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ABSTRACT Federated learning (FL) is now considered a critical method for breaking down data silos.
However, data encryption can significantly increase computing time, limiting its large-scale deployment.
While hardware acceleration can be an effective solution, existing research has largely focused on a single
hardware type, which hinders the acceleration of FL across the various heterogeneous hardware of the
participants. In light of this challenge, this paper proposes a novel FL acceleration framework that supports
diverse types of hardware. Firstly, we conduct an analysis of the key elements of FL to clarify our accelerator
design goals. Secondly, a unified acceleration framework is proposed, which divides FL into four layers,
providing a basis for the compatibility and implementation of heterogeneous hardware acceleration. After
that, based on the physical properties of three mainstream acceleration hardware, i.e., GPU, ASIC and
FPGA, the architecture design of corresponding heterogeneous accelerators under the framework is detailed.
Finally, we validate the effectiveness of the proposed heterogeneous hardware acceleration framework
through experiments. For specific algorithms, our implementation achieves a state of the art acceleration
effect compared to previous work. For the end-to-end acceleration performance, we gain 12×, 7.7× and
2.2× improvement on GPU, ASIC and FPGA respectively, compared to CPU in large-scale vertical linear
regression training tasks.

INDEX TERMS Federated learning, hardware acceleration, homomorphic encryption, privacy preserving.

I. INTRODUCTION
With the widespread application of big data and cloud
computing technologies, the demand for machine learning
and deep learning data is ever-increasing. As a result, the
need for data sharing and fusion is becoming more and more
pronounced. However, the emergence and strict enforcement
of laws and regulations related to privacy data protection have
severely constrained the collection, transmission, retention,
and processing of personal privacy data. In view of the
demand for data privacy and security protection, as well
as the need to break down data silos, federated learning
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(FL) technology [1], [2] has emerged as an ideal solution.
FL which has attracted widespread attention from both
academia and industry, is a special distributed learning
scheme that enables multiple organizations to jointly model
their data while meeting requirements related to user privacy
protection, data security, and government regulations.

FL adopts various technologies such as garbled circuits [3],
differential privacy [4], and homomorphic encryption [5] to
protect data security, with the latter being the most practical
as it allows for algebraic operations to be performed on
ciphertext without decryption. While fully homomorphic
encryption (FHE) is relatively resource-intensive in terms
of computation and time consumption, partially homomor-
phic encryption (PHE) is more widely used in industry.
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Particularly, the RSA [6] and Paillier [7] algorithms based
on large integer modular operations, which provide homo-
morphic multiplication and homomorphic addition properties
respectively, play an important role in algorithm design for FL
tasks such as sample alignment and model aggregation [8],
[9], [10], [11], [12].

However, the PHE algorithms come with additional com-
putational and I/O overhead, which limits the commercial
deployment of FL. Firstly, there are a large number of
modular operations involved in the process of encryption,
decryption, and homomorphic computation, which are not
computationally friendly to CPU and would significantly
increase the clock cycles consumed by calculations. Sec-
ondly, to ensure security, it is usually required that the key bit
width is greater than 1024 or 2048, which causes significant
data inflation during encryption and makes data access an
additional bottleneck. Taking the 1024-bit Paillier algorithm
as an example, the maximum bit width of the ciphertext
after encryption is twice that of the key bit width, i.e., 2048.
Gradients are usually 32-bit floating-point numbers in plain
text, and encrypting them may result in a 64× increase in
bit width. These bottlenecks severely slow down the training
speed of FL when the PHE algorithm is deployed directly on
CPU. Previous work [13] has shown that when performing
a two-party vertical FL task based on the FL framework
Federated AI Technology Enabler (FATE) [14] on the CPU,
encryption, decryption, and ciphertext space computations
account for 86.4% of the total time, while key generation
and other operations (including some plaintext computations,
gradient updates, and local data access time) only account for
13.6%.

With the development of heterogeneous computing hard-
ware, GPU, ASIC, and FPGA have demonstrated significant
speed-up performance in the field of deep learning [15],
[16], [17], [18], [19], [20]. How to apply them to FL to
address the above bottlenecks has become a hot research
topic in academia and industry [21], [22], [23], [24], [25],
[26]. Among them, the GPU has the best flexibility and
scalability, and has always received the most attention [21],
[22]. FPGA, with its reconfigurable characteristics and rich
logic resources, has also gained considerable research interest
in recent years [24], [25], [26]. For large-scale commercial
applications, ASIC has gradually received attention due to its
advantages of low cost and power consumption [23]. Several
vendors have developed multiple commercial ASIC acceler-
ation cards designed for specific cryptographic operations,
such as Intel QuickAssist Technology (QAT) [27], Cavium’s
crypto offload adaptors (Nitrox) [28], and Exar Compression
and Security Acceleration Card (DX2040) [29].
Existing research has mostly focused on using a single type

of hardware (i.e., one of GPU, ASIC, or FPGA) to accelerate
FL tasks. However, FL requires multiple participants to
collaborate on the training process, and these participants
often come from different industries. In many practical cases
of training, different participants may possess heterogeneous
computing devices, and the available hardware resources

within a data center may also change over time. For
instance, when two enterprises collaborate on training a
federated model, enterprise A may have available GPU
cards, while enterprise B may have FPGA cards. Existing
studies have not provided a clear definition on data exchange
mechanisms for this scenario, which makes it difficult to
accelerate training. Furthermore, if the available hardware
resources of a participant change before a training task
starts, for instance, if enterprise A’s GPU resources are
occupied by other workloads but they still have idle ASIC
cards, this requires the training task to seamlessly switch
to the ASIC acceleration card to make full use of the
resources.

Therefore, developing an acceleration framework that
supports multiple heterogeneous hardware and effectively
utilizes existing hardware resources of different participants
is a crucial challenge that needs to be addressed. The main
contributions of this paper are as follows:
• We conduct a theoretical analysis of the key elements
in FL acceleration, providing a theoretical basis for the
proposed unified acceleration framework and laying a
foundation for future work in this area.

• We propose a unified acceleration framework that
supports multiple types of heterogeneous hardware,
allowing different participants to use different types
of acceleration cards. The various heterogeneous hard-
ware in this framework supports flexible loading and
unloading. Furthermore, based on the characteristics
of GPU, ASIC, and FPGA, corresponding accelerator
architectures are designed.

• We validate the effectiveness of the proposed hardware
acceleration solution through experiments. In the imple-
mentation on our experimental platform, which is based
on NVIDIA Tesla T4 GPU, Intel QAT 8970 ASIC, and
Intel Stratix 10 GX2800 FPGA, we verified their perfor-
mance on modular multiplication (ModMult), modular
exponentiation (ModExp), and the Paillier encryption
operations. Comparative experiments showed that our
design achieved state-of-the-art acceleration effects.

