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ABSTRACT In this paper, we investigate distributed online optimization over multi-agent networks, where a
group of agents aim to cooperatively seek the minimum value of a time-varying global loss function that can
be expressed as the sum of the local loss functions privately owned by a single agent on the network at each
iteration. In addition, all agents do not know the future loss function, and information about the loss function
is disclosed only after the agent has made a decision.We are interested in scenarios where the communication
topology of a multi-agent network is a sequence of time-varying unbalanced graphs and the loss function
of each agent is a class of non-strongly convex functions. We generalize the distributed online Newton step
algorithm to a more general multi-agent network by introducing a consensual-based auxiliary estimation to
rescale the contribution of each agent in optimization. Our algorithm only uses row stochastic matrices and
does not require the agent to know the out-degree of its in-neighbors. The convergence of regret bound over
time-varying unbalanced networks is rigorously proved. Simulation results also verify the effectiveness of the
proposed algorithm, and show its advantage in convergence speed compared with the first-order algorithms.

INDEX TERMS Distributed optimization, online convex optimization, Newton step projection algorithm,
multi-agent network, time-varying unbalanced directed graphs.

I. INTRODUCTION
Online convex optimization (OCO) problems has been
encountered in many practical applications such as auctions
and portfolio management [1], [2], [3]. In these problems
time-varying (and possibly adversarial) loss functions are
revealed just after the decision has been made. Therefore, the
idea of optimizing the cost function is not applicable to such
problems, and is replaced by optimizing the so-called regret,
which measure the difference between the cost generated by
the optimization algorithm and the best fixed decision cost in
hindsight [4].

In recent years, distributed OCO has attracted more and
more attention due to the fact that many distributed opti-
mization problems emerged in multi-agent systems involve
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temporal variations in the cost structure and constraints [5].
When the dynamics or the probability distribution of the
variations are known a priori, distributed dynamic opti-
mization [6] or stochastic optimization methods [7] may be
applicable for improving the robustness of the optimization
algorithms. However, if the variations in the problem are
compiled by an arbitrarily varying cost function revealed
over time, and the agent can use the information of the loss
function only after the decision-making, the solution to these
problems call for effective distributed online optimization
algorithms.

The online gradient descent (OGD) method has been
proved effective for centralized OCO, see [2], [3], and [8].
Recently, Yan et al. [9] proposed a decentralized online
optimization algorithm based on the subgradient method in
which the agents interact over a weighted strongly connected
directed graph, and the regret bounds ofO(

√
T ) andO(logT )
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are obtained for convex and strongly convex loss functions,
respectively. Hosseini et al. proposed a consensus based
distributed online dual averaging algorithm in [5], and later
extended the algorithm to time-varying networks in [10].
Inspired by the saddle point dynamics in [11], Mateos-Nunez
and Cortes introduced a distributed OCO algorithm over
jointly-connected and weight-balanced networks in [12].
Moreover, [13] studied the case when the loss function is
strongly pseudoconvex. And [14] investigated the distributed
online aggregation optimization problem, that is, the loss
function value depends on both the individual decision value
and the aggregate information of all individual decision
variables.

All the above references considered undirected graphs
or balanced digraphs as the communication topology and
use double stochastic weight matrix to reach the optimal
consensus among agents, which is difficult to apply in many
practical cases. Because agents are usually limited by their
own power, they have different communication ranges and
have different interference and noise patterns. In addition,
when packet loss [15] or time-varying communication delay
[16] occurs in the network, the dynamic switching of network
topology will also occur. An example is the estimation
using sensor networks, where the observations of each
sensor varies over time due to packet loss. Therefore, it is
very meaningful to extend the algorithm to more realistic
settings on the unbalanced graph. At present, there are
some literatures to solve the distributed OCO problem in
view of the unbalance of the network. Akbari et al. [17]
combined push-sum protocol [18] and the online subgradient
method for unbalanced jointly strongly connected digraphs.
But their algorithm uses the column stochastic weight matrix
in cooperation, and requires each agent to accurately know
its in-neighbors’ out-degree. This requirement is difficult
to meet in many cases, especially when the agents use
a broadcast-based communication scheme. Moreover, this
method can not solve the constrained optimization problem
with projection. Reference [19] also combined push-sum
and primal-dual algorithm to solve the distributed online
optimization problem constrained by local set constraints
and coupled inequalities while dealing with the unbalance
of the network. Compared with the methods mentioned in
the above literature, introduce row stochastic matrix is more
convenient in practical application. Reference [20] firstly
used an auxiliary variable to estimate the left eigenvector
of the weight matrix, and the unbalance of the network is
overcome by scaling the gradient. Then [21] extended the
algorithm to time-varying networks. These methods are also
being extended to online Settings. Reference [22] investigates
a distributed online constrained optimization problem with
differential privacy. In [23], Tada et al. discuss a primal-dual
distributed algorithm for online convex optimization with a
time-varying coupled constraint. Reference [24] designed a
distributed bandit online leaning method by extending the
celebrated mirror descent algorithm for a bandit setup. These

algorithms are all designed in fixed topology. Different from
the above literature, [25] designed online distributed bandit
algorithms by exploiting dual averaging method, which can
be applied to time-varying unbalanced networks. In addition,
there are other literatures that solve the distributed online
optimization problem in unbalanced networks. For example,
[26] uses the method based on surplus [27]. Reference [28]
studies a distributed online constrained optimization problem
over time-varying digraphs without explicit subgradients,
which uses a sequence of row stochastic and column
stochastic weight matrices simultaneously.

