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ABSTRACT The high-speed vibration rotation of the drill bit during drilling causes the logging tool to be
damaged or distorted, resulting in inaccurate or lost data collection. Traditional prediction methods such as
dynamic modeling and geological modeling have problems such as incomplete data and difficult modeling,
which cannot meet the accuracy and stability requirements of wellbore trajectory prediction. The long
short-term memory neural network (LSTM) for predicting time series can achieve accurate prediction, but
there are problems such as difficulty in adjusting the hyperparameters of the LSTMmodel, slow convergence
speed, and easy overfitting. This paper absorbs the advantages of the LSTM algorithm, ridge regression
(L2 regularization), and sparrow optimization algorithm (SSA) in machine learning and proposes a well
trajectory prediction model of steerable drilling based on L2 regularization and SSA optimized LSTM
(L2-SSA-LSTM). The model takes the LSTM hyperparameter as the parameter optimization goal of SSA
and adds L2 regularization to the model to prevent model overfitting to complete modeling and prediction.
The experiment was conducted using measured data sets from directional drilling in two different oilfields.
The results show that compared with the back propagation algorithm (BP), consolidated memory gated
recurrent unit (CMGRU), dual-thread gated recurrent unit (DTGRU), Attention-based Spatiotemporal Graph
Recurrent Neural Network (ASTG-RNN), LSTM, and the L2-SSA-LSTMpredictionmodel has significantly
higher accuracy in predicting directional drilling trajectories than other models and has the better predictive
ability.

INDEX TERMS Steering drilling system, wellbore trajectory prediction, long short-term memory neural
network, sparrow optimization algorithm, L2 regularization.

I. INTRODUCTION
Drilling engineering has always been one of the essential
tasks in the oil and gas industry. To extract oil and gas
resourcesmore effectively, precise control of thewellbore tra-
jectory is necessary [1]. Accurate prediction of the wellbore
trajectory contributes to efficient resource extraction, reduces
the impact on the surface environment, ensures the safety of
workers, and maximizes resource recovery [2], [3]. Wellbore
trajectory prediction is not just an engineering challenge,
it is a comprehensive consideration involving efficiency,
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sustainability, and safety. By continuously improving and
optimizing wellbore trajectory prediction techniques, the oil
and gas industry can ensure the success and sustainability of
drilling operations [4], [5], [6]. Therefore, accurate wellbore
trajectory prediction is of paramount importance in petroleum
extraction.

Wellbore trajectory prediction refers to judging the exten-
sion direction of the wellbore according to the current trend of
the wellbore. Wellbore trajectory prediction plays an impor-
tant role in oil drilling, and scholars at home and abroad
are also committed to research in this field. Li et al. used
the transfer matrix principle to model the lateral force at
the drill bit in a complex BHA. After obtaining the lateral
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force and weight on the bit bottom hole assembly (WOB),
they considered drilling conditions to assess the expected bit
direction for wellbore trajectory prediction [7]. This method
did not account for practical considerations and was suitable
primarily for theoretical calculations. Yang et al. addressed
the aforementioned issue by proposing a longitudinal, tor-
sional, and radial-coupled drill string dynamic model. They
obtained parameters such as the torsional angle displacement
and angular velocity during normal drilling and stick-slip
vibration phases for trajectory prediction [8]. This approach
considered various factors during normal drilling and stick-
slip vibration phases, but the influence of drill bit noise
resulted in suboptimal predictive performance. Xie et al,
based on a statistical analysis of the wellbore trajectory data
from horizontal sections drilled in Jiangsu Oilfield, estab-
lished a sine trigonometric function model for horizontal
wellbore trajectory prediction [9]. This method could pre-
dict wellbore trajectories relatively easily based on known
data from horizontal sections with similar geological con-
ditions. However, its predictive performance was not ideal
for different geological environments and wellbore types.
Samuel et al. introduced a coupled model embedded with
uncertainty by combining geometry, BHA dynamics, and
dynamic earth models. This integrated various models and
factors to achieve more accurate wellbore trajectory pre-
diction [10]. However, the complexity of the model and
consideration of multiple factors might increase computa-
tional complexity, necessitating more computing resources
and time. Yan et al. proposed using the random forest
method for predicting azimuth, deviation angle, and tool face
angle [11]. This approach only required data-based wellbore
trajectory prediction without the need for complex mod-
els. However, random forests cannot capture the temporal
correlations and dynamics of sequential data, making them
less suitable for time series data. Furthermore, the model
parameters are not easily adjustable.