• We evaluated the actual performance of the designed
accelerator on practical FL training tasks. We achieve
end-to-end acceleration performance gains of 12×,
7.7×, and 2.2× for GPU, ASIC, and FPGA, respec-
tively, compared to CPU in large-scale vertical linear
regression training tasks.

The remainder of the paper is organized as follows.
Section II presents related work. Section III briefly
reviews common PHE algorithms and analyzes the key
elements of accelerator design for FL. In Section IV,
we propose a unified FL heterogeneous acceleration
framework, and in Section V, we provide detailed
descriptions of the architecture designs for various
heterogeneous hardware. Section VI conducts experi-
ments and performance comparison analysis. Section VII
summarizes the paper and suggests future research
directions.
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II. RELATED WORK
In recent years, researchers have proposed hardware-
accelerated solutions for the high computational overhead of
PHE, which can be categorized into three types: GPU, ASIC,
and FPGA-based acceleration.

GPUs have high parallelism and large computational
resources, which can process large amounts of data and
complex mathematical operations in a short time, and have
been proven to greatly improve the efficiency and accuracy of
machine learning applications. It is a natural idea to accelerate
big number modular operations, and consequently RSA and
other cryptographic algorithms, based on GPUs. Feasible
solutions were proposed more than a decade ago [30],
[31], [32], and subsequent researchers attempted to further
optimize performance based on newer hardware [21], [33],
[34]. Cooperative Groups Big Numbers (CGBN) [35] is an
open-source library proposed by NVIDIA Research, which
accelerates multiple precision arithmetic (big numbers) based
on Compute Unified Device Architecture (CUDA), providing
implementations of Montgomery multiplication(MontMult)
[36] and big number modular operations, but does not
implement commonly used cryptographic algorithms in FL.
In recent work, some new FL architectures [37], [38], [39]
support GPU acceleration, but these works do not focus
on PHE-based FL algorithms. Mainstream AI frameworks
such as Pytorch [40] and Tensorflow [41] do not provide
support for big number ModMult and ModExp, making
it incompatible with FL’s PHE algorithms. Currently only
relatively few works consider engineering optimizations
based on GPUs. In the work of Cheng et al. [22], they
attempted to use GPUs to accelerate the federated logistic
regression training process, optimizing the storage, compu-
tation, and IO processes, and achieved an acceleration effect
of 88.4× and 44.9×, respectively, in horizontal and vertical
logistic regression training tasks using NVIDIA V100 cards.
In the work of Zeng et al. [42], both computational and
communication costs were considered, achieving even better
acceleration results.

Recently, some studies have focused onASIC implementa-
tion ofModMult, ModExp, and cryptographic operation [43],
[44], [45], [46]. Due to the complexity of FL algorithm
protocols and high cost of chip fabrication, more enterprises
tend to use commercial ASIC cryptographic accelerator cards
to improve computing efficiency. Several vendors provide
ASIC solutions, such as Intel QAT, Nitrox, and DX2040,
for cryptographic algorithm unloading. Previous research has
investigated the offloading of the Paillier algorithm in FL
using Intel QAT [23], [47]. QAT only provides ModExp
interface, not a Paillier algorithm interface. Zhuang [47]
considered using QAT for ModExp operations in Paillier
algorithm, while other calculations will still be processed by
the CPU. This was used to speed up the encryption process
of Int data for the encrypted database CryptDB, achieving
a 3-4× speedup. Zhou and Hua [23] proposed a PHE
offloading framework QHCS (QAT-based Homomorphic
Encryption Scheme) based on QAT accelerator, focusing

on asynchronous offloading of Paillier algorithm. It is
verified that using QAT offloading homomorphic encryption
calculation can greatly shorten the computing time and
improve the Paillier encryption throughput to 26.87KOPS.
Although Zhou et al. have considered applying QAT to FL
modeling, they only focused on offloading Paillier encryp-
tion calculations, and did not study other computationally
intensive calculations in FL.

FPGA provides flexibility between GPU and ASIC with
its hardware programmability, and has attracted increasing
attention from academia in recent years. FPGA supports
hardware circuit programming, and can overcome the
defects of fixed algorithms of ASIC. With sophisticated
circuit design, FPGA can also achieve good acceleration
effects and serve as a prototype design for ASIC chip.
Like GPU and ASIC accelerators for FL, most FPGA
accelerators adopt hardware-optimized Montgomery mod-
ular multiplication algorithm. San and At [24] accelerated
ModMult and ModExp on Xilinx Zynq 7000, and achieved
throughput of 366.3KOPS and 176.1OPS, respectively.
In the more recent work of this research team [25],
Paillier algorithm was implemented on the same hardware
platform, with throughput of 680.3OPS for 1024-bit Paillier.
Yang et al. [48] accelerated Paillier algorithm on Xilinx
XCVU9P, and reported a Paillier acceleration throughput
of about 5200OPS. Previous works mostly focused on
designing single circuits to support a specific algorithm,
i.e., ModMult, ModExp or Paillier, which greatly impaired
their performance in end-to-end FL. In our previous
work [13], we designed a flexible FPGA accelerator circuit
that can simultaneously accelerate ModMult, ModExp and
Paillier algorithms. Therefore, on Intel Stratix 10 GX2800
FPGA with similar on-chip resources as the work of
Yang et al. [48], we achieved a performance improvement
of about 3× compared with their work in end-to-end FL
experiments.

The accelerator designs in all of the above studies are based
on one kind of specific hardware. However, FL contains two
or more participants, so there exists the problem of device
heterogeneity. Although there have been study evaluating
the impact of heterogeneity on FL from an algorithmic
perspective [49], as our best known, no study has focused
on designing a general acceleration framework applicable
to heterogeneous hardware in FL. Therefore, in this paper,
we propose a unified FL acceleration framework that supports
GPU, ASIC, and FPGA hardware simultaneously, which has
the following advantages:

1) The framework promotes ease of adoption and
scalability of FL on various devices, allowing com-
monly used models to be trained across different
hardware without the need for additional hardware-
specific optimizations. This can make full use
of the heterogeneous hardware available to the
participants, providing a higher training accelera-
tion ratio compared to traditional single hardware
acceleration.
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2) The unified acceleration framework provides a uniform
interface for model developers, which means that they
do not need to be concerned about specific hardware
implementations, allowing them to focus more on
algorithm innovation.

