ensures that the trajectory tracking
error converges to a compact region around the origin within
a fixed time, with the upper bound of convergence time being
independent of initial conditions.

2) Different from the existing fixed-time control strate-
gies [21], [22], [23], this article presents a novel approach that
incorporates quadratic-fraction function forms in controller
design. This innovative design circumvents the singularity
problem caused by the differentiation of the virtual controller
without the necessity of filters or piecewise continuous
functions, thereby simplifying the controller design process.

3) An auxiliary system is constructed tomitigate the effects
of input saturation, and neural networks are employed to
approximate the lumped uncertainty of the robot manipulator
system. The practical fixed-time stability of the overall
system is rigorously established through the use of Lyapunov
theory.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PROBLEM FORMULATION
A class of n-link robotic manipulators are considered in
this article, whose system dynamics may be described as
follows [15]:

MMM (qqq)q̈qq+CCC(qqq, q̇qq)q̇qq+GGG(qqq) = uuu+ ddd (1)
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TABLE 1. Definitions of symbols in robotic dynamics.

in which, qqq = [q1, q2, · · · , qn]T ∈ Rn, MMM (qqq) ∈ Rn×n,
CCC(qqq, q̇qq) ∈ Rn×n, GGG(qqq) ∈ Rn, ddd = [d1, d2, · · · , dn]T ∈ Rn,
uuu = [u1, u2, · · · , un]T ∈ Rn, and the definitions of above
symbols are shown in Table 1.

Affected for saturation, the elements in uuu are formulated as
follows: For i = 1, · · · , n,

ui = sat(vi) =

{
sgn(vi)uimax, |vi| ≥ uimax

vi, |vi| < uimax,
(2)

where vi is the actual control input to be designed later, and
uimax is the maximum allowable torque. To streamline the
analysis, a smooth function is adopted to approximate the
saturation function. Define vvv = [v1, v2, · · · , vn]T ∈ Rn and
g(v) = [g1(v1), . . . , gn(vn)]T , where gi(vi)(i = 1, . . . , n) is a
smooth function as follows:

gi(vi) = uimax × tanh
( vi
uimax

)
= uimax

e
vi

uimax − e
−vi
uimax

e
vi

uimax + e
−vi
uimax

.

(3)

By letting ds(v) = [ds1(v1), . . . , dsn(vn)]T , in which dsi(vi) =

sat(vi) − gi(vi), for i = 1, · · · , n, we can deduce that

u = g(v) + ds(v). (4)

It is easy to see that the following property holds:
For i = 1, · · · , n,

|dsi(vi)| ≤ uimax(1 − tanh(1)) ≜ D. (5)

Define 
1MMM (qqq) =MMM (qqq) −MMM0(qqq),
1CCC(qqq, q̇qq) = CCC(qqq, q̇qq) −CCC0(qqq, q̇qq),
1GGG(qqq) = GGG(qqq) −GGG0(qqq),

(6)

where MMM0(qqq), CCC0(qqq, q̇qq) and GGG0(qqq) are the nominal compo-
nents of robotic systems. It follows from (6) and (1) that

MMM0(qqq) +CCC0(qqq, q̇qq) +GGG0(qqq) = uuu+ ddd6 + ddd, (7)

where ddd6 = 1MMM (qqq)q̈qq−1CCC(qqq, q̇qq)q̇qq−1GGG(qqq). By letting xxx1 =

qqq,xxx2 = q̇qq, it can be inferred from (7) that{
ẋxx1 = xxx2,
ẋxx2 =MMM−1

0 (xxx1)
[
ddd6 + uuu−CCC0(xxx1,xxx2)xxx2 −GGG0(xxx1)

]
.

(8)

The control objective of this article is to design a fixed-
time neuro-adaptive controller vvv for the manipulator with

uncertainties and external disturbances, such that xxx1 can track
the reference trajectory xxxd during a fixed time. The robot
dynamics given in (1) satisfies the following assumptions:
Assumption 1: [30] There exist two unknown constant

ι1 and ι2, such that

ℓ1I ≤MMM (qqq) ≤ ℓ2I , (9)

where I is a n-dimensional identity matrix.
Assumption 2: [30] The unknown time-varying distur-

bance ddd is assumed to be bounded, and there exists an
unknown positive constant D′ such that ||ddd || ≤ D′.
Remark 1: From the perspective of practical engineering,

the position qqq, velocity q̇qq and acceleration q̈qq are bounded due
to the mechanic limitations or the task space limitations of
the space manipulator [31]. Moreover, the disturbance ddd is
bounded, and MMM (qqq), CCC(qqq, q̇qq), GGG(qqq) are continuous functions
of the coordinates qqq and q̇qq. Thus, it is reasonable to assume
that the lumpped uncertainty ddd6 is bounded.