To improve the prediction performance, Liu et al. pro-
posed an interactive ship trajectory prediction framework
based on LSTM (QSD-LSTM), which is beneficial for
avoiding unnecessary collisions between adjacent ships [12].
Hasan et al. proposed a multi-head attention-based LSTM
sequence model for modeling social and temporal interac-
tions and predicting the future trajectories of surrounding
vehicles [13]. Wang presented a novel off-road multi-
agent trajectory prediction framework called SA-LSTM for
predicting autonomous off-road vehicle trajectories [14].
Zhang et al. proposed a time-aware LSTM single-ship
trajectory model in combination with a Generative Adver-
sarial Network (GAN) to predict the trajectories of multi-
ple ships [15]. To accurately predict high-precision cutter
head torque (CHT), Qin et al. proposed a new embed-
ded long short-term memory (ELSTM) network with a
dual memory structure [16]. To improve the ability to pre-
dict complex degradation trajectories, Zhou et al. studied a
new Dual-Thread Gated Recurrent Unit (DTGRU) to pre-
dict the remaining useful life and provide a basis for the

operation and maintenance of industrial equipment. At the
same time, in the face of the gap in unsupervised construc-
tion of health index (HI) with a unified fault threshold,
they combined the proposed distributed contact ratio metric
health index (DCRHI) with the integrated memory gated
cycle unit (CMGRU) to propose a novel remaining use-
ful life (RUL) prediction method to improve the prediction
performance [17], [18].

While LSTM has been widely applied in trajectory pre-
diction fields, its use in wellbore trajectory prediction is
limited. Only Meng et al. presented a new prediction model
based on LSTM networks, which predicts the deviation and
azimuth angles through LSTMmodeling [19]. Although their
method does not rely on assumptions about path shapes or
geometries and solely depends on past data, the model is
prone to overfitting, challenging parameter adjustments, and
involves long execution times and high computational costs.

Based on the aforementioned research, traditional methods
for predicting wellbore trajectory are limited when dealing
with complex geological conditions, making it challenging
to accurately forecast wellbore trajectories. Furthermore, the
existing wellbore trajectory prediction algorithm will have
problems such as difficulty in super-parameter adjustment
and easy over-fitting. Given the above problems, this paper
proposes an L2-SSA-LSTM prediction model for steering
drilling wellbore trajectory by combining L2 regularization,
SSA, and LSTM. The SSA technique is utilized to search for
the optimal hyperparameter combination for LSTM, while
L2 regularization aids in preventing overfitting in the model.
The model automatically optimizes the parameters of the
LSTM network, capturing long-term dependencies, thereby
improving prediction accuracy and generalization capabil-
ity. It applies to various types of wellbore trajectory data.
Through simulation experiments, the prediction results of
BP, CMGRU, DTGRU, ASTG-RNN, and LSTM models are
compared and analyzed. It is proved that the method has
high prediction accuracy, can effectively improve drilling
efficiency, and reduces drilling costs.

II. THEORETICAL BASIS
A. LONG SHORT-TERM MEMORY NETWORK(LSTM)
LSTM neural network is an RNN (Recurrent Neural Net-
work) aimed at solving the problem of gradient explosion and
vanishing that often occur during long-term sequence train-
ing [20], [21]. They are particularly well-suited for handling
time series data [22], [23]. LSTM networks are governed by
the presence of a forget gate, input gate, and output gate,
which collectively control the cell state, the overall structure
is shown in Figure 1 and the calculation for the three gates is
as follows:

f t = σ (W f · [ht−1, xt ] + bf ) (1)

σ (x) =
1

1 + e−x
(2)

it = σ (W i · [ht−1, xt ] + bi) (3)
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C̃ t = tanh(W c · [ht−1, xt ] + bc) (4)

C t = f t ∗C t−1 +it ∗ C̃ t (5)

tanh(x) =
ex − e−x

ex + e−x
(6)

Ot = σ (Wo · [ht−1, xt ] + bo) (7)

ht = Ot ∗ tanh(C t) (8)

where xt is the input information at time t; ht−1represents the
previous hidden state; ht is hidden state at the next moment;
W f ,W i,W c,Wo is the weight matrix; bf , bi, bc, bo is the
bias vector; f t is the forgetting gate; it is the input gate; Ot is
the output gate; C̃ t is candidate cell states; C t is the new cell
state; C t−1 represents the cell state at the previous moment;
σ (x) and tanh(x) is the activation function.