The operation of distributed OCO algorithms based on
first-order gradient information is computationally simple,
but their convergence rate is slow in most cases. It is well
known that for the off-line convex optimization problems,
Newton’s method can achieve faster convergence rate by
using the second order gradient information of the cost
function. However, computing and storing the Hessian matrix
along with its inverse at each iteration will seriously affect
the efficiency of online algorithms. To overcome such
inconvenience, distributed approximate or quasi-Newton
methods were proposed [29], [30], the main idea of which
is to generate some estimation matrix such as curvature
estimation using the gradient information to replace the
inverse of Hessian matrix. Further, a reinforced consensus-
based Newton control method is proposed in [31], which
integrats the consensus strategy and the latest knowledge
across the network into local descent direction, and allows
different control levels according to demand. In [32], the
Newton step algorithm was extended for the distributed
OCO problem to achieve the logarithm convergence of the
regret. But it is restricted to the case of time-invariant and
undirected networks. In practical applications, due to packet
loss and communication delay, communication networks in
multi-agent systems are often described by time-varying and
unbalanced directed graphs.

Motivated by the above literature analysis, we aim to
extend the distributed online Newton step algorithm to the
setting of time-varying unbalanced networks. On the one
hand, in contrast of [32], which only uses double stochastic
matrices and is only applicable to fixed balanced digraphs,
we combine the method for time-varying unbalanced digraph
in [21], [22], and [25] to rescale the optimization part
through consensual-based auxiliary estimation, overcoming
the constraint that the network must be weighted and
balanced. In addition, compared with [17], we only use a
row-stochastic matrix and do not require the agent to know
the out-degree of its in-neighbors. And we can solve the con-
strained online optimization problem by projection method.
Our improved version greatly expands the application range
of the original algorithm. On the other hand, unlike most
first-order algorithms adopted in [9], [10], and [12], only
the regret bound of

√
T can be reached for non-strongly

convex functions. Our algorithm does not need to compute
and store the Hessian matrix along with its inverse matrix
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of the cost function, it only uses the gradient information
to achieve the logarithm convergence rate for so-called exp-
concave functions which can not be strongly convex. This
result weakens the requirement for strongly convex functions
in the above paper. In addition, the convergence speed of our
algorithm has been greatly improved.

The rest of this paper is organized as follows. In Section II,
the preparatory knowledge related to function and graph
theory is given, as well as the introduction to distributed
OCO problems. In Section III, we propose a distributed
online Newton step projection algorithm and analyze the
convergence of the regret bound. In section IV, the perfor-
mance of the algorithm is verified by numerical simulations.
Concluding remarks are given in Section V.

II. PRELIMINARIES
A. NOTATION
All vectors are regarded as column vectors. The notation ()T

indicates the transpose of a vector or a matrix. 1n represents
the n-dimensional column vector with all elements being one.
∥ · ∥ denotes the standard Euclidean norm for a vector, or
the spectral norm for a matrix. The symbol ei represents the
vector with i th entry being one and all the others being zero,
i.e., ei = [0, · · · , 1i, · · · , 0]T . For convex function f (x),
denote its gradient at x as ∇f (x). The H -induced projection
of x onto X is defined as

5H
X (x) = argmin

y∈X
(x − y)TH (x − y), (1)

where H is a definitely positive matrix.

B. DISTRIBUTED ONLINE CONVEX OPTIMIZATION
PROBLEM
The problem formulation of the centralized OCO with
detailed explanations can be found in [2]. Now, let us directly
consider the scenario of distributed online optimization.
Suppose there is a set of n agents which can communicate
with each other on a time-varying network. Denote by V =

{1, · · · , n} the set of agent. At each discrete time t ∈

{1, · · · ,T }, each agent i makes a decision xi(t) ∈ X ⊆ Rm,
where X is a bounded decision set, based on its previous
decision, the loss function revealed in the previous iteration,
and the information received from its in-neighbors. After
making the decision xi(t), a locally convex loss function
ft,i : X → R will be presented, and this loss function is only
known to the agent i. In such a distributed scenario, at each
moment t , the goal of the entire network of the agents is to
minimize the sum of the loss functions,

minFt (x) =

n∑
i=1

ft,i(x), s.t. x ∈ X . (2)

Since the loss function is previously unknown to each agent,
the goal of the online algorithm is to ensure that the time
average of the difference between the loss incurred by the

algorithm and the loss of the best fixed decision in hindsight

x∗
∈ argmin

x∈X

T∑
t=1

n∑
i=1

ft,i(x) (3)

is small. This difference, namely

RT =

T∑
t=1

n∑
i=1

(ft,i(xi(t)) − ft,i(x∗)), (4)

is referred to as the regret of the distributed online optimiza-
tion algorithm. An online algorithm performs well if its regret
is sub-linear as a function of T , i.e., limT→∞ RT /T = 0,
because it implies that the time average performance of this
algorithm is as well as the best fixed strategy in hindsight.

The following assumptions are made for the problem (2).
Assumption 1: The set X ⊆ Rm is non-empty, convex,

and compact, and the Euclidean diameter of X , diam (X ) =

supx,x ′∈X ∥x − x ′
∥, is bounded by a constant D.

Assumption 2: For all i ∈ V , function ft,i(x) is differen-
tiable and L-Lipschitz continuous on X , i.e., ∥∇ft,i(x)∥ ≤

L, ∀x ∈ X .

Assumption 3: For all i ∈ V and all t ≥ 0, function ft,i :

Rm
7→ R is α-exp concave on X , namely, the function g :

X 7→ R defined by

g(x) = e−αf (x)

is concave.
Note that the α-exp concave function defines a class of

functions larger than strongly convex functions, i.e., any
strongly convex function is also an α-exp concave function
on a bounded domain, but the inverse proposition does not
hold true.
Lemma 1 [3]: Let f : X 7→ R be a α-exp concave

function, D and L be the diameter and the Lipschitz constant
of X , respectively. Then, for all β ≤

1
2 min{ 1

4LD , α} and all
x, y ∈ X , the following inequality

f (x) ≥ f (y)+∇f (y)T (x − y)+
β

2
(x−y)T∇f (y)∇f (y)T (x−y)

holds.
Remark 1: This lemma shows that for α-exp concave

functions, instead of using the Taylor series, we can use a
stronger approximation to approximate the cost functions up
to the second order, where we do not use the Hessian matrix
of the cost function, but only the gradient.