In summary, the proposed unified FL acceleration frame-
work promotes ease of adoption, enhances computing
flexibility, and reduces development complexity and costs.

III. ANALYSIS OF KEY ELEMENTS FOR ACCELERATING
FEDERATED LEARNING
As mentioned earlier, mature FL frameworks typically utilize
a variety of PHE algorithms. To improve the performance
of PHE computation, it is essential to understand these
algorithms. RSA and Paillier are two classic PHE algo-
rithms, respectively satisfying the homomorphic properties
of multiplication and addition. They are widely used in
FL frameworks such as Tensorflow Federated (TFF) [50],
FATE [14], and PySyft [51]. These two algorithms are also
frequently considered as acceleration targets by FL hardware
accelerator designers. Before discussing the specific design
and implementation of the accelerator, we briefly review
the principles of these two algorithms and analyze the
acceleration potential of FL schemes based on them, which
leads us to our design goals and architecture.

A. REVIEW AND ANALYSIS OF PHE ALGORITHMS IN
FEDERATED LEARNING
1) REVIEW OF THE RSA ALGORITHM
RSA algorithm [6] was proposed in 1977, and then widely
used in the field of encryption and digital signatures. Given
RSA public key (n, e) and private key (n, d), the encryption
process for plaintext m(m < n) is as follows:

c = JmK = me mod n (1)

The notation J·K is used in this paper to represent encrypted
data. The decryption calculation is:

m = cd mod n (2)

The RSA algorithm satisfies the homomorphic multiplica-
tion property. Given two ciphertexts Jm1K and Jm2K encrypted
with RSA, then

Jm1K⊗ Jm2K =
(
Jm1K · Jm2K

)
mod n = Jm1 · m2K (3)

where ‘‘⊗’’ represents the ciphertext multiplication. The
equation (3) shows that each RSA ciphertext multiplication
can be implemented with one ModMult operation.

2) REVIEW OF THE PAILLIER ALGORITHM
The Paillier algorithm [7] is a public-key encryption scheme
introduced by Pascal Paillier in 1999. It is based on the
Composite Residuosity Class Problem and is characterized
by additively homomorphism.

Given the public key (n, g) and private key (λ, µ) for
Paillier encryption, where the plaintext to be encrypted is

denoted as m, and m < n. r is a random number selected
from Z∗

n2
(multiplicative group of integers modulo n2), and

the encryption operation is as follows:

c = JmK = gmrn mod n2 (4)

To reduce computational complexity, the privacy computing
platforms such as FATE [14] usually use g = n+ 1, then the
encryption operation is simplified to:

c = JmK = (n+ 1)mrn mod n2 = (m · n+ 1) · rn mod n2

(5)

Decryption can be expressed as follows:

m = µ · L(cλ mod n2) mod n (6)

FIGURE 1. Flow diagram of PSI_RSA algorithm.

where L(x) = (x − 1)/n. The homomorphic addition of two
Paillier ciphertexts satisfies:

Jm1K⊕ Jm2K =
(
Jm1K · Jm2K

)
mod n2 = Jm1 + m2K (7)

where ‘‘⊕’’ represents the ciphertext addition, and it can
be implemented using ModMult. Scalar multiplication can
be decomposed into multiple addition operations, therefore,
the Paillier algorithm satisfies the homomorphic scalar
multiplication, which can be achieved using ModExp.

3) APPLICATIONS OF PHE ALGORITHM IN FEDERATED
LEARNING
FL includes horizontal federated learning (HFL) and vertical
federated learning (VFL). In HFL, participants possess
different samples with overlapping features. Collaborative
modeling allows for an expanded training sample set. In VFL,
participants have overlapping samples, but the sample fea-
tures are different. Collaborative training enablesthe model to
consider more feature information. In this section, we take the
example of a two-party vertical federated logistic regression
(VFL LR) training task to introduce the applications of these
two PHE algorithms, RSA and Paillier, in FL.

The Private Set Intersection algorithm based on RSA
(PSI_RSA) [8] plays a role in sample alignment. In a vertical
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FIGURE 2. Flow diagram of VFL LR training with Paillier alogrithm.

FL scenario, assuming that participant A has data and labels
(x̃A, ỹ), and participant B has data (x̃B). There is partial
overlap in the data sample IDs, but the features are different.
Therefore, sample alignment is required before training, i.e.,
to identify the common samples owned by the participants
based on their IDs. We denote XA,XB as the ID sets of A and
B’s data, and nA, nB as the data sizes of A and B. Fig. 1 shows
the process of using PSI_RSA to find the intersectionD of XA
and XB without revealing their all data IDs, where H (·) is the
Hash function.

The Paillier algorithm is used to protect intermediate
results for backpropagation and parameter update without
revealing raw data in FL. After PSI_RSA, the data sets of both
parties are denoted as (xA, y), (xB), and the training process
for VFL LR [9] is shown in Fig. 2. Here, h(·) represents the
Sigmoid function.

As can be seen from the algorithm flow in Fig. 1
and Fig. 2, RSA encryption and decryption are used in
PSI_RSA to achieve blinding and signing, while Paillier
is used in VFL LR to encrypt gradient factors to prevent
leaking raw data. The gradient is calculated through matrix
multiplication in the Paillier encryption space (multiplication
of plaintext matrix with encrypted gradient factor vector), and
random perturbations are added to the gradient via Paillier
homomorphic addition. Similarly, vertical linear regression
and vertical XGBoost training tasks can also be implemented
based onRSA and Paillier. InHFL algorithms, data protection
is also achieved through PHE, such as encrypting the
gradients calculated locally by each participant using Paillier,
summing the encrypted gradients by the agency and sending
them back to each participant to update their respective
parameters.

B. KEY ELEMENTS OF FEDERATED LEARNING
ACCELERATOR DESIGN
By reviewing the cryptographic algorithms involved in FL in
the previous subsection, we find the following characteristics:

1) Different cryptographic algorithms will be used in
different stages of FL tasks. Specifically, RSA will

be used for data processing, while Paillier algorithm
will be used during training. In addition, computations
in the encryption space and computations between
plaintext and encrypted spaces will be involved at
various stages of the process.

2) Various cryptographic algorithms take ModMult or
ModExp as their fundamental operations, and create
different algorithms through different permutations and
combinations. Previous researchers [52] have catego-
rized cryptographic operations in FL into nine types,
and through a time slice analysis, their conclusion
suggests that 95% of computation time spent on
cryptographic operations involved in FL is consumed
by ModMult or ModExp calculations.