B. PRELIMINARIES
Before the controller design, a definition and several lemmas
are given as follows:
Definition 1: For ζ ∈ R, δ ∈ R,

sigζ δ ≜ |δ|ζ · sgn(δ), (10)

and for ζ ∈ R, δδδ = [δ1, δ2, · · · , δn]T ∈ Rn,

sigζδδδ ≜ [sigζ δ1, sigζ δ2, · · · , sigζ δn]T , (11)

where sgn(·) represents the symbol of signum function.
Lemma 1: [20] Consider a scalar system χ̇ = f (χ ). For a

continuous function V (χ), if there exist 0 < γ1 < 1, γ2 > 1,
α1 > 0, α2 > 0, and ϑ > 0, such that

V̇ (χ ) ≤ −α1V γ1 − α2V γ2 + ϑ (12)

holds, then the trajectory of the system ẋ = f (χ ) is
practical fixed-time stable, and the residual set of the solution

is
{
lim
t→T

χ | V (χ ) ≤ min
{
( ϑ
(1−κ)α1

)
1
γ1 , ( ϑ

(1−κ)α2
)

1
γ2

}}
,

where 0 < κ < 1,

T ≤
1
α1

1
κ(1 − γ1)

+
1
α2

1
κ(γ2 − 1)

. (13)

Lemma 2: [32] For ω ∈ R and ϵ ≥ 0, one can obtain

0 ≤ |ω| ≤ ϵ +
ω2

√
ω2 + ϵ2

. (14)

Lemma 3: [33] For a ∈ R, b ∈ R the following inequality
holds:

|a|p|b|q ≤
p

p+ q
δ|a|p+q +

q
p+ q

δ
−
p
q |b|p+q, (15)

where p > 0, q > 0 and δ > 0.
Lemma 4: For y ≥ x, and ν > 1, the inequality

x(y− x)ν ≤
ν

1 + ν
(y1+ν

− x1+ν). (16)
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holds [34].
Lemma 5: [34] For xi ≥ 0, i ∈ N+ and γ > 0, the

following two inequalities hold:

n∑
i=1

xγ
i ≥

( n∑
i=1

xi

)γ

, if 0 < γ < 1,

n∑
i=1

xγ
i ≥ n1−γ

( n∑
i=1

xi

)γ

, if γ > 1.

(17)

Lemma 6: [34] Consider the following differential
equation as

˙̂
θ (t) = h1ϕ(t) − h2θ̂ (t) − h3θ̂µ(t), (18)

where h1 > 0, h2 > 0, h3 > 0, µ > 1, and ϕ(t) is a
nonnegative function. If the initial value θ̂ (t0) ≥ 0 holds,
then θ̂ (t) ≥ 0 holds for t ≥ t0.

III. MAIN RESULTS
In this section, we will develop the neuro-adaptive fixed-time
control law and then analyze the convergence of closed-loop
robotic systems.

A. FIXED-TIME NEURO-ADAPTIVE CONTROL DESIGN
Step 1:

Define a Lyapunov function as follows:

V1 =
1
2
zT1 z1, (19)

where zzz1 = [z1,1, z1,2, · · · , z1,n]T = xxx1 − xxxd is the tracking
error.