C. COMMUNICATION NETWORK
To solve the distributed OCO problem considered in this
paper, each agent must send some necessary information to
its out-neighbors. The communication topology among the
agents can be described by a time-varying weighted digraph
G(t) = (V ,E(t),A(t)) with the vertex set V = {1, · · · , n}
and the edge set E(t) ⊆ V × V . If agent j can send messages
to agent i, then (j, i) ∈ E(t), and node j is referred to as an
in-neighbor of node i. Denote by N in

i,t = {j|(j, i) ∈ E(t)}
the set of all the in-neighbors of node i at time t , and by
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d ini,t = |N in
i,t | the in-degree node i at time t . Similarly, denote

by N out
i,t = {j|(i, j) ∈ E(t)} and douti,t = |N out

i,t | the set of
out-neighbors and the out-degree, respectively, of node i at
time t . If d ini,t = douti,t holds for all nodes in V , then G(t)
is called as a balanced digraph; otherwise, it is called an
unbalanced digraph. If there exists a directed path between
any pair of nodes in the digraph G(t), then G(t) is said to be
strongly connected. The weighted adjacent matrix of G(t) is
denoted as A(t) = [aij(t)] ∈ Rn×n. If (j, i) ∈ E(t), then the
associated weight aij(t)>0; otherwise, aij(t) = 0. In addition,
A(t) is called a row-stochastic matrix if

∑n
j=1 aij(t) = 1.

The following assumption is made for the communication
topology.
Assumption 4: The time-varying communication topol-

ogy described by G(t) is B-jointly strongly connected,
namely, there exists an positive inter B ∈ Z>0 such that for
all t ∈ Z>0, the joint digraphG(t)∪G(t+1) · · ·∪G(t+B−1)
is strongly connected.

III. MAIN RESULTS
In this section a distributed Newton step algorithm algorithm
is presented to solve the constrained online convex opti-
mization problem (2). Then, the convergence results for the
algorithm are rigorously summarized and proved.

A. DISTRIBUTED ONLINE NEWTON STEP PROJECTION
ALGORITHM
The problem studied in this paper is that agents are expected
to reach a common optimal estimate of the sum of their
loss functions, but the equilibrium points of each local loss
function are often different. In most existing methods, the
adjacent matrix is often required to be double stochastic.
In this case, the sum of rows of the adjacent matrix is equal
to one provides the possibility that the agents will be able
to reach a consensus, and the sum of the columns of the
adjacent matrix is equal to one guarantees that each agent’s
contribution to the network is the same. If the communication
topology is unbalanced, the iteration of the agent’s decisions
needs to be compensated in order to equalize the weight
of the contribution made by each agent. Based on this
motivation, we present the distributed online Newton step
algorithm in Algorithm 1. In the algorithm, each agent i ∈

V maintains two variables xi(t) ∈ X and zi(t) ∈ Rm,
where t ∈ {1, · · · ,T } is the discrete time iteration. The
first is the decision variation, the second compensates for
unbalancedness. In each iteration, each node estimates its
Hessian matrix using the gradient of the loss function at the
previous time, exchanges information with its neighbors and
moves in the direction of the product of the inverse of the
estimated Hessian matrix and the gradient vector, and then
obtains the decision value through an additional projection
operation.

In Algorithm 1, the positive definite symmetric matrix
Hi(t) is constructed using only the gradient information, and
the matrix Hi(t)−1 needs to be calculated for each iteration.
The matrix inversion lemma in [33] shows that for the

Algorithm 1 Distributed Online Newton Step Projection
Algorithm
Input: convex set X , total iteration number T , parameters

β =
1
2 min{ 1

4LD , α}, ϵ =
1

β2D2 , initial states xi(1) ∈ X ,
zi(0) = ei ∈ Rm, Hi(0) = ϵI , ∀i ∈ V .

1: for t = 1, · · · ,T do
2: For decision xi(t) the adversary reveals the loss

function ft,i(xi(t)), ∀i ∈ V
3: Compute gradient ∇t,i of function ft,i(·) at∑n

j=1 aij(t)xj(t), for all i ∈ V
4: Update Hi(t) = Hi(t − 1) + ∇t,i∇

T
t,i, ∀i ∈ V

5: for all i ∈ V do
6: x̂i(t + 1) =

∑n
j=1 aij(t)xj(t) −

1
β

Hi(t)−1
∇t,i

zii(t)
7: zi(t + 1) =

∑n
j=1 aij(t)zj(t)

8: xi(t + 1) = 5
Hi(t)
X (x̂i(t + 1))

9: end for
10: end for

invertible matrix A and the vector x,

(A+ xxT )−1
= A−1

−
A−1xxTA−1

1 + xTA−1x

Thus, givenHi(t−1) and∇t,i, andHi(0) = ϵI andHi(0)−1
=

1
ϵ
I , one can simply computeHi(t)−1 using only matrix-vector

and vector-vector products. At the same time, because of
Hi(t) =

∑t
r=1 ∇r,i∇

T
r,i + ϵI = Hi(t − 1) + ∇t,i∇

T
t,i, we do

not have to store all the gradient information in the process
of iteration, only need to use Hi(t − 1) and the gradient ∇t,i
of the current moment to calculate, reducing the storage cost
during the algorithm execution.

The projection function used in Algorithm 1 is the
H -induced projection defined by (1). The well known
Pythagoream Theorem holds for this kind of projection, and
is restated as follows.
Lemma 2 [34]: Let X ⊆ Rm be a non-empty convex set,

under the projection operation 5H
X (x) for any y ∈ X , the

following inequality

∥x − y∥ ≥ ∥5H
X (x) − y∥

holds.
The the weights aij(t) in Algorithm 1 satisfy the following

assumption.
Assumption 5: There exists a positive constant γ such

that the weighted adjacent matrix A(t) = [aij(t)] of the
communication digraph G(t) is row-stochastic and satisfies,
for all t ≥ 0 and all i ∈ V , aij(t) > γ if j ∈ N in

i,t , otherwise,
aij(t) = 0, and aii(t) = 1 −

∑
j∈N in

i,t
aij(t) > γ .