FIGURE 1. The overall structure of the LSTM neural network.

B. SPARROW OPTIMIZATION ALGORITHM(SSA)
The Sparrow algorithm is a novel intelligent optimization
algorithm based on the foraging and anti-predation behavior
of sparrow populations, with the ability to globally search
and develop locally [24], [25]. During each iteration, location
updates for discoverers, entrants, and sparrows who are aware
of the danger are as follows:

X t+1
i,j =

X t
i,j · exp(−

i
α · itemmax

) if R2 < ST

X t
i,j + Q · L if R2 > ST

(9)

X t+1
i,j =

Q · exp(−
Xworse − X t

i,j

i2
) if i > n/2

X t+1
P +

∣∣∣X i,j − X t+1
P

∣∣∣ · A+
· L others

(10)

X t+1
i,j =


X t
best + β ·

∣∣∣X t
i,j − X t

best

∣∣∣ if fi < fg

X t
i,j + K · (

∣∣∣X t
i,j − X t

worst

∣∣∣
(fg − fω) + ε

) if fi > fg
(11)

where itemmax is a constant representing the maximum num-
ber of iterations;X i,j indicates the information position of the
i− th sparrow in the j− th dimension; α is a random number;
R2 and ST represent warning and safety thresholds; Q is a

random number; L denotes a matrix; XP represents the cur-
rent best position occupied by the discoverer; Xworst denotes
the current worst global position; A represents a matrix; A+is
a constant; Xbest represents the global best position; β is a
step size control parameter; K is a random number; fg and
fω represent the global best and worst fitness values; ε is an
extremely small constant.

III. L2-SSA-LSTM PREDICTION MODEL
A. LSTM NETWORK OPTIMIZATION
Because the LSTM model takes into account the depen-
dencies between continuous events and possesses a unique
memory structure with long-term memory capabilities, it is
highly suitable for addressing problems highly correlated
with time series [26]. Therefore, for the real-time mutations
in wellbore trajectory data and their time dependence, the
LSTM model was chosen as the fundamental prediction
model for wellbore trajectory forecasting. However, LSTM
networks are prone to issues such as overfitting.

Common methods to prevent model overfitting include
discarding, stopping training in advance, ensemble learning,
batch standardization, and maximum norm constraint, but
there are some shortcomings when applied to the LSTM
network. For the training data set, the discarding method
randomly closes the unit during training, which will affect
the memory performance of LSTM. The early stop training
method makes it difficult to stop training at the right time,
and a large part may prematurely terminate the learning of
the model, resulting in the model failing to fully fit the train-
ing data; the ensemble learning method integrates multiple
LSTM models to increase the computational complexity; for
cyclic structures such as LSTM, the maximum norm con-
straint may not be easy to implement or need to be carefully
adjusted. The L2 regularization actually imposes a constraint
on the weight by adding the quadratic sum penalty term
of the weight to the loss function. This helps to limit the
size of the weight and prevent its excessive growth, thereby
slowing down the model’s overfitting of the training data.
In addition, the use of L2 regularization helps to improve the
generalization ability and robustness of the model.

In the LSTM network, L2 regularization limits the size of
the model parameters by adding a penalty term for the sum
of squares of the weight matrix to the loss function, thereby
reducing the complexity of the model and preventing it from
overfitting the training data. By setting the hyperparameters
of the LSTM network, the L2 regularization term is added to
the weight matrix. During the training process, the optimizer
not only updates the model parameters to reduce the original
loss function but also updates the L2 regularization term by
gradient descent. The weight update process is as follows:

The LSTM network is optimized by L2 regularization, and
the formula of the loss function L is as follows:

L = L0 +
λ

2
∥ ω ∥

2
= L0 +

λ

2
ωTω (12)
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where L0 represents the model’s average loss, ω signifies the
L2 norm of the parameter vector, and λ serves as a hyperpa-
rameter that controls the strength of L2 regularization.