Differentiating (19) yields

V̇1 = zT1 ż1 = zzzT1 (ẋxx1 − ẋxxd ) = zT1 zzz2 + zT1 α + zT1ηηη, (20)

where zzz2 = [z2,1, z2,2, · · · , z1,n]T = xxx2 − ααα − ẋxxd − ηηη is the
intermediate error, ηηη = [η1, . . . , ηn]T is an auxiliary signal
to be defined later, α is the virtual controller given by

ααα = (α1, α2, · · · , αn)T , (21)

where αi(i = 1, 2, · · · , n) is defined as

αi = −
ᾱi(z1,iᾱi)√

(z21,iᾱ
2
i ) + ϖ 2

1

, (22)

ᾱi = k1z1,i + k2z
γ1
1,i + k3z

γ2
1,i, (23)

where 0 < γ1 < 1, γ2 > 1, k1 ≥ 1, k2 > 0, k3 > 0, ϖ1 > 0,
and the time derivative of αi is given by

α̇i = −

d[ᾱi(z1,iᾱi)]/dt ·

√
z21,iᾱ

2
i + ϖ 2

1

z21,iᾱ
2
i + ϖ 2

1

+

ᾱi(z1,iᾱi) · d
[√
z21,iᾱ

2
i + ϖ 2

1

]
/dt

z21,iᾱ
2
i + ϖ 2

1

(24)

where

d[ᾱi(z1,iᾱi)]/dt = 2 ˙̄αiz1,iᾱi + ᾱ2
i ż1,i, (25)

d
[√

z21,iᾱ
2
i + ϖ 2

1

]
/dt =

1√
z21,iᾱ

2
i + ϖ 2

1

× (z1,iż1,iᾱ2
i + z21,iᾱi ˙̄αi) (26)

and

˙̄αi = k1ż1,i + k2γ1z
γ1−1
1,i ż1,i + k3γ2z

γ2−1
1,i ż1,i. (27)

By invoking (27), we have

z1,i ˙̄αi = k1ż21,i + k2γ1z
γ1
1,iż1,i + k3γ2z

γ2
1,iż1,i. (28)

From (28), we can see that the terms containing z1,i ˙̄αi in
(25) and (26) are nonsingular. Consequently, the singularity
problem of the proposed virtual controller (22) is circum-
vented in a simpler way, which is different from some existing
singularity-free design strategies, such as filters or piecewise
continuous functions.
Remark 2: In (23), the virtual controller is designed in a

quadratic-fraction form, which helps to avoid the occurrence
of singularity problem. If the virtual controller is designed as
follows:

αi = −(k1z1,i + k2sigγ1 (z1,i) + k3 sigγ2 (z1,i)), (29)

where 0 < γ1 < 1, γ2 > 1, k1 ≥ 1, k2 > 0, k3 > 0.
αi = −ᾱi. From (29), we can see that the singularity problem
may occur in α̇i while z1,i = 0, ż1,i ̸= 0, for the reason that
γ1 − 1 < 0.
Let ᾱαα = (ᾱ1, ᾱ2, · · · , ᾱn)T . Substituting (21), (22)

into (20), by Lemma 2 and Lemma 5, we have

V̇1 ≤ zT1 z2 − zT1 ᾱ + zT1ηηη + ϖ1

≤ ||zzz1||2 +
||zzz2||2

2
− k1||zzz1||2 − k2||zzz1||1+γ1

− n
1−γ2
2 k3||zzz1||1+γ2 +

||η||
2

2
+ ϖ1

≤ −k̄2V
1+γ1
2

1 − k̄3V
1+γ2
2

1 +
||z2||2

2
+

||η||
2

2
+ ϖ1. (30)

where k̄2 = 2
1+γ1
2 · k2 and k̄3 = n

1−γ2
2 2

1+γ2
2 · k2.

Step 2: Define another Lyapunov function as

V2 = V1 +
1
2
zT2 z2. (31)

Differentiating (31) yields

V̇2 = V̇1 + zT2 (ẋ2 − α̇ − ẍxxd − η̇ηη)

= V̇1 + zT2
[
MMM−1

0 (xxx1)
(
ddd6 + ddd + uuu−CCC0(xxx1,xxx2)xxx2

−GGG0(xxx1)
)
− α̇ − ẍxxd − η̇ηη

]
= V̇1 + zT2

[
ϒ + F+MMM−1

0 (x1x1x1)
(
g(v) + ds(v)

)
− η̇ηη + ddd

]
,

(32)

where FFF = MMM−1
0 (xxx1)

(
CCC0(xxx1,xxx2)xxx2 − GGG0(xxx1)