Remark 2: The positive lower bound γ in the above
assumption excludes the case that aij(t) → 0 when T → ∞

if agent i has access to agent j.

B. CONVERGENCE OF THE ALGORITHM
Lemma 3 [19]: Suppose Assumptions 4 and 5 hold.

Consider Algorithm 1. For s ≥ k ≥ 0, denote
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A(s : k) = A(s − 1) · · ·A(k) and let aij(s : k) be entries
of A(s : k). Define A(k : k) = I . Then, for all t ≥ 0,
there is a normalized vector π (t)((π (t))T 1n = 1) such that
the following statements are true. a)

1) For any i, j ∈ V and s ≥ k , inequality |aij(s : k) −

πj(k)|≤ Cλs−k holds for C>0, 0<λ<1.
2) For any i ∈ V and t ≥ 0, relation πi(t) ≥ η holds for

the constant η ≥ γ (n− 1)B.
3) (π (k))T = (π (k + 1))TA(k).
4) |zii(k) − πi(0)|≤ Cλk .
Remark 3: Lemma 3 gives the basic properties of A(t),

which provides a sufficient condition for the convergence
analysis later. We assume that A(t) is row-stochastic, so it
is a valid weight matrix for consensus (see, e.g., [35]).
However, different from previous literature, A(t) is not
column stochastic, so it is necessary to set another auxiliary
variable related to the left Perron eigenvector of the weight
matrix.
Theorem 1: Suppose Assumptions 1 - 5 hold. Let x̄(t) =∑n
i=1 πi(t)xi(t). Then, under Algorithm 1, there exist positive

constants D1, D2 and D3 such that

T∑
t=1

(Ft (x̄(t)) − Ft (x∗))

≤
LD1

D2

T∑
t=1

n∑
i=1

∥xi(t) − x̄(t)∥

+
D3

2βD2

T∑
t=1

n∑
i=1

∇
T
t,iHi(t)

−1
∇t,i +

βnϵD2

2D2
. (5)

Proof: Denote yi(t) =
∑n

j=1 aij(t)xj(t). By line 6 of
Algorithm 1 it holds that

(x̂i(t + 1) − x∗)THi(t)(x̂i(t + 1) − x∗)

=

(
yi(t) −

1
β

Hi(t)−1
∇t,i

zii(t)
− x∗

)T
Hi(t)

·

(
yi(t) −

1
β

Hi(t)−1
∇t,i

zii(t)
− x∗

)
= (yi(t) − x∗)THi(t)(yi(t) − x∗) −

2
β
(yi(t) − x∗)T

∇t,i

zii(t)

+
1
β2

∇
T
t,iHi(t)

−1
∇t,i

z2ii(t)
. (6)

Since xi(t + 1) is the projection of x̂i(t + 1) on X under the
Hi(t)-induced norm, by Lemma 2 we have

(xi(t + 1) − x∗)THi(t)(xi(t + 1) − x∗)
≤ (x̂i(t + 1) − x∗)THi(t)(x̂i(t + 1) − x∗). (7)

According to the α-exp concave property of ft,i(x) given by
Lemma 1, the parameters given in Algorithm 1 ensure that

∇
T
t,i(yi(t) − x∗) ≥ ft,i(yi(t) − ft,i(x∗)

×
β

2
(yi(t) − x∗)T∇t,i∇

T
t,i(yi(t) − x∗).

(8)

Further, since ft,i is L-Lipschitz continuous on X , we have

| ft,i(yi(t)) − ft,i(x̄(t)) | ≤ L∥yi(t) − x̄(t)∥

= L∥

n∑
j=1

aij(t)(xj(t) − x̄(t))∥

≤ L
n∑
j=1

aij(t)∥xj(t) − x̄(t)∥. (9)

Using (8) and (9) we can get the upper bound of the second
term in the right side of (6) as

−
2
β
(yi(t) − x∗)T

∇t,i

zii(t)

≤ −
2

βzii(t)
(ft,i(yi(t)) − ft,i(x∗)

+
β

2
(yi(t) − x∗)T∇t,i∇

T
t,i(yi(t) − x∗))

= −
2

βzii(t)
(ft,i(yi(t)) − ft,i(x̄(t)) + ft,i(x̄(t)) − ft,i(x∗))

−
1

zii(t)
(yi(t) − x∗)T∇t,i∇

T
t,i(yi(t) − x∗)

≤
2

βzii(t)
(| ft,i(yi(t)) − ft,i(x̄(t)) | −(ft,i(x̄(t)) − ft,i(x∗)))

−
1

zii(t)
(yi(t) − x∗)T∇t,i∇

T
t,i(yi(t) − x∗)

≤
2

βzii(t)
(L

n∑
j=1

aij(t)∥xj(t) − x̄(t)∥ − (ft,i(x̄(t)) − ft,i(x∗)))

−
1

zii(t)
(yi(t) − x∗)T∇t,i∇

T
t,i(yi(t) − x∗). (10)

Noticing that zii(t) ∈ (0, 1), we have

−
1

zii(t)
(yi(t) − x∗)T∇t,i∇

T
t,i(yi(t) − x∗)

≤ −(yi(t) − x∗)T∇t,i∇
T
t,i(yi(t) − x∗). (11)

ConsideringHi(t) = Hi(t−1)+∇t,i∇
T
t,i, we can combine the

right side of the above equation and the first term in (6) and
get

(yi(t) − x∗)THi(t)(yi(t) − x∗)

− (yi(t) − x∗)∇t,i∇
T
t,i(yi(t) − x∗)