The corresponding gradient is:

∂L
∂ω

=
∂L0
∂ω

+ λω (13)

Based on equations (12) and (13), the update for the weight
ω is as follows:

ω → ω − η

(
∂L0
∂ω

+ λω

)
= (1 − ηλ) ω − η

∂L0
∂ω

(14)

where η is the learning rate.
Therefore, the weight update formula for L2-regularized

LSTM can be expressed as:

W f (k + 1) = W f (k) − η
∂L

∂W f (k)
(15)

where W f represents the weight of the forget gate, and k
stands for the time step.

The updated formulas for the remaining weights are
similar.

B. LSTM NETWORK HYPERPARAMETER OPTIMIZATION
The selection of hyperparameters for the LSTM model has a
significant impact on the model’s prediction accuracy. Typi-
cally, empirical methods are used to choose hyperparameters,
but this approach is arbitrary and blind, lacking universal-
ity and failing to achieve optimal predictive results [27].
Therefore, the SSA is employed to perform a hyperparameter
search for the LSTM model. It maps multiple hyperpa-
rameters into a multidimensional space, using root mean
square error as the fitness function to find the information
corresponding to the optimal value for obtaining the best
hyperparameter combination. This reduces the randomness
and blindness in hyperparameter selection.

The LSTMmodel has many hyperparameters. SSA is used
to dynamically optimize the four key parameters in the net-
work model: LSTM hidden layer number, training iteration
number, maximum batch size, and learning rate. At the same
time, the L2 regularization coefficient is optimized to find
the best hyperparameter combination to achieve the optimal
state of the network. Firstly, the optimization range of each
hyperparameter is determined. Secondly, a group of sparrow
individuals are randomly generated, and each individual cor-
responds to a set of hyperparameters. At the same time, the
sparrow group is allowed to explorewithin the range of hyper-
parameters, and information is shared among individuals.
Then, RMSE is selected as the loss function to evaluate the
performance of the model. Then use Equations (9), (10), (11)
to continuously update the position of the sparrow and cal-
culate the fitness; finally, a combination of hyper-parameters
with good performance is output, and this combination is used
to train and predict the network. The steps and process of the
L2-SSA-LSTM prediction model are illustrated in Figure 2
as follows:

FIGURE 2. The overall structure of the system model.

Step1 Data Preprocessing: Normalize the data and split
the dataset into training and testing sets based on a certain
ratio.

Step2 Establish Network Structure: Optimize the LSTM
network using L2 regularization to prevent network overfit-
ting by updating the weight values.

Step3 Initialization: Initialize the network and the sparrow
population, define parameters related to the sparrow search
algorithm, and set the maximum number of iterations.

Step4 Select the root mean square error as the fitness
value, calculate the fitness values of the initial population,
and sort them to select the current best and worst values.

Step5 Real-time updates the positions of sparrow finders,
joiners, and sentinels, calculate the fitness values of the spar-
row population, and retain the best positions of individuals in
the population.

Step6 Determine whether the condition of being less
than the global best fitness value or reaching the maximum
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number of iterations is met. If satisfied, obtain the optimized
parameters. otherwise, continue with Steps 4 to 5.

Step7 The final value output by the Sparrow
Search Algorithm is considered the best hyperparameter
combination.

Step8 Train the LSTM network using the best hyperpa-
rameter combination and proceed with predictions.

IV. SIMULATION EXPERIMENTS AND ANALYSIS
A. DATA PREPROCESSING
Trajectory prediction methods can be mainly divided into
physical modeling prediction and data-driven non-physical
model prediction. In this paper, the data-driven non-physical
model prediction method is used to transform the wellbore
trajectory prediction problem into a time series prediction
problem. Through the analysis and identification of historical
time series data, we extract drilling bit motion information
contained in historical wellbore trajectories, thereby avoiding
the complexities of modeling and computations. Because this
method relies solely on data, the selection of feature data is
crucial.

To achieve the ideal stratum, through the guidance control
and its positioning in the underground space, to ensure the
accurate positioning of the stratum. The measured values
collected by the sensors, including azimuth angle, deviation
angle, and tool face angle, offer critical information about
the spatial position and orientation of the wellbore in the
subsurface. The azimuth angle helps determine the wellbore’s
orientation relative to the geographic coordinate system. The
deviation angle of the wellbore dictates its depth and position
in the underground space. The tool face angle of the wellbore
allows for adjustments in the drill bit’s direction to ensure
that the wellbore progresses in the desired direction. There-
fore, in the prediction of wellbore trajectories, forecasting
the azimuth angle, deviation angle, and tool face angle is
crucial for predicting the path of the wellbore. So, choose
these three feature datasets to serve as the dataset for our
prediction model.