)
− ẍxxd and

ϒ = MMM−1
0 (xxx1)ddd6 − α̇ = [ϒ1, ϒ2, · · · , ϒn]T . According
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to Assumption 2 and Remark 1, 111 Let us apply neural
networks to approximate the uncertainty ϒ as followsc [37]:

ϒi = W i
∗T8i(Z) + εi, i = 1, . . . , n, (33)

where Z = [xT1 , xT2 ]
T ,

8i(Z) = ς1/(ς2 + exp(−Z/ς3)) + ς4, (34)

W∗
i stands for the ideal weight of neural network, ς1 >

0, ς2 > 0, ς3 > 0 and ς4 > 0, and εi is the approximation
error, which meets |εi| ≤ εN with εN being an unknown
constant [35], [36],

Similar to Step 1, we design the actual control law as

v = −MMM0(x1)ρρρ,

ρρρ = (ϱ1, ϱ2, · · · , ϱn)T (35)

where

ϱi = −
v̄i(z2iv̄i)√

(z22iv̄
2
i ) + ϖ 2

2

, i = 1, 2, · · · , n, (36)

and

(v̄1, v̄2, · · · , v̄n)T = λ1z2 + λ2sigγ1 (z2) + λ3sigγ2 (z2)

+ F+
θ̂χz2
2c21

+ ηηη, (37)

χ = diag(8T
1 81, . . . ,8

T
n8n) is a diagonal matrix, λ1 ≥

1, λ2 > 0, λ3 > 0, ϖ2 ≥ 0 , h > 0, θ =

max{||W∗

1||
2, . . . , ||W∗

n||
2
}, and the parameter update law is

designed as

˙̂
θ =

c2
n∑
i=1

z22i8
T
i 8i

2c21
− c3θ̂ − c4θ̂γ2 , θ̂ (0) = 0, (38)

in which c1, c2, c3, and c4 are positive constants, and their
recommended ranges are 0.2 ≤ c1 < 1, 1 ≤ c2 ≤ 10, 0.1 ≤

c3 ≤ 1, and 0.1 ≤ c4 ≤ 1 .
To deal with input saturation, we construct an auxiliary

system as follows:

η̇ = −η +

(
M−1

0 (xxx1)g(v) −M−1
0 (xxx1)v

)
. (39)

Substituting (35) and (39) into (32) yields

V̇2 ≤ V̇1 + zT2F+ zT2 ϒ − zT2 v̄+ ϖ2 + zT2ηηη

+ zT2MMM
−1
0 (xxx1)ddd s(vvv) + zT2 ddd, (40)

where v̄ = (v̄1, v̄2, · · · , v̄n)T .
On the basis of Young’s inequality, we have

zT2 ϒ =

n∑
i=1

z2i
(
WWW ∗

i
T
8i + εi

)
≤

n∑
i=1

|z2i| · |WWW ∗
i
T
8i| +

n∑
i=1

|z2i| · εN

≤

θ
n∑
i=1

z22i8
T
i 8i

2c21
+
nc21
2

+
||z2||2

2
+
nε2N
2

, (41)

zT2 ddd ≤
||zzz2||2

2
+

||ddd ||
2

2
≤

||zzz2||2

2
+
D′2

2
(42)

and

zT2MMM
−1
0 (xxx1)ddd s(vvv) ≤

||zzz2||2

2
+

||MMM−1
0 ||

2D2

2
. (43)

Substituting (30), (37), (41)-(43) into (40), we obtain

V̇2 ≤ V̇1 +

θ̃
n∑
i=1

z22i8
T
i 8i

2c21
+
nc21
2

+ ||z2||2 +
nε2N
2

+ ϖ2

− λ1||z2||2 − λ2
(1
2
||z2||2

) 1+γ1
2 − λ3n

1−γ2
2

×
(1
2
||z2||2

) 1+γ2
2 +

D′2

2

≤ −λ̄2V
1+γ1
2

2 − λ̄3V
1+γ2
2

2 +

θ̃
3∑
i=1

z22i8
T
i 8i

2c21
+ ϑ1, (44)

where λ̄2 = min{k̄2, λ22
1+γ1
2 }, λ̄3 = min{k̄3, λ32

1+γ2
2 n

1−γ2
2 },

and ϑ1 = ϖ1 +
nc21
2 +

nε2N
2 + ϖ2 +

||MMM−1
0 ||

2D2

2 +
||ηηη||

2

2 +
D′2

2 .