3) FL requires at least two participants, and existing
FL frameworks only define the relevant algorithms,
without defining the lower-level hardware implemen-
tation. As a result, participants may have different
types of heterogeneous computing hardware, which
poses a challenge for designing a unified accelerator
architecture.

In light of above findings, we propose three objectives for
this paper:

1) The designed heterogeneous accelerator must have
good flexibility and can simultaneously support a
variety of cryptographic algorithms in FL.

2) As ModMult and ModExp calculation are the main
acceleration targets, the accelerator needs to provide
a considerable acceleration ratio for these two basic
operators.

3) A unified framework needs to be defined for accel-
erators to achieve compatibility with a variety of
heterogeneous computing hardware.

Based on the analysis, the computational cost of FL
is mainly concentrated on encryption and homomorphic
computation, with a large number of underlying calls to
ModMult and ModExp operators. Therefore, we consider
designing a software and hardware collaborative acceleration
scheme around these two operators. GPU, ASIC and FPGA
are all commonly used computing devices.We briefly analyze
the advantages and disadvantages of these three hardware in
the context of FL computational acceleration as follows:

• GPU has the highest performance and energy consump-
tion, with powerful parallel computing capabilities and
high flexibility, enabling the implementation of various
cryptography algorithms. However, the underlying hard-
ware of GPU is not programmable, so it cannot directly
perform large-width integer calculations and requires
custom data structures and corresponding algorithms.

• ASIC has the highest energy efficiency for specific
algorithms with the lowest flexibility. Custom operators
need to be finely designed for algorithms not supported
by the ASIC chip.

• FPGA has moderate performance and energy consump-
tion. Because of its programmable capability, it can
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support custom data structures well, but the hardware
resources on the chip are limited. Overly complex circuit
designs can lead to a sharp decrease in work frequency
(Fmax), thereby compromising performance.

In the next section, we propose a unified FL heterogeneous
acceleration framework considering the above hardware
features.

IV. THE UNIFIED HETEROGENEOUS ACCELERATION
FRAMEWORK FOR FEDERATED LEARNING
A. HARDWARE-FRIENDLY ALGORITHMS
Encryption, decryption, and ciphertext computation all
depend on the big number ModMult and ModExp. Directly
executing the raw operators on hardware would result
in significant overhead, so we consider optimizing with
hardware-friendly Binary Exponentiation algorithm [53] and
Montgomery algorithm [36].

The ModExp is composed of repeated ModMult. Binary
Exponentiation algorithm can reduce the number ofModMult
in xy mod n from O(y) to O(log2 y). However, in traditional
ModMult, division operations are usually time-consuming on
heterogeneous hardware. MontMult is a classical algorithm
that accelerates ModMult by converting division into shifts,
multiplications, and additions/subtractions that computers
excel at. Algorithm 1 shows the MontMult, which we denote
asmont_multb(·, ·, ·) in this paper, i.e.,mont_multb(x, y, n) =
x ·y ·b−L mod n, where b is the radix for MontMult satisfying
coprime to n (gcd(n, b) = 1), and L is the width of the
modulus n in base b.

Algorithm 1Montgomery Multiplication
Input: x = (xL−1 . . . x1x0)b, y = (yL−1 . . . y1y0)b, n =

(nL−1 . . . n1n0)b, with 0 ≤ x,y ≤ n, R = bL with
gcd(n, b) = 1

▷L is the width of n in base b
Output: xyR−1 mod n
1: A← 0 ▷ A = (aL−1 . . . a1a0)b
2: n′←−n−1 mod b
3: for i = 0 to L − 1 do
4: ui← (a0 + xiy0)n′ mod b
5: A← (A+ xiy+ uin)/b
6: end for
7: if A ≥ n then
8: A← A− n
9: end if

10: return(A)

Due to the high frequency of modulus reuse in FL, to avoid
redundant calculations of n′, in our design, we directly
compute it on the CPU and pass it as a parameter to the
hardware operator.

A big number x can be converted into Montgomery
Domain by computing MontMult mont_multb(x, b2L , n).
Then ModMult can be realized using four MontMult as
shown in Algorithm 2. ModExp is composed of multiple

ModMult, and performing consecutive ModMult on inter-
mediate results eliminates the need to exit and re-enter
the domain. Algorithm 3 shows the Binary Exponentiation
algorithm based on Montgomery Multiplication.

Algorithm 2Modular Multiplication Based on Montgomery
Multiplication
Input: x = (xL−1 . . . x1x0)b, y = (yL−1 . . . y1y0)b, n =

(nL−1 . . . n1n0)b, with 0 ≤ x,y ≤ n
▷L is the width of n in base b

Output: x · y mod n
1: x ← mont_multb(x, b2L , n)
2: y← mont_multb(y, b2L , n)

▷ translate x, y to Montgomery Domain
3: A← mont_multb(x, y, n)
4: A← mont_multb(A, 1, n)

▷ retrieve A from Montgomery Domain
5: return(A)

Algorithm 3 Binary Exponentiation Based on Montgomery
Multiplication
Input: x = (xL−1 . . . x1x0)b, y = (yl−1 . . . y1y0)2, n =

(nL−1 . . . n1n0)b, with 0 ≤ x,y ≤ n
▷L is the width of n in base b
▷l is the width of y in base 2

Output: xy mod n
1: A← mont_multb(1, b2L , n)

▷ translate 1 to Montgomery Domain
2: x ← mont_multb(x, b2L , n)

▷ translate x to Montgomery Domain
3: for i = 0 to l − 1 do
4: if yi == 1 then
5: A← mont_multb(A, x, n)
6: end if
7: x ← mont_multb(x, x, n)
8: end for
9: A← mont_multb(A, 1, n)

▷ retrieve A from Montgomery Domain
10: return(A)

B. OVERALL ARCHITECTURE OF THE PROPOSED
ACCELERATION FRAMEWORK
As mentioned earlier, FL algorithms use PHE algorithms
such as RSA and Paillier to ensure data security during
the interaction process. The costs of RSA and Paillier
encryption/decryption and homomorphic computation con-
centrate on ModMult and ModExp, and their hardware
implementation relies on MontMult. Therefore, we propose
a four-layer architecture of an acceleration framework,
as shown in Fig. 3.
• FL Application Layer (FL APP): The FL appli-
cation layer includes the implementation of vari-
ous algorithms such as horizontal federated logistic
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FIGURE 3. Top-level block diagram of the proposed acceleration framework.

regression (HFL LR), horizontal federated linear regres-
sion (HFL LinR), VFL LR, vertical federated linear
regression (VFL LinR), and vertical federated XGBoost
(VFL XGB). Many open-source FL frameworks have
already implemented classic FL algorithms, making
it possible to implement these algorithms based on
existing engineering work.