Before inputting the dataset into the LSTM model, data
preprocessing is essential to ensure the reliability and accu-
racy of the analysis. In this paper, we employ interpolation
to estimate missing values, preserving data integrity, and
preventing data loss. We replace outliers with the average
of the surrounding ten data points, reducing the impact of
outliers with the data and mitigating noise and fluctuations.
Subsequently, we normalize the data, bringing all values
into roughly the same numerical range, thereby eliminating
dependency on measurement units, and improving model
performance. This aids in model training and accelerates
model convergence. The formulas for outlier handling and
normalization are given by Equation (16) and Equation (17),
respectively:

z̄ =
zi−10 + · · · + zi−1 + zi+1 + . . . + zi+10

20
(16)

x ′
i =

xi − x̄
1
n

∑1
i=1 (xi − x̄)

, i = 1, 2, 3, · · · (17)

where i represents the order of the existence of outliers, zi
denotes outliers, and z̄ stands for the mean value. x ′

i is the
normalized data value; xi is the sample value; x̄ is the mean
value of the sample; nis the total number.

B. EVALUATION METRICS
To provide a more comprehensive evaluation of the fore-
casting performance of different methods and to overcome
the limitations of a single evaluation metric, we chose to
utilize three evaluation criteria to assess the performance
of our algorithm models, namely the Root Mean Squared
Error (RMSE), Mean Absolute Percentage Error (MAPE),
and Coefficient of Determination (R2). The formulas for each
evaluation metric are as follows:

RMSE =

√∑n
i=1

(
ŷi − yi

)2
n

(18)

MAPE =
1
n

∑n

i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ × 100% (19)

R2 = 1 −

∑n
i=1

(
yi − ŷi

)2∑n
i=1 (yi − ȳi)2

(20)

where n is the number of predicted samples, yi represents the
observed values. ŷi represents the predict values. The smaller
the values of RMSE andMAPE evaluation metrics, the better
the predictive performance of the model. The closer the R2

evaluation metric is to 1, the better the model’s performance.

C. DETERMINATION OF MODEL PARAMETERS
Because the model predicts the three-time series data of
azimuth angle, deviation angle, and tool face angle respec-
tively, the LSTM model sets the input layer and the fully
connected layer to 1; through the cross-validationmethod, the
threshold is set to 1, the learning rate drop factor is set to 0.1,
and the number of times is set to 300 under the learning rate;
At the same time, in order to find the appropriate number of
hidden layer neurons, the number of iterations, the number
of samples included in each training, the learning rate and
the regularization coefficient, the sparrow algorithm is used
to optimize these hyperparameters. According to the expe-
rience, the number of sparrow populations is set to 20, the
proportion of sparrow producers is set to 20%, and the num-
ber of iterations of the search algorithm is set to 100. Since
the optimized parameters are the number of hidden layer
neurons, the number of iterations, the number of samples
included in each training, the learning rate, and the regular-
ization coefficient, the descending optimization dimension
is set to 5. According to the experience, the initial range of
sparrow position is set to the number of hidden layer neurons
[8,64], the number of iterations [500,1500], the number of
samples included in each training [16,64], the learning rate
[0.001,0.1], the regularization coefficient [0,0.01].
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D. CASE STUDY
All experimental simulation platforms are MATLAB 2019b.

After obtaining experimental data and preprocessing, the
BP neural network model, CMGRU neural network model,
DTGRU neural network model, ASTG-RNN neural network
model, LSTM neural network model, and L2-SSA-LSTM
neural network model are used to compare and analyze the
results. The effectiveness of the proposed method is verified
by comparing the error evaluation indexes and prediction
accuracy of different neural network models.

Case 1:
The data used in this example was obtained from the

measured wellbore trajectory data in a certain oilfield in Jilin
Province. The azimuth angle, deviation angle, and tool face
angle data were collected from 0 meters to 2760 meters using
Measurement While Drilling (MWD), with a data sampling
interval of 5 seconds. The sample data is divided into a train-
ing set and a test set, with 90% of the data used for training
and 10% for testing. The constructedmodel was implemented
through computer programming, and experimental validation
was performed separately for azimuth angle, deviation angle,
and tool face angle.