B. PERFORMANCE ANALYSIS
Theorem 1: For the closed-loop robotic system composed

of (8), fixed-time controller (35), parameter update law (38),
and virtual control law (21), the tracking error z1,i can
converge into the small neighborhood of origin within a fixed
time.

Proof: Choose a Lyapunov function as follows:

V3 = V2 +
1
2c2

θ̃2 (45)

in which, θ̃ = θ − θ̂ . Taking the time derivative of V3,
we obtain

V̇3 = V̇2 −
1
c2

θ̃
˙̂
θ

≤ −λ̄2V
1+γ1
2

2 − λ̄3V
1+γ2
2

2 + ϑ1 + θ̃

( n∑
i=1

z22i8
T
i 8i

2c21

−
1
c2

˙̂
θ

)
. (46)

Substituting (38) into (46) leads to

V̇3 ≤ −λ̄2V
1+γ1
2

2 − λ̄3V
1+γ2
2

2 +
c3
c2

θ̃ θ̂ +
c4
c2

θ̃ θ̂γ2 + ϑ1. (47)

Using the Young’s inequality, we have

c3
c2

θ̃ θ̂ =
c3
c2

θ̃ (θ − θ̃ ) ≤ −
c3θ̃2

2c2
+
c3θ2

2c2
. (48)

Substituting (48) into (47) yields

V̇3 ≤ −λ̄2V
1+γ1
2

2 − λ̄3V
1+γ2
2

2 −
c3θ̃2

2c2
+
c3θ2

2c2
+
c4
c2

θ̃ θ̂γ2

+ ϑ1. (49)
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FIGURE 1. Configuration of a two-link robot manipulator.

By Lemma 3 and defining a = 1, b = c3θ̃2/(2c2), p =

1−γ1
2 , q =

1+γ1
2 and δ = ( 2

1+γ1
)
1+γ1
γ1−1 , we get(

c3θ̃2

2c2

) 1+γ1
2

≤ 2(γ1) +
c3θ̃2

2c2
, (50)

where 2(γ1) =
1−γ1
2 × ( 2

1+γ1
)
1+γ1
γ1−1 .

By Lemma 4 and Lemma 6, defining x = θ̃ and y = θ ,
we obtain

θ̃ θ̂γ2 = θ̃ (θ − θ̃)γ2 ≤
γ2

1 + γ2
(θ1+γ2 − θ̃1+γ2 ). (51)

Substituting (50) and (51) into (49), we have

V̇3 ≤ −λ̄2V
1+γ1
2

2 −

(
c3θ̃2

2c2

) 1+γ1
2

− λ̄3V
1+γ2
2

2

−
cγ2

c2(1 + γ2)
× (2c2)

1+γ2
2 ×

(
θ̃2

2c2

) 1+γ2
2

+ ϑ2

≤ − µ1V
ρ1
3 − µ2V

ρ2
3 + ϑ2, (52)

where ϑ2 = ϑ1 + 2(γ1) +
c3θ2
2c2

+
cγ2θ1+γ2

c2(1+γ2)
, ρ1 =

1+γ1
2 , ρ2 =

1+γ2
2 , µ1 = min{λ̄2, c

1+γ1
2

3 }, and µ2 = min{λ̄3,
cγ2

c2(1+γ2)
×

(2c2)
1+γ2
2 }.

According to Lemma 1, it is concluded from (52) that the
trajectory tracking error z1,i can converge into a sufficiently
small region as follows:

1=

{
lim
t→T

z1 | V3 ≤ min
(
(

η

(1 − ζ )µ1
)

1
ρ1 , (

η

(1 − ζ )µ2
)

1
ρ2

)}
,

(53)

where 0 < ζ < 1, and the settling time T satisfies the
following inequality as

T ≤ Tmax ≜
1
µ1

1
ζ (ρ1 − 1)

+
1
ϱ2

1
ζ (1 − ρ2)

. (54)

IV. SIMULATION
Let us consider a two-joint rigid robot manipulator [15],
whose configuration is shown in Figure 1. Its dynamics in
Lagrangian equation (1) are represented as follows:

M (q) =

[
m11 m1,2
m21 m22

]
,C(q, q̇) =

[
c11 c1,2
c21 c22

]
, (55)