• PHESoftwareDevelopment Kit Layer (PHESDK): This
layer mainly implements PHE-related operators used in
FL algorithms, such as Paillier encryption (Paillier Enc),
point-wise addition of Paillier ciphertext vectors and
multiplication of Paillier ciphertext matrices (Paillier
MatrixMult) in HLR/VLR. A unified SDK is designed
for heterogeneous hardware development, which can
be called by FL APP. The selection of heterogeneous
hardware for acceleration can be achieved through
parameter configuration in the FL APP.

• Mod Operator Layer (MOD OP): This layer includes
ModMult and ModExp operators.

• Base Operator Layer (BASE OP): The bottom layer is a
hardware-friendly basic operator layer that implements
MontMult operators.

As shown in Fig. 3, based on the analysis of different
heterogeneous hardware’s characteristics in Section III-B,
we adopt different software/hardware partitioning strategies
for GPU, ASIC, and FPGA at the PHE SDK layer and the
MOD OP layer. MontMult Module is designed for GPU and
FPGA respectively, while ASIC has already solidified this
module in the chip.

For GPU, as shown in Fig. 3.(a), due to the flexibility
brought by the mature programming framework, the lower
three layers of the proposed architecture are realized using
CUDA kernels, thus, the data interaction between these

three layers can be achieved through hardware data flow to
minimize access latency.

For FPGA, shown in Fig. 3.(c), as the hardware circuits
on it cannot be flexibly switched without re-burning,
we only implement the most basic MontMult Module (BASE
OP) on hardware and then extend it into MOD OP and
higher-level PHE SDK through software encapsulation to
provide acceleration services for FL APP. We use OpenCL
to implement FPGA architecture to achieve the purpose of
rapid deployment.

For ASIC, shown in Fig. 3.(b), the software and hardware
partitioning of the ASIC accelerator falls between GPU and
FPGA designs. Our currently used Intel QAT 8970 has
built-in Montgomery operation and provides the API of
ModExp Module. Therefore, we implement the ModMult
module directly in software using C language and let it work
together with the ModExp Module on hardware to form the
MOD OP layer of the ASIC accelerator. It should be noted
that when using other models of ASICs, the software and
hardware partitioning of each module may differ based on
the APIs it can provide, but it can still be unified under the
current 4-layer framework.

C. TIMELINE OF SOFTWARE AND HARDWARE
COLLABORATION
Following the framework described in the previous section,
we have implemented acceleration operators on the
three types of hardware to offload computation intensive
cryptography operations in FL tasks. Fig. 4 shows the
software/hardware collaborative timeline of the proposed
framework.

We developed GPU and FPGA accelerators using CUDA
and OpenCL, and for ASIC accelerator, we invoked the
low-level big number ModExp operator through the API

588 VOLUME 12, 2024



B. Che et al.: UniFL: Accelerating FL Using Heterogeneous Hardware Under a Unified Framework

FIGURE 4. Software/hardware collaborative timeline of the proposed
framework.

provided by Intel.We takeModExp as an example to illustrate
the timeline.

As shown in Fig. 4, on the host CPU side, we perform
initialization (e.g., get hardware device instances, create
corresponding context and handlers, allocate buffers, etc.),
and then carry out precomputation and data processing (e.g.,
generate keys, prepare hardware input). Subsequently, the
CPU software writes the prepared data to the specified
memory area that can interact with acceleration devices. For
GPU and FPGA, CPU copies the data to the DDRmemory on
the device, while QAT allocates a segment in the host memory
as global memory, which can be read or written by both QAT
and host CPU. Finally, the CPU enqueues computational
tasks to allocate to the corresponding hardware for execution.

On the hardware side, the corresponding device retrieves
the data required for the calculation from the specified
memory area, and then performs calculations based on
queued tasks.

It is worth noting that when the HW accelerator performs
modular-related calculations, the CPU software not only
schedules the operator, but also carries out some other
operations, such as plaintext operations and loss function
calculations for all three kinds of devices, and ModMult
operations for ASIC accelerator. Since these operations
require very few clock cycles, their execution time can be
covered by the calculation time of the hardware accelerator
without causing additional delay.

V. ARCHITECTURAL DESIGN OF HETEROGENEOUS
ACCELERATORS
Based on the proposed unified heterogeneous acceleration
framework, in this section, we introduce the accelerator
design of three heterogeneous hardware in detail.

A. DESIGN AND IMPLEMENTATION OF GPU
ACCELERATOR
We adopt the MontMult algorithm as BASE OP layer and
MOD OP layer is formed through multiple calls to the
MontMult Module. To maximize performance, we carefully
designed the Paillier Enc and MatrixMult modules inside the
PHE SDK layer based on the analysis of the PHE algorithm
in Section III.
For example, Paillier encryption calls theModExp operator

to calculate s = rn mod n2, and then use the ModMult

FIGURE 5. Hardware architecture design diagram of GPU accelerator.

operator to calculate c = (m · n + 1) · s mod n2. Directly
calling the complete ModMult and ModExp modules will
result in duplicateMontgomery domain entry/exit operations,
which lead to more computational complexity and data
movement. Therefore, we merge several calls of ModMult
and ModExp modules into Paillier Enc Module, making the
entire Paillier encryption calculation only require to enter and
exit the Montgomery domain once each.

Fig. 5 shows the GPU accelerator architecture proposed in
this study. We have designed first-in-first-out (FIFO) queues
in the global memory of the GPU for input and output,
which helps to buffer data streams. The public key-related
parameters that need to be frequently accessed are stored
in shared memory (SMEM) on the GPU chip to minimize
memory access latency. Streaming Multiprocessors (SMs)
are arrays of CUDA cores in the GPU chip used for parallel
computation of the BASE OP and MOD OP layer. The
total available number of SMs varies depending on the GPU
hardware model used. The green square in Fig. 5 represents
a thread used for parallel computation. We define a group
of threads capable of handling big number calculations as
an instance, and each block contains multiple instances. The
task scheduler is used for scheduling among multiple SMs to
control the operation of each operator.

Algorithm 4 shows the GPU implementation of the Paillier
encryption operator based on CUDA, referred to as GPUPE.
Due to the modulus width of over 1024 in the encryption
operation, it needs to be split into multiple threads for
computation. The value of ‘threadPerInstance’ is related to
the width of the big number. For example, in the case of a
Paillier key width of 1024, the highest modulus width in the
calculation is 2048. When calculated with FP32 precision,
‘threadPerInstance’ needs to be set to 64. We provide a
unified description of the notations used in the subsequent
algorithms in Table 1 for ease of reading.