FIGURE 3. Azimuth angle prediction results of various models.

TABLE 1. Prediction error of different azimuth angle models.

1) AZIMUTH ANGLE PREDICTION
From Figure 3, it can be observed that among the
azimuth angle prediction models, including BP, CMGRU,
DTGRU, ASTG-RNN, LSTM, and L2-SSA-LSTM, the
L2-SSA-LSTM model exhibits superior predictive

FIGURE 4. Prediction error results of various models.

FIGURE 5. Comparison of evaluation metrics.

performance compared to the others. According to Figure 4,
the DTGRU and ASTG-RNN neural network prediction
models exhibit relatively large errors, resulting in less-than-
ideal predictions and an inability to achieve the desired
prediction accuracy. In comparison to these two neural net-
work prediction models, the errors generated by CMGRU
and BP neural network prediction models are reduced, and
their prediction accuracy is relatively high, although they
still operate at a relatively elevated error level. The LSTM
neural network prediction model generates smaller errors
than CMGRU and BP neural network prediction models,
but its prediction accuracy remains relatively high with-
out reaching the desired level. The L2-SSA-LSTM neural
network prediction model achieves excellent predictions
for the majority of sampling points, demonstrating mini-
mal prediction errors and significantly improved prediction
accuracy.

As evident from Table 1 and Figure 5, the prediction
accuracy of the L2-SSA-LSTM neural network model is
notably higher than that of other prediction models, with R2,
RMSE, and MAPE values of 0.99576, 0.01047, and 0.00306,
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FIGURE 6. Deviation angle prediction results of various models.

FIGURE 7. Prediction error results of various models.

FIGURE 8. Comparison of evaluation metrics.

respectively. In comparison to other neural network predic-
tion models, each evaluation metric has decreased, indicating
that the L2-SSA-LSTM neural network prediction model
possesses higher predictive accuracy. It excels in predicting
the azimuth angle of the wellbore trajectory.

TABLE 2. Prediction error of different deviation angle models.

FIGURE 9. Tool face angle prediction results of various models.

2) DEVIATION ANGLE PREDICTION
From Figures 6 and 7, it can be roughly observed that, for
the prediction of wellbore deviation angles, the dual linear
learning strategy in DTGRU captures the correlation between
individual data and its historical data slightly less effec-
tively than LSTM. As a result, the predictive performance
of DTGRU is relatively poor. While LSTM and CMGRU
neural network models outperform DTGRU in predicting
deviation angles, the errors in the prediction results are still
relatively large. This may be attributed to LSTM not tuning
to appropriate hyperparameters and DTGRU’s inability to
capture longer-range dependencies as effectively as LSTM.
Therefore, the predictive accuracy remains unsatisfactory.
Both BP and ASTG-RNN neural network models yield better
prediction results than LSTM, but the prediction errors in
wellbore deviation angles are still relatively high, falling
short of the desired precision. The L2-SSA-LSTM model
demonstrates good predictive performance for the majority of
wellbore deviation angle samples. The prediction errors are
smaller compared to other models, and the accuracy aligns
with the expected precision.

Table 2 and Figure 8 indicate that the evaluation metrics
RMSE, MAPE, and R2 for the L2-SSA-LSTM neural net-
work prediction model are 0.00134, 0.00054, and 0.99524,
respectively. In comparison to other models, the predictive
accuracy of the L2-SSA-LSTM neural network model is
significantly improved, with each evaluation metric showing
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FIGURE 10. Prediction error results of various models.

FIGURE 11. Comparison of evaluation metrics.

TABLE 3. Prediction error of different tool face angle models.

a decrease. This suggests that the LSTM model optimized
through SSA and L2 regularization has better predictive
accuracy and stronger applicability for wellbore trajectory
deviation angles.

3) TOOL FACE ANGLE PREDICTION
By comparing Figure 9 and Figure 10, it can be observed
that six models, namely BP, CMGRU, DTGRU, ASTG-RNN,
LSTM, and L2-SSA-LSTM, are employed to predict the tool
face angle of wellbore trajectory. The prediction errors of
the BP neural network model are relatively large, and the

FIGURE 12. Azimuth angle prediction results of various models.