G(q) =
[
g1, g2

]T
,ddd(t) =

[
d1, d2

]T
, (56)

with

q = [q1, q2]T ,

m11 = (m1 + m2)l21 + m2l22 + 2m2l1l2 cos(q2) + J1,

m1,2 = m2l22 + m2l1l2 cos(q2),

m21 = m2l22 + m2l1l2 cos(q2),

m22 = m2l22 + J2,

c11 = −m2l1l2 sin(q2)q̇2,

c1,2 = −m2l1l2 sin(q2)(q̇1 + q̇2),

c21 = m2l1l2 sin(q2)q̇1,

c22 = 0,

g1 = (m1 + m2)l1g cos(q1) + m2l2g cos(q1 + q2),

g2 = m2l2g cos(q1 + q2). (57)

The real values of model parameters and disturbances are
taken as l1 = 1.0 m, l2 = 0.8 m, m1 = 1.5kg,
m2 = 0.5kg, J1 = 5kg.m2, J2 = 5kg.m2, g = 9.8m/s2,
d1(t) = 0.5 sin(200π t)+ 2 sin(t) N · m and d2(t) =

0.5 sin(200π t) + cos(2t) N · m, which are unknown during
controller design. The nominal values ofm1 andm2 are 1.2kg
and 0.4kg, respectively. The reference signals are given as
q1d = 1.25 − 1.4e−t

+ 0.35e−4t rad and q2d = 1.25 +

e−t
−0.25 e−4t rad. Themaximum allowable torque are set as

u1max = 30 N · m.
To effectively verify the convergence performance of

SFFTNAC approach, two different initial conditions of robot
manipulator are considered as follows:
Case 1): q1(0) = 1 rad, q2(0) = 0.5 rad, q̇1(0) = 0 rad/s

and q̇2(0) = 0 rad/s;
Case 2): q1(0) = 0.8 rad, q2(0) = 0.8 rad, q̇1(0) = 0 rad/s

and q̇2(0) = 0 rad/s.
In the proposed strategy, the parameters of virtual con-

troller (21) and (23), fixed-time controller (35) and (37), and
adaptive law (38) are set as k1 = 1, k2 = 2, k3 = 2, λ1 = 1,
λ2 = 2, λ3 = 2, γ1 =

5
9 , γ2 =

7
5 , c1 = 1, c2 = 0.5, c3 = 1,

c4 = 1,ϖ1 = 0.001,ϖ2 = 0.001. Besides, the parameters of
sigmoid function in (34) are set as ς1 = 6, ς2 = 8, ς3 = 12,
ς4 = 0.1.

The simulation results are provided in Figures 2-13. The
angular positions of Joint 1 in two cases are respectively
shown in Fig. 2 and Fig. 4, from which we can see that
the angular position convergence time in Case 1 of Joint
1 is almost the same as that in Case 2 of Joint 1. Similarly,
from Fig. 3 and Fig. 5, we can see that the angular position
convergence time in Case 1 of Joint 2 is almost the same as
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FIGURE 2. The angular position of joint 1 (Case 1, SFFTNAC).

FIGURE 3. The angular position of joint 1 (Case 2, SFFTNAC).

that in Case 2 of Joint 2. Hence, we can draw a conclusion that
the upper bound convergence time of our control scheme is
irrelevant to different initial conditions. The angular position
error signal zzz1 and the intermediate error signal zzz2 in two cases
are shown in Figures 6-9. From them, it can be seen that the
upper bound convergence time of proposed control strategy in
Case 1 and Case 2 is about 2.5 second, which is independent
of initial conditions. Figure 10 and Figure 11 display the
parameter estimation of θ̂ under different initial values.
We can see that θ̂ can converge to constants over time, which
indicates the good compensation for uncertainties has been
obtained in the robotic system. Finally, the control torque
under different initial values are shown in Figs, 12-13, from
which we can see the profiles of control torque are smooth
and continuous in the time domain while the saturation
property is guaranteed during the operation of control
system.

To further demonstrate the advantage of our proposed con-
trol scheme, a nonsingular fast terminal sliding mode control
(NSFTSMC) algorithm is introduced [38] for comparison as

FIGURE 4. The angular position of joint 2 (Case 1, SFFTNAC).