= (yi(t) − x∗)T (Hi(t) − ∇t,i∇
T
t,i)(yi(t) − x∗)

= (yi(t) − x∗)THi(t − 1)(yi(t) − x∗). (12)

Since the Hi(t)-induced norm ∥ · ∥Hi(t) is a convex function
because of the definite positiveness of matrix Hi(t), and∑n

j=1 aij = 1, it holds that

(yi(t) − x∗)THi(t − 1)(yi(t) − x∗)

= ∥(yi(t) − x∗)∥2Hi(t−1)

= ∥

n∑
j=1

aij(t)(xj(t) − x∗)∥2Hi(t−1)
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≤

n∑
j=1

aij(t)∥xj(t) − x∗
∥
2
Hi(t−1). (13)

Substituting (10) and (13) into (6) and considering (7) yield

(xi(t + 1) − x∗)THi(t)(xi(t + 1) − x∗)

≤

n∑
j=1

aij(t)(xj(t) − x∗)THi(t − 1)(xj(t) − x∗)

+
2L

βzii(t)

n∑
j=1

aij(t)∥xj(t) − x̄(t)∥

−
2

βzii(t)
(ft,i(x̄(t)) − ft,i(x∗))

+
1

β2z2ii(t)
∇
T
t,iHi(t)

−1
∇t,i. (14)

Multiplying both sides of the above equation by πi(t+1) and
then summing them for all i ∈ V , we get

n∑
i=1

πi(t + 1)(xi(t + 1) − x∗)THi(t)(xi(t + 1) − x∗)

≤

n∑
i=1

πi(t + 1)
n∑
j=1

aij(t)(xj(t) − x∗)THi(t − 1)(xj(t) − x∗)

+
2L
β

n∑
i=1

πi(t + 1)
zii(t)

n∑
j=1

aij(t)∥xj(t) − x̄(t)∥

−
2
β

n∑
i=1

πi(t + 1)
zii(t)

(ft,i(x̄(t)) − ft,i(x∗))

+
1
β2

n∑
i=1

πi(t + 1)

z2ii(t)
∇
T
t,iHi(t)

−1
∇t,i. (15)

Since (π (t))T = (π (t + 1))TA(t) by Lemma 3, the first term
of the right side of (15) can be rewritten as

n∑
i=1

πi(t + 1)
n∑
j=1

aij(t)(xj(t) − x∗)THi(t − 1)(xj(t) − x∗)

=

n∑
i=1

πi(t)(xi(t) − x∗)THi(t − 1)(xi(t) − x∗). (16)

Let

D1 = sup
t≥0

n∑
i=1

πi(t + 1)
zii(t)

, (17)

D2 = min
i∈V

inf
t≥0

πi(t + 1)
zii(t)

, (18)

D3 = max
i∈V

sup
t≥0

πi(t + 1)

z2ii(t)
. (19)

Since πi(t + 1) ≥ η ≥ γ (n− 1)B for any i ∈ V by Lemma 3,
D1,D2 and D3 are all positive constants. Then, we have

2L
β

n∑
i=1

πi(t + 1)
zii(t)

n∑
j=1

aij(t)∥xj(t) − x̄(t)∥

≤
2LD1

β

n∑
i=1

∥xi(t) − x̄(t)∥. (20)

−
2
β

n∑
i=1

πi(t + 1)
zii(t)

(ft,i(x̄(t)) − ft,i(x∗))

≤ −
2D2

β
(Ft (x̄(t) − Ft (x∗)). (21)

1
β2

n∑
i=1

πi(t + 1)

z2ii(t)
∇
T
t,iHi(t)

−1
∇t,i

≤
D3

β2

n∑
i=1

∇
T
t,iHi(t)

−1
∇t,i. (22)

Substituting (16),(20),(21) and (22) into (15) yields
n∑
i=1

πi(t + 1)(xi(t + 1) − x∗)THi(t)(xi(t + 1) − x∗)

≤

n∑
i=1

πi(t)(xi(t) − x∗)THi(t − 1)(xi(t) − x∗)

+
2LD1

β

n∑
i=1

∥xi(t) − x̄(t)∥ −
2D2

β
(Ft (x̄(t) − Ft (x∗))

+
D3

β2

n∑
i=1

∇
T
t,iHi(t)

−1
∇t,i (23)

Moving the terms in the above equation, dividing both sides
by 2D2

β
, and then summing on t = 1, · · · ,T , we get

T∑
t=1

(Ft (x̄(t)) − Ft (x∗))

≤
β

2D2

T∑
t=1

(
n∑
i=1

πi(t)(xi(t) − x∗)THi(t − 1)(xi(t) − x∗)

−

n∑
i=1

πi(t + 1)(xi(t + 1) − x∗)THi(t)(xi(t + 1) − x∗))

+
LD1

D2

T∑
t=1

n∑
i=1

∥xi(t) − x̄(t)∥

+
D3

2βD2

T∑
t=1

n∑
i=1

∇
T
t,iHi(t)

−1
∇t,i. (24)

Since Hi(0) = ϵIm, and (xi(T + 1) − x∗)THi(T )(xi(T + 1) −

x∗) ≥ 0 because of the definite positiveness ofHi(T ), we have

T∑
t=1

(
n∑
i=1

πi(t)(xi(t) − x∗)THi(t − 1)(xi(t) − x∗)

−

n∑
i=1

πi(t + 1)(xi(t + 1) − x∗)THi(t)(xi(t + 1) − x∗))

=

n∑
i=1

(
πi(1)(xi(1) − x∗)THi(0)(xi(1) − x∗)

−πi(T + 1)(xi(T + 1) − x∗)THi(T )(xi(T + 1) − x∗)
)
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≤

n∑
i=1

πi(1)ϵ∥xi(1) − x∗
∥
2

≤

n∑
i=1

πi(1)ϵD2
≤ nϵD2. (25)

Substituting (25) into (24) yields
T∑
t=1

(Ft (x̄(t)) − Ft (x∗))