As the public key n remains constant in the Paillier
encryption process and to avoid repeat calculations of n2 in
multiple threads, we directly calculate this on the CPU and
pass it as an input parameter to the GPU, which is written
to shared memory for faster memory access. Additionally,
for optimized ModMult and ModExp using the MontMult on
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TABLE 1. Notations used in Algorithms.

the GPU, the module inverse of n2 needs to be passed to the
GPU. We don’t emphasize this in algorithms considering the
readability.

Algorithm 4 demonstrates the execution flow for a single
thread in GPU. Step 1-9 read input data: Step 1-2 calculates
the instance index ‘i’ for each thread. Step 3-4 reads the input
data corresponding to instance. Step 5-8 shows that for each
block, only one instance needs to read n and n2 from global
memory to shared memory. Wait for all data to be read before
performing subsequent calculation operations. Step 10-13
perform the encryption, As is illustrated at the beginning of
this subsection, step 12 should be executed directly in the
Montgomery domain after the ModExp in step 11, to reduce
the frequency of data transfers between the Montgomery
domain, ultimately shortening computation time.

Algorithm 4 Paillier Enc Module Implemented on GPU
Accelerator
Input: X = [x0, x1, · · · , xN−1], public key n, R =

[r0, r1, · · · , rN−1], nsquare = n2

Output: [(xin+ 1)rni mod n2, i = 1, 2, · · · ,N − 1]
1: i← (blockIdx.x · blockDim.x+ threadIdx.x)
2: i← i/threadPerInstance

▷ instance id corresponding to the current thread
3: x ← asynchronously load xi
4: r ← asynchronously load ri
5: if threadIdx.x/threadPerInstance==0 then
6: shared_n← asynchronously load n
7: shared_nsquare← asynchronously load nsquare
8: end if
9: Wait for all threads to finish loading data

10: x ← s · shared_n+ 1
11: t ←ModExp(r, shared_n, shared_nsquare)
12: result ←ModMult(t, x, shared_nsquare)
13: asynchronously store result as Outi

For the commonly used vertical federated linear regres-
sion and logistic regression algorithms, we analyzed their
algorithm flow and found that dense computation consists of
two steps. The first step is the matrix multiplication between
the plaintext feature matrix and the ciphertext gradient

factors, as shown in the following equation:
x11 x21 · · · xN1
x12 x22 · · · xN2
...

... · · ·
...

x1k x2k · · · xNk




Jy1K
Jy2K

...

JyN K


=

[
N∑
i=1

xi1 ⊗ JyiK,
N∑
i=1

xi2 ⊗ JyiK, · · · ,
N∑
i=1

xik ⊗ JyiK

]T
(8)

where N is the batch size and k is the number of features.
Here, 6 represents the sum of the ciphertexts. The second
step is to select k random numbers {r1, r2, · · · , rk}, add them
to the ciphertext gradient to ensure data privacy:

enc_grident

=

[(∑N
i=1 xi1 ⊗ JyiK

)
⊕ r1, · · · ,

(∑N
i=1 xik ⊗ JyiK

)
⊕ rk

]T
(9)

The elements on the right side of the above equation
each contain N homomorphic scalar multiplications and N
homomorphic additions.
The entire operator is implemented on the GPU, converting

all input data to the Montgomery domain and returning the
calculation results after completing ModMult and ModExp.

Algorithm 5 Paillier MatrixMult Module Implemented on
GPU Accelerator
Input: plaintext integers matrix Xk×N , encryptext

vectorY = [y0, y1, · · · , yN−1], random
vectorR = [r0, r1, · · · , rN−1], public key n, nsquare = n2

Output: Xk×N ⊗ Y ⊕ R
1: i← (blockIdx.x · blockDim.x+ threadIdx.x)
2: i← i/threadPerInstance

▷ instance id corresponding to the current thread
3: x ← asynchronously load xi%k i/k
4: y← asynchronously load yi/k
5: if threadIdx.x/threadPerInstance==0 then
6: shared_n← asynchronously load n
7: shared_nsquare← asynchronously load nsquare
8: end if
9: Wait for all threads to finish loading data
10: x ←ModExp(y, x, shared_nsquare)
11: asynchronously store x as xi%k i/k
12: if i<k then
13: r ← asynchronously load ri
14: result ← r · shared_n+ 1

▷ encrypt random number r
15: for j = 0 to N − 1 do
16: result ←ModMult(result, xij, shared_nsquare)
17: end for
18: asynchronously store result as Outi
19: end if
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Algorithm 5 is the Paillier MatrixMult Module based on
CUDA implementation, referred to as GPUPMM. Steps 1-11
use k × N instances to parallel compute xij ⊗ yi(i =
1, 2, · · · ,N , j = 1, 2, · · · , k). Step 12-19 sum the results
and add the random number. During the calculation process,
only the final result is converted out of the Montgomery
domain.

It should be known that our GPU architecture design
enables high scalability across different GPUs. I.e., our
design assigns 8 threads to each 1024bit data, and 16 threads
to each 2048bit data. Therefore, in the Nvidia Tesla T4 GPU
used in the experiment, all 2560 cores are used, so that we
can support 320 1024bit, or 160 2048bit data to compute in
parallel.

B. DESIGN AND IMPLEMENTATION OF ASIC
ACCELERATOR
Considering the practical situation of the participants in
FL, it is more common for them to have purchased ASIC
accelerators, rather than custom ASICs specifically for FL
tasks. As the Intel QuickAssist Technology (QAT) adapter
provides an extendable way to accelerate cryptography and
compression capabilities, this accelerator has been widely
used in enterprises that require large data storage and
machine learning applications, which are also the most likely
participants in FL. Therefore, we choose Intel QAT 8970 to
develop the ASIC-based accelerator.

The ASIC provides a ModExp calculation interface, but
does not support ModMult. Therefore, ModMult Module is
designed in CPU. We implemented this module by simply
implementing Algorithm 2 in C language.
At this point, the main challenge faced by this accelerator

is how to efficiently schedule operators located on ASIC chip
hardware and CPU software, respectively. Thus, we designed
a task scheduler that can asynchronously call multiple
threads, enabling efficient collaboration between the ASIC’s
ModExp operator and the CPU’sModMult operator. The way
the task scheduler works is shown in Fig. 6.
SinceQAT does not support parallel calculation ofmultiple

data in a single instruction and multiple data (SIMD) manner,
we designed a task scheduler to create two task queues for
the ModExp calculation provided by QAT and the ModMult
calculation implemented on the CPU respectively. In this
way, by splitting multiple data in each batch into independent
calculation tasks and adding them to their respective queues
through the task scheduler, the ModExp and ModMult
calculation stages required by multiple data can form a
two-stage pipeline. That is, while the ModMult Module
on the CPU gets the result of the QAT ModExp Module
and performs ModMult calculations, QAT can perform the
ModExp calculation of the next data. For each task, we set a
FLAG to indicate the completion of the ModExp calculation
to ensure that the ModMult Module in the CPU can correctly
obtain the required input data.