FIGURE 13. Prediction error results of various models.

prediction accuracy does not reach the desired level, indicat-
ing poor performance. In comparison to the BP neural net-
work model, the prediction errors of the CMGRU, DTGRU,
and ASTG-RNN models are reduced, but their prediction
accuracy is relatively poor and falls short of the desired
effectiveness. The LSTM neural network model exhibits
reduced prediction errors compared to CMGRU, DTGRU,
and ASTG-RNN, but the errors remain relatively high, indi-
cating suboptimal prediction accuracy. The L2-SSA-LSTM
model demonstrates good prediction performance for the
majority of sampling points, with small prediction errors and
significantly improved accuracy.

Through Table 3 and Figure 11, it can be seen that, in the
prediction of tool face angle, the evaluation metrics RMSE,
MAPE, and R2 for the L2-SSA-LSTM model are 0.02599,
0.01218, and 0.99917, respectively. Compared to various
evaluation metrics of other models, the predictive accuracy of
the L2-SSA-LSTM model is significantly higher, enhancing
the precision of predicting the tool face angle of wellbore
trajectory and demonstrating strong applicability.

Case 2:
The data used in the second example of this paper is

obtained from the measured wellbore trajectory data in a

VOLUME 12, 2024 457



Y. Gao et al.: L2-SSA-LSTM Prediction Model of Steering Drilling Wellbore Trajectory

FIGURE 14. Prediction error results of various models.

TABLE 4. Prediction error of different azimuth angle models.

certain oilfield in Fuyu, Jilin Province. The azimuth angle,
deviation angle, and tool face angle data were collected from
0 meters to 3205 meters using MWD, with a data sampling
interval of 10 seconds. The sample data is divided into a train-
ing set and a test set, with 90% of the data used for training
and 10% for testing. The constructedmodel was implemented
through computer programming, and experimental validation
was performed separately for azimuth angle, deviation angle,
and tool face angle.

4) AZIMUTH ANGLE PREDICTION
From Figure 12 and Figure 13, it can be observed that the
predictive performance of the LSTM and L2-SSA-LSTM
models in azimuth angle prediction is better than that of other
models. This is mainly because the LSTM model, compared
to BP and ASTG-RNN models, can better capture the his-
torical data of azimuth angles, resulting in a more effective
prediction. On the other hand, LSTM, with its three gates,
is more flexible and powerful than CMGRU and DTGRU,
exhibiting better expressive capability and improved azimuth
angle prediction performance. The superior performance
of the L2-SSA-LSTM model compared to LSTM can be
attributed to the self-selection of the L2 regularization coef-
ficient, avoiding potential overfitting issues associated with
a too-high coefficient. Additionally, in the L2-SSA-LSTM
model, SSA can automatically find the optimal hyperparam-
eters, addressing the difficulty of hyperparameter tuning and
further enhancing azimuth angle prediction.

FIGURE 15. Deviation angle prediction results of various models.

FIGURE 16. Prediction error results of various models.

FIGURE 17. Prediction error results of various models.

As shown in Table 4 and Figure 14, the evaluation met-
rics RMSE and MAPE for the L2-SSA-LSTM prediction
model are 0.00456 and 0.000239, respectively. Both RMSE
and MAPE values are lower than those of other prediction
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TABLE 5. Prediction error of different deviation angle models.

TABLE 6. Prediction error of different tool face angle models.

models, indicating that the L2-SSA-LSTM prediction model
accurately predicts the target variable, with minimal differ-
ences between its predictions and the actual observed values.
The R2 evaluation metric for the L2-SSA-LSTM model is
0.99065, surpassing the R2 values of other models. This
demonstrates that the L2-SSA-LSTM prediction model can
explain a significant portion of the variance in the dependent
variable, highlighting its strong fitting capability and abil-
ity to capture the variability in observed data. Overall, the
L2-SSA-LSTM prediction model outperforms other models
in terms of predictive accuracy.

5) DEVIATION ANGLE PREDICTION
From Figure 15, it is evident that when predicting the well-
bore deviation angle, the various models exhibit significant
differences in predictive performance for well depths between
2900 meters and 3000 meters and between 3100 meters
and 3200 meters. However, the differences in predictive per-
formance are minimal for other well depths. Overall, the
L2-SSA-LSTM model outperforms other models in predict-
ing the wellbore deviation angle, showing better predictive
accuracy. As shown in Figure 16, the prediction errors for the
bp model are generally within the range of −0.1◦ to 0.06◦,
for the CMGRU model within −0.15◦ TO 0.06◦, for the
DTGRU model within −0.3◦ to 0.07◦, for the ASTG-RNN
model within −0.15◦ to 0.07◦, for the LSTM model within
−0.07◦to 0.15◦, and for the L2-SSA-LSTM model within
approximately ±0.07◦, demonstrating superior predictive
performance.