≤
βnϵD2

2D2
+
LD1

D2

T∑
t=1

n∑
i=1

∥xi(t) − x̄(t)∥

+
D3

2βD2

T∑
t=1

n∑
i=1

∇
T
t,iHi(t)

−1
∇t,i. (26)

The proof is completed.
Remark 4: Theorem 1 establishes the optimization part of

convergence analysis, which is common in offline version
of distributed optimization analysis methods, such as [18]
and [20]. But it gives a bound on time accumulation from x̄(t)
to the optimal estimate, which is unique to the online version.
Theorem 2: Suppose Assumptions 1 - 5 hold. Under

Algorithm 1, it holds that

LD1

D2

T∑
t=1

n∑
i=1

∥xi(t) − x̄(t)∥

≤
nLCD1

(1 − λ)D2
max
i∈V

∥xi(1)∥

+
nλCD1(M1 +M2)2m2L2

4(1 − λ)βµD2M1M2L̂2
(1 + logT )), (27)

where all the notations are the same as given in Theorem 1.
Proof: Define

ri(t) = xi(t) − x̂i(t) = 5
Hi(t−1)
X (x̂i(t)) − x̂i(t)

Since X is a convex set, xi(t) ∈ X for all i, and A(t) is a
row stochastic matrix, therefore

∑n
j=1 aij(t)xj(t) ∈ X for all

i. By the definition of projection and lemma 2, the norm of
ri(t) can be bounded

∥ri(t)∥ = ∥5
Hi(t−1)
X (x̂i(t))−x̂i(t)∥ ≤ ∥

n∑
j=1

aij(t)xj(t)−x̂i(t)∥

(28)

Let

x(t) = [x1(t), x2(t), · · · , xn(t)]T ,

ε(t) = [
H1(t)−1

∇t,2

βz11(t)
,
H2(t)−1

∇t,1

βz22(t)
, · · · ,

Hn(t)−1
∇t,n

βznn(t)
]T .

r(t) = [r1(t), r2(t), · · · , rn(t)]T

Then, we can rewrite the updating formula in Algorithm 1 as
the following compact form

x(t) = A(t : 1)x(1) −

t∑
k=2

A(t : k)ε(k − 1)

+

t∑
k=2

A(t : k)r(k − 1). (29)

Since |aij(t : k) − πj(k)|≤ Cλt−k , for any i, j ∈ V and all
t ≥ k ≥ 0 by Lemma 3, and ∥ri(t)∥ ≤ ∥

∑n
j=1 aij(t)xj(t) −

x̂i(t)∥ = ∥εi(k)∥, it follows from the above equation that

∥xi(t) − x̄(t)∥

= ∥eix(t) − π (t)T x(t)∥

= ∥eiA(t : 1)x(1) − ei
t∑

k=2

A(t : k)ε(k − 1)

+ ei
t∑

k=2

A(t : k)r(k − 1) − π (t)TA(t : 1)x(1)

+ π (t)T
t∑

k=2

A(t : k)ε(k − 1)−π (t)T
t∑

k=2

A(t : k)r(k−1)∥

≤ ∥(eiA(t : 1) − π (t)TA(t : 1))x(1)∥

+ ∥

t∑
k=2

eiA(t : k)ε(k − 1) −

t∑
k=2

π (t)TA(t : k)ε(k − 1)∥

+ ∥

t∑
k=2

eiA(t : k)r(k − 1) −

t∑
k=2

π (t)TA(t : k)r(k − 1)∥

≤ Cλt−1max
i∈V

∥xi(1)∥ + 2C
t∑

k=2

λt−k∥ε(k − 1)∥. (30)

Let ρi be the eigenvalue ofHi(t). Then, 1
ρi
is the eigenvalue

of Hi(t)−1. Denote M1 = maxi∈V ρi,M2 = mini∈V ρi.
By Schweizer inequality (Sec 2.11 in [36]) we have

tr(Hi(t)−1) ≤
(M1 +M2)2m2

4M1M2tr(Hi(t))
. (31)

Because Hi(t) is definitely positive, Hi(t)−1 is also definitely
positive. Hence we get

∥Hi(t)−1
∇t,i∥

2

= tr(Hi(t)−1)2(∇t,i∇
T
t,i)

≤ (tr(Hi(t)−1))2tr(∇t,i∇
T
t,i) ≤ (

(M1 +M2)2m2

4M1M2tr(Hi(t))
)2L2. (32)

The last inequality in (32) holds because ∇t,i∇
T
t,i is definitely

positive, and hence tr(∇t,i∇
T
t,i) = ∥∇t,i∥

2
≤ L2. Then,

considering tr(Hi(t)) =
∑t

r=1 ∥∇r,i∥
2

+ mϵ, and letting
µ = mini∈V ,t≥0 zii(t) we get

∥ε(t)∥ = ∥
Hi(t)−1

∇t,i

βzii(t)
∥ ≤

(M1 +M2)2m2L

4M1M2βµ(
∑t

r=1 ∥∇r,i∥
2 + mϵ)

≤
(M1 +M2)2m2L

4M1M2βµ(
∑t

r=1 ∥∇r,i∥
2 + ϵ)

. (33)

Introducing a new positive constant L̂ such that L̂2 ≤
1

k−1

∑k−1
r=1 ∥∇r,i∥

2 implies that (k−1)L̂2 ≤
∑k−1

r=1 ∥∇r,i∥
2
+

ϵ. With this new notation and the notations defined by (17)
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and (19), substituting (33) into (30) and summing the results
on i = 1, · · · , n, t = 1, · · · ,T yields

LD1

D2

T∑
t=1

n∑
i=1

∥xi(t) − x̄(t)∥

≤
LCD1

D2

n∑
i=1

(
T∑
t=1

λt−1max
i∈V

∥xi(1)∥

+2
T∑
t=1

t∑
k=2

λt−k
(M1 +M2)2m2L

4M1M2βµ(
∑k−1

r=1 ∥∇r,i∥
2 + ϵ)