Below, we provide a detailed introduction to several
PHE algorithms designed specifically for ASIC accelerators.

FIGURE 6. Work flow of the proposed ASIC task scheduler.

Algorithm 6 is our implementation of the Paillier encryption
algorithm based on the QAT ModExp API. In the algorithm,
cpaCyLnModExp is the ModExp Operator API provided by
QAT, and ModMult is the ModMult Module API designed to
work on CPU.

Algorithm 6 Paillier Enc Module Implemented on ASIC
Accelerator
Input: X = [x0, x1, · · · , xN−1], public key n, R =

[r0, r1, · · · , rN−1], nsquare = n2

Output: [(xin+ 1)rni mod n2, i = 1, 2, · · · ,N − 1]
1: for i = 0 to N − 1 do
2: cpaCyLnModExp(ri, n, nsquare, tmpi)

▷ submit computation tasks asynchronously
3: end for
4: for i = 0 to N − 1 do
5: synchronize the ModExp result tmpi
6: xi← xi · n+ 1
7: Outi←ModMult(tmpi, xi, nsquare)
8: end for

For ciphertext computations, we use the QATModExpAPI
to perform k × N homomorphic scalar multiplications and
combine them with CPU-based ModMult for homomorphic
addition. The algorithm implementation process is similar
to Algorithm 6, and this implementation also uses the
asynchronous calling feature of the task scheduler as shown
in Algorithm 7.

In practical work, we found that the time it takes for ASIC
to complete one ModExp calculation is longer than the time
for CPU to complete one ModMult calculation. Therefore,
the time for CPU to perform ModMult can be completely
covered by the time it takes for ASIC to perform the next
data ModExp calculation. This enables the accelerator to
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Algorithm 7 Paillier MatrixMult Module Implemented on
ASIC Accelerator
Input: plaintext integers matrix Xk×N , encryptext

vectorY = [y0, y1, · · · , yN−1], random
vectorR = [r0, r1, · · · , rN−1], public key n, nsquare = n2

Output: Xk×N ⊗ Y ⊕ R
1: for i = 0 to k − 1 do
2: for j = 0 to N − 1 do
3: cpaCyLnModExp(xij, yj, nsquare, tmpij)

▷ submit computation tasks asynchronously
4: end for
5: end for
6: for i = 0 to k − 1 do
7: Outi← ri · n+ 1
8: for j = 0 to N − 1 do
9: synchronize the ModExp result tmpi

10: Outi←ModMult(tmpij, resulti, nsquare)
11: end for
12: end for

complete one PHE SDK call in the time for ASIC to
complete all ModExp calculations. In other words, the task
scheduler’s asynchronous calling mode we designed can
maximize the utilization of ASIC hardware and achieve the
optimal acceleration effect.

C. DESIGN AND IMPLEMENTATION OF FPGA
ACCELERATOR
The FPGA accelerator implementation is based on our prior
work [13]. As analyzed in Section III-B, since the circuit
on the FPGA is relatively fixed during runtime, directly
implementing high-level operators (i.e., PHE SDK layer
operators) on the FPGA will not be conducive to reusing
on-chip computing resources, thus compromising maximum
performance.

Therefore, as shown in Fig. 3(c), the architecture proposed
in this paper implements the bottom layer, i.e., BASIC OP
layer, in which is a MontMult Module on the FPGA. Support
for various PHE algorithms in FL is achieved by making
multiple calls to the FPGA MontMult Module.

Fig. 7 shows the FPGA accelerator architecture proposed
in this paper. The Data Load Unit (DLU) and Data Store Unit
(DSU) are implemented as FPGA logic circuits, responsible
for reading input data for Montgomery calculation from
global memory and writing the FPGA-calculated output
result back. Since the FPGA provides programmable RAM
resources on-chip, the latency of on-chip RAM access is
much lower than that of off-chip global memory access.
Therefore, we use on-chip RAM to implement input and
output FIFOs to reduce the number of read/write interactions
between the FPGA and global memory, thereby maximiz-
ing memory read/write efficiency. Relevant control signals
and key parameters are passed on-chip through OpenCL
channels. Similar to the definition of instances in GPU
implementation, we design multiple Processing Elements

FIGURE 7. Hardware architecture design diagram of FPGA accelerator.
The red dashed box shows the designed hardware circuit, where each
unit in the circuit together forms the MontMult Module and is called by
higher layers as the BASIC OP layer.

(PEs) in FPGA to achieve SIMD parallel calculation of a
group of big numbers. At the same time, each unit in FPGA
has its own task scheduler to control the calculation process.

In the Montgomery Multiply Unit (MMU), we imple-
mented a hardware-aware Montgomery algorithm that we
designed based on the Montgomery algorithm mentioned
in Algorithm 1 in Section IV-A, adapted to the hardware
characteristics of the FPGA.

The specific optimizations we made are as follows:

• Advance the timing of calculating the required ui+1
(step 4) for the next loop to coincide with step 5 of
the current loop. In this way, the calculation time of
step 4 and step 5 in the original Algorithm 1 can overlap
in multiple loops.

• Vectorizing the input/output in Algorithm 1 to support
SIMD parallelism, each big number in a SIMD vector is
calculated on the corresponding PE.

• The loop in Algorithm 1 is implemented using a pipeline
approach.

After implementing the MontMult module on the FPGA
hardware, it is integrated with the unified FL heterogeneous
acceleration framework as the BASIC OP layer, and encap-
sulated as a high-level operator in the PHE SDK layer for
interacting with the FL APP layer.

VI. EXPERIMENTAL RESULTS
A. EXPERIMENTAL METHODOLOGY
The GPU platform we used is the 12nm NVIDIA Tesla
T4 GPU. The FPGA platform is the Intel Programmable
Acceleration Card (PAC) D5005, which features the Intel
Stratix 10 GX2800 FPGA. The ASIC platform is the
Intel QuickAssist Technology (QAT) adapter 8970, which
provides an interface for accelerating ModExp operations.