By examining Table 5 and Figure 17, it can be observed
that the evaluation metrics RMSE and MAPE for the
L2-SSA-LSTM prediction model are measured at 0.00892
and 0.000239, respectively. These values are lower than
the corresponding metrics for other prediction models,
indicating minimal differences between the predictions of

FIGURE 18. Tool face angle prediction results of various models.

FIGURE 19. Prediction error results of various models.

FIGURE 20. Prediction error results of various models.

the L2-SSA-LSTM model and the actual observed values,
ultimately resulting in superior predictive performance com-
pared to other models. The R2 evaluation metric for the
L2-SSA-LSTM model is 0.99027, surpassing the R2 values
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for other models. This highlights the strong fitting and pre-
dictive capabilities of the L2-SSA-LSTM prediction model
in predicting the wellbore deviation angle. In the context
of wellbore deviation angle prediction, the L2-SSA-LSTM
prediction model demonstrates higher predictive accuracy
and enhanced generalization capability, outperforming other
models.

6) TOOL FACE ANGLE PREDICTION
From Figure 18, it is evident that when predicting the
tool face angle, the CMGRU prediction model lags behind
other models in terms of predictive performance. The BP,
DTGRU, ASTG-RNN, and LSTM models show relatively
small differences in their predictive effects but compared to
the L2-SSA-LSTMmodel, their predictive performance is not
as satisfactory. By observing the model prediction error plot
in Figure 19, it can be seen that the prediction errors of the
CMGRU model are roughly within the ±3◦range, while the
prediction errors of the BP,DTGRU,ASTG-RNN, and LSTM
models are generally within the ±3.2◦range. In contrast, the
L2-SSA-LSTM prediction model achieves smaller predic-
tion errors, typically within the ±2.9◦range. This indicates
that the L2-SSA-LSTM model exhibits superior predictive
performance compared to other models.

By analyzing Table 6 and Figure 20, it can be observed
that the evaluation metrics RMSE and MAPE for the
L2-SSA-LSTMpredictionmodel are recorded at 0.00822 and
0.00037. These values are significantly lower than the cor-
responding metrics for other prediction models, clearly
reflecting the L2-SSA-LSTM model’s effective capability to
predict the target variable. The R2 evaluation metric for the
L2-SSA-LSTM model is 0.99551, surpassing the R2 values
for other models. This indicates that the L2-SSA-LSTM
prediction model achieves a higher level of accuracy in
tool face angle prediction, demonstrating superior predictive
performance compared to other models.

V. CONCLUSION
The wellbore trajectory is a time series data. Starting from
the time series of measuring the wellbore trajectory, the long
short-term memory LSTM network prediction model is used
to predict the azimuth angle, deviation angle, and tool face
angle of the wellbore trajectory. Because the LSTM model
has the problems of difficult adjustment of hyperparameters
and easy over-fitting of the model, the sparrow algorithm
SSA is used to optimize the hyperparameters of the LSTM
network model, and L2 regularization is used to prevent
the over-fitting of the LSTM network model. Therefore, the
L2-SSA-LSTM model is constructed to predict and compare
the azimuth angle, deviation angle, and tool face angle of
the wellbore trajectory. The results show that the prediction
results of the LSTM network model optimized by sparrow
algorithm SSA and L2 regularization are more accurate than
those of a single LSTM network, which provides a new
method and theoretical basis for wellbore trajectory control
technology, improves drilling efficiency and reduces drilling

cost. The method proposed in this paper has yielded satisfac-
tory predictive results; however, it has not yet been applied
in practical drilling operations. In the future, we will con-
tinuously improve the method and apply it in real drilling
activities. Furthermore, in subsequent research, we will con-
sider expanding the model by means such as dataset storage
and model optimization to enhance and extend the existing
model’s capability in handling more drilling data and real-
time predictions, meeting the growing demands in the field
of petroleum engineering.
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