)

≤
LCD1

D2

n∑
i=1

(
1

1 − λ
max
i∈V

∥xi(1)∥

+
(M1 +M2)2m2L

2βµM1M2L̂2

T∑
t=1

t∑
k=2

λt−k
1

k − 1

)
. (34)

Let I (t>k) be an indicator function which takes value 1 as
t > k , and takes 0 otherwise. Therefore,

T∑
t=1

t∑
k=2

λt−k
1

k − 1
=

T∑
t=1

t−1∑
k=1

λt−k−1 1
k

=

T∑
t=1

T∑
k=1

λt−k−1 1
k
I (t > k) =

T∑
k=1

1
k

T∑
t=k+1

λt−k−1

≤

T∑
k=1

1
k

T∑
t=1

λt−1
≤

1
1 − λ

(1 + logT ). (35)

Substituting (35) into (34) yields

LD1

D2

T∑
t=1

n∑
i=1

∥xi(t) − x̄(t)∥ ≤
nLCD1

(1 − λ)D2
max
i∈V

∥xi(1)∥

+
nCD1(M1 +M2)2m2L2

2(1 − λ)βµD2M1M2L̂2
(1 + logT )) (36)

Then, the proof is completed.
In order to accomplish the proof of our next theorem,

we need to prove the following lemma at first.
Remark 5: Theorem 2 establishes the consensus part of

convergence analysis. If the projection error is bounded, then
the difference between the estimates of any two different
agents in the network has an upper bound and gradually
converges over time.
Lemma 4: Suppose Assumptions 1 - 5 hold. Consider

Algorithm 1. With the notation defined in (18) and (19),
it holds that

D3

2βD2

T∑
t=1

n∑
i=1

∇
T
t,iHi(t)

−1
∇t,i ≤

nmD3

2βD2
log(

TL2

ϵ
+ 1).

(37)

Proof: For matrices A,B ∈ Rm×m, denote A • B =∑m
i=1

∑m
j=1 AijBij = tr(ABT ), which can be considered as

the inner product of matrices A and B if these matrices are
considered as vectors in the space Rm2

. By Lemma 4.6 in [4],

it holds that A−1
• (A − B) ≤ log |A|

|B|
, where |A| denotes the

determinant of matrix A. Using this fact, we get

T∑
t=1

∇
T
t,iHi(t)

−1
∇t,i =

T∑
t=1

Hi(t)−1
• (Hi(t) − Hi(t − 1))

≤

T∑
t=1

log
|Hi(t)|

|Hi(t − 1)|
= log

|Hi(T )|
|Hi(0)|

.

(38)

Since Hi(t) =
∑t

r=1 ∇r,i∇
T
r,i + ϵIm, ∥∇t,i∥ ≤ L, it follows

that the maximum eigenvalue of Hi(T ) is not greater than
TL2 + ϵ. Therefore, |Hi(T )|≤ (TL2 + ϵ)m, |Hi(0)|= ϵm.
Substituting this equality into (38) yields

D3

2βD2

T∑
t=1

n∑
i=1

∇
T
t,iHi(t)

−1
∇t,i

≤
D3

2βD2

n∑
i=1

log
|Hi(T )|
|Hi(0)|

≤
D3

2βD2

n∑
i=1

m log(
TL2

ϵ
+ 1) =

nmD3

2βD2
log(

TL2

ϵ
+ 1).

Remark 6: Lemma 4 gives the upper bound of the third
term in (26), and provides supporting conditions for the final
convergence result. It is different from first-order methods
such as online gradient descent in [9] and [17], because it
estimates the Hessian matrix.

Now we are at a position to present our main result.
Theorem 3: Suppose Assumptions 1 - 5 hold. Then,

Algorithm 1 ensures

RT =

T∑
t=1

n∑
i=1

(ft,i(xi(t)) − ft,i(x∗))

≤ (C̃1 + C̃2 + C̃3) + (C̃3 + C̃4) logT (39)

where

C̃1 =
βnϵD2

2D2
,

C̃2 =
nL(CD1 + D2)
(1 − λ)D2

max
i∈V

∥xi(1)∥,

C̃3 =
n(CD1 + D2)(M1 +M2)2m2L2

2(1 − λ)βµD2M1M2L̂2
,

C̃4 =
nmD3

2βD2

with D1, D2 and D3 being defined in (17), (18) and (19),
respectively.

Proof: Substituting (27) and (37) into (5) yields

T∑
t=1

(Ft (x̄(t)) − Ft (x∗))

≤
βnϵD2

2D2
+

nLCD1

(1 − λ)D2
max
i∈V

∥xi(1)∥ +
nmD3

2βD2
log(

TL2

ϵ
+ 1)
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FIGURE 1. Time-varing unbalanced digraph used in simulation.

+
nCD1(M1 +M2)2m2L2

2(1 − λ)βµD2M1M2L̂2
(1 + logT ). (40)

Using (27) we have

T∑
t=1

n∑
i=1

(ft,i(xi(t)) − ft,i(x̄(t)))

≤

T∑
t=1

n∑
i=1

(L∥xi(t) − x̄(t)∥)

≤
nL

(1 − λ)
max
i∈V

∥xi(1)∥ +
n(M1 +M2)2m2L2

2(1 − λ)βµM1M2L̂2
(1 + logT ).

(41)

Substituting (40) and (41) into the following equation, we get

RT =

T∑
t=1

n∑
i=1

(ft,i(xi(t)) − ft,i(x∗))

=

T∑
t=1

n∑
i=1

(ft,i(xi(t)) − ft,i(x̄(t)) + ft,i(x̄(t)) − ft,i(x∗))

≤
βnϵD2

2D2
+
nL(CD1 + D2)
(1 − λ)D2

max
i∈V

∥xi(1)∥

+
n(CD1 + D2)(M1 +M2)2m2L2

2(1 − λ)βµD2M1M2L̂2
(1 + logT )

+
nmD3

2βD2
log(

TL2

ϵ
+ 1). (42)

Recall that ϵ =
1

β2D2 , and β =
1
2 min{ 1

4LD , α}. Then,

it follows that log(TL
2

ϵ
+1) ≤ log( T64+1) ≤ logT (for T > 1).