We have verified the performance of cryptographic
operations in our development environment, in which the
host server equips an Intel Xeon E7-4830 V3 processor
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with 128GB memory. We connected three types of accel-
eration devices to the server through the PCIe interface.
The comparison of the three accelerators, as well as the
cross-sectional comparison of the existing studies, are based
on this experimental environment. The results are presented
in detail in the next Section VI-B.

Furthermore, in order to validate the effectiveness of our
accelerator in actual FL applications compared to powerful
CPUs, we test the end-to-end training performance in our
production environment. Each host server in the production
environment is equipped with an AMD EPYC 7A23 48-Core
Processor CPUwith 128GBmemory, and can provide several
times the computing power of the development environment.
We integrated our accelerator into the existing open-source
FL training framework FATE [14], and the results are shown
in Section VI-C.

The software environment used in the experiment is as
follows. Our environment uses the Linux operating system
with kernel version 3.10 and GCC version 9.1.0. For the
GPU accelerator, we use the CUDA 10.0 to design CUDA
kernels and provide runtime environment. For the FPGA
accelerator, we use Intel OpenCL SDK v20.3 to design
OpenCL kernels for the BASE OP Layer, and synthesis them
into FPGA bitstream file which can be loaded into FPGA
fabric. PyOpenCL is used to implement the call interface
between the host CPU and the FPGA hardware. For QAT,
in the MOD OP layer, we use the API provided by the
manufacturer to call the ModExp operator, and use the
implementation of the ModMult operator in the python PHE
library [54]. PHE SDK layer operators are encapsulated by
MOD OP layer operators through python. Our baseline CPU
implementation is based on the open-source CPU libraries
gmpy2 [55] and PHE.

As for compiler optimizations, for the code runs on
CPU, we only use the -O1 optimization. For the code runs
on heterogenous hardware, we just use vendors’ default
compilation optimizations for SDKs, e.g., NVCC default
optimizations for GPU, and OpenCL default optimizations
for FPGA.

B. PERFORMANCE OF CRYPTOGRAPHIC OPERATIONS
To compare the performance of our operators with other
works, we chose ModMult, ModExp (RSA enc/dec), and the
Paillier encryption algorithm as our benchmark targets.

1) THE PERFORMANCE OF HETEROGENEOUS
ACCELERATORS UNDER A UNIFIED FRAMEWORK
In the 2048-bit ModMult and ModExp experiments, we ran-
domly selected a 2048-bit big integer as the modulus n and
chose x and y slightly smaller than the modulus (2047-bit
number) as the operator input to simulate the most complex
scenario in actual operations. We tested the CPU ModMult
and ModExp operators performance using the gmpy2 library.

For the Paillier Enc test, the modulus is the square of the
public key n, so we generated a 1024-bit key n, randomly

TABLE 2. Throughput of cryptographic operations with 2048 modular bit
width of the three proposed accelerators.

FIGURE 8. Acceleration effect of three proposed accelerators for
cryptographic operations with 2048 modular bit width.

TABLE 3. Energy efficiency (Throughput/Watt) of cryptographic
operations with 2048 modular bit width of the three proposed
accelerators.

selected float32 data as plaintext. For CPU, we conducted
tests using the PHE library. And we referred to the encoding
method in the PHE library to convert the plaintext into an
integer as input to the hardware Paillier Enc operator.

For all tests, we processed 30,000 data at a time, started
to statistic performance after preprocessing 10,000 data, and
repeated each test 5 times to obtain the average result. Table 2
shows the performance of proposed accelerators in the three
benchmark tests with 2048 modular bit width.

As shown in Table 2, the GPU, ASIC, and FPGA
accelerators we designed can achieve excellent acceleration
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TABLE 4. The GPU accelerators performance of cryptographic operations with 2048 modular bit width.

TABLE 5. The ASIC accelerators performance of cryptographic operations
with 2048 modular bit width.

FIGURE 9. Accelerated effect of integrating the accelerator into the FATE
framework for small-scale end-to-end federated learning.

FIGURE 10. Accelerated effect of integrating the accelerator into the FATE
framework for large-scale end-to-end federated learning.

ratios under the proposed unified acceleration framework.
The acceleration effect is visually demonstrated in Fig. 8.
For the sake of demonstration, we standardize the CPU
compute time and report the acceleration times of various
heterogeneous hardware compared to the CPU. Due to its
greater computing resources and parallelism, the GPU can

provide acceleration ratios of 15.7×, 131.4×, and 139.3×
for ModMult, ModExp, and Paillier encryption operators
respectively compared to the CPU. The ASIC can achieve
similar performance to the GPU in ModExp operations due
to its advantages in solidified dedicated circuit, and can bring
a performance improvement of 83.9× compared to the CPU
in Paillier encryption operations. In contrast, the acceleration
effect of the FPGA accelerator is not as significant as
the other two accelerators, but it can bring acceleration
ratios of 5.3×, 3.0×, and 3.2× for ModMult, ModExp,
and Paillier encryptions respectively compared to the CPU.
Considering that in general, the performance improvement
of about 30× can be achieved by converting FPGA design
prototypes into ASICs, and the expected performance of our
design after tape-out can be comparable to the current ASIC
accelerator.

The energy efficiency are presented in Table 3.We conduct
experiments on GPU, ASIC and FPGA and monitor the
hardware power consumption during the invocation of
operators, taking the average value of the measurements.
As a result, the power consumption of the ModMult operator
is 33W on GPU and 25W on FPGA. The ModExp and
Paillier Enc operators lead the GPU power to 70W during
run time while FPGA’s power remains stable. Since it’s hard
to measure the real-time power of QAT, we conservatively
calculate the energy efficiency based on its TDP of 23W.

As for the experimental results in Table 3, it is expected that
ASIC has the best energy efficiency, and the pure hardware
implementation of ModExp operator energy efficiency is
about 325× of CPU, 3.4× of GPU. It should be noted that
our FPGA uses a 14nm process, which is more backward
than the 12nm process of the GPU, so the ModMult energy
efficiency is about half that of the GPU. For ModExp and
Paillier operators, due to the need for more CPU participation
in our FPGA implementation, frequent data moving may
causes the loss of energy efficiency.

2) PERFORMANCE COMPARISON WITH THE EXISTING
WORKS
Table 4 presents the performance comparison of the GPU
accelerators. Our designed GPU accelerator can easily
scale according to the GPU computing power. Therefore,
considering the hardware differences used in different works,
we report the scaled accelerator performance. The basis for
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TABLE 6. The FPGA accelerators performance of cryptographic operations.

standardization is the computing power of the Tesla T4
provided by the vendor. standardized results in the table
are denoted as ‘Scaled’. Based on this, due to the fact
that the compared works all utilized PCIe interface GPUs
deployable in data