FIGURE 5. The angular position of joint 2 (Case 2, SFFTNAC).

FIGURE 6. The angular position error signal zzz1 (Case 1, SFFTNAC).

follows:

τττ = −M0
[
ς2SSS6 + (ρ + ς1)

SSS6

∥SSS6∥ + δ
+FFF + 0−1

2 (I2+

01diag(|zzz1|01−I2 ))sign2I2−02 (żzz1), (58)
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FIGURE 7. The angular position error signal zzz1 (Case 2, SFFTNAC).

FIGURE 8. The intermediate error signals zzz2 (Case 1, SFFTNAC).

FIGURE 9. The intermediate error signals zzz2 (Case 2, SFFTNAC).

where SSS6 = zzz1 + sign01 (zzz1) + sign02 (żzz1), FFF =

−M−1
0 (qqq)(C0(qqq, q̇qq)q̇qq+GGG0(qqq))−q̈qqd , ρ = ∥M−1

0 ∥(b0+b1∥qqq∥+

b2∥q̇qq∥2), with b0 = 2, b1 = 0.5, b2 = 0.3, ς1 = 1,

FIGURE 10. The estimated parameter θ̂ (Case 1, SFFTNAC).

FIGURE 11. The estimated parameter θ̂ (Case 2, SFFTNAC).

FIGURE 12. The control torque uuu (Case 1, SFFTNAC).

ς2 = 2, δ = 0.01,

01 =

[
2 0
0 2

]
, 02 =

[ 5
3 0
0 5

3

]
, I2 =

[
1 0
0 1

]
. (59)
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FIGURE 13. The control torque uuu (Case 2, SFFTNAC).

FIGURE 14. The angular position of joint 1 (Case 1, NSFTSMC).

FIGURE 15. The angular position of joint 2 (Case 1, NSFTSMC).

The angular position tracking response of Joint 1 in two Cases
are respectively shown in Fig. 14 and Fig. 17, while the
angular position tracking response of Joint 2 in two Cases
are respectively shown in Fig. 15 and Fig. 18. The tracking

FIGURE 16. The angular position error zzz1 (Case 1, NSFTSMC).

FIGURE 17. The angular position of joint 1 (Case 2, NSFTSMC).

FIGURE 18. The angular position of joint 2 (Case 2, NSFTSMC).

error profiles are shown in Fig. 16 and Fig. 19. Comparing
Figs. 2,4,6 and Figs. 14, 15,16, we can see that better control
precision may be obtained in Case 1 of SFFTNAC system.
Similarly, through comparing Figs. 3,5,7 and Figs. 17, 18,19,
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FIGURE 19. The angular position error zzz1 (Case 2, NSFTSMC).

it can be found that in Case 2, the robot manipulator system
under SFFTNAC possesses better steady-state performance
than the one under NSFTSMC. From Figs. 16 and 19, we can
see that the NSFTSMC system does not meet the property of
fixed-time convergence. It is worth noting that in NSFTSMC
scheme, we can get higher control precision by letting the
parameter δ sufficiently small, nevertheless the chattering
phenomenon tends to occur if δ is set too small.

The above results confirm that, compared with the
NSFTSMC scheme, the proposed SFFTNAC scheme can
achieve superior tracking performance for a robot manipula-
tor system, with faster convergence speed and higher tracking
accuracy. Additionally, the convergence time of the proposed
SFFTNAC scheme is independent of the system’s initial
conditions.

V. CONCLUSION
This article has addressed the singularity-free fixed-time
neuro-adaptive control problem for trajectory tracking in
robot manipulators with model uncertainties, external distur-
bances, and input saturation. The proposed singularity-free
fixed-time neuro-adaptive controller ensures that the settling
time of the robot system is independent of the initial states
and can be estimated in advance. In comparison to existing
fixed-time control schemes, singularity avoidance is achieved
by constructing quadratic-fraction functions in the virtual
controller, eliminating the need for filters or piecewise
continuous functions. Finally, the simulations have been
provided to demonstrate that the effectiveness of the proposed
singularity-free fixed-time neuro-adaptive control strategy.
In the future, we will focus on output-constraint fixed-time
control and prescribed-time fault-tolerant control for robot
manipulators.
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