Hence, (42) implies (39). The proof is completed.
Remark 7: Theorem 3 gives themain result of algorithm 1,

namely, regret converges sublinearly with logarithmic veloc-
ity. This shows that when T is large enough, our algorithm
can achieve the same good results as the offline optimization
method under time-varying unbalanced graphs.

IV. NUMERICAL EXAMPLES
In this section we provide two examples to illustrate the
advantages of our online algorithm over the existing ones
from different aspects.

The first example considers the distributed estimation
problem in sensor networks, which has been considered
in [10]. The sensors are required to collaboratively estimate
some unknown parameter vector (position of a target, for

FIGURE 2. Average regret trends for the four algorithms in example 1.

FIGURE 3. Comparison of average regrets when the switching probability
of G2 is 0.3.

example) denoted as x ∈ Rd . Each sensor assumes a linear
parametric model Hix to model its observation variable zi ∈

Rp, where Hi ∈ Rp×d is the information structure matrix.
At each moment t ∈ {1, . . . ,T }, each sensor will obtain
an actual observation which is generated by a time-varying
function zi(t) = ai(t)x + bi(t), where ai(t), bi(t) reflects
the environment variation and observation noise, respectively.
The goal is to find the estimate x to minimize the following
loss function

ft (x) =

T∑
t=1

n∑
i=1

1
2
∥zi(t) − Hix∥22.

Since the time-varying factors ai(t), bi(t) are unknown to
agents only afterwards, online estimation algorithms are
suitable for this problem.

Suppose there are four sensors in the network. The
communication topology of sensors is time-varying and
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FIGURE 4. Comparison of average regrets when the switching probability
of G2 is 0.6.

FIGURE 5. Comparison of average regrets when the switching probability
of G2 is 0.9.

switching in turn among three unbalanced digraphs shown
in Fig. 1. Obviously, the joint graph is strongly connected.
We assume the dimensions of the observation vector and the
parameter vector are both equal to one, i.e., p = d = 1, and
Hi = 1/i, i = 1, 2, 3, 4. We also assume for each i, ai(t)
and bi(t) are chosen randomly from a uniform distribution on
[0, 2] and [− 1

2 ,
1
2 ], respectively.

We apply four different algorithms, namely the distributed
online Newton step projection algorithm (DONSPA) pro-
posed in this paper, the distributed autonomous online
learning algorithm (DAOL) proposed in [9], the distributed
online subgradient push-sum algorithm (DOSPSA) proposed
in [17] and the distributed online Newton step algorithm
(DONSA) proposed in [32] to the estimation. Thanks to the
strongly convexity of the loss function, all three algorithms
theoretically ensure logarithmic convergence of the regret

FIGURE 6. Average regret of two algorithms in Example 2.

FIGURE 7. Convergence speed of two algorithms in example 2.

bound. However, Fig. 2 shows the evident difference between
our result and the results of DAOL, DOSPSA and DONSA.
More specifically, the average regret of DONSPA, DAOL,
DOSPA and DONSA is 0.36, 4.10 and 3.09 and 2.41 respec-
tively at the 200th iteration. Our algorithm is 8.77%, 11.62%
and 14.94% of the other two, respectively. And this difference
does not disappear even after 200 iterations. The reason
is that each agent has different ‘‘optimal’’ estimate, and
the optimal estimate defined by the sum-type loss function
can be obtained only based on their balanced cooperation.
However, in this example the communication digraph is
unbalanced, and among three algorithms only our algorithm
can compensate for this unbalancedness.

In order to better illustrate the influence of unbalanced
topology onmean regret convergence, we set the probabilities
of the second topology in Figure 1, which are 0.3, 0.6,
and 0.9, respectively, with other conditions being the same.
We compared the average regrets of DONSPA and DAOL
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under different probabilities. As can be seen from Fig. 3-5,
The average regret of DAOL varies with the appearance of
G2. Our algorithm compensates for the weight, so it keeps
the average regret small in all cases.

Now, let us consider the second example to see the
convergence speed of different algorithms for non-strongly
convex loss functions. The communication digraph of four
agents here is the same as used in the first one. But the loss
function of each agent is replaced by fi,t (x) = − log(ri(t)T x),
which is often used in portfolio management [4]. This
function is not strongly convex, but just exp-concave.

Now, we compare the convergence speed of our algorithm
DONSPA and the first-order algorithm DAOL. It can be seen
from the results in Fig. 6 that the average regret of the two
algorithms will decrease with time, but it is difficult to see the
difference in convergence speed between them. To show their
convergence speeds more clearly, we take the logarithmic
value of the average regret as the vertical coordinate, and
depict two standard curves, namely logT

T and
√
T
T together

with the regret bounds. Simulation results given in Fig. 7
show that DONSPA is approaching to the logarithm curve,
while DAOL is going to the square root curve. The results
are consistent with our theoretical analysis and the conclusion
in [9].

V. CONCLUSION
In this paper, distributed online Newton step algorithm is
extended to the case of time-varying unbalanced network.
Theoretical analysis shows that our algorithm can make the
decision value of each node tend to the optimal value in hind-
sight in the time-varying general digraphs, that is, the regret
bound converges sublinearly with respect to the number of
iterations, and achieves logarithm convergence speed. It does
not need use double stochastic matrix when exchanging
information, which greatly expands the application range
of the original algorithm. Numerical examples demonstrate
the effectiveness and advantages of the proposed algorithm.
Future research interests include, consider extending the
existing algorithm to the case with inequality constraints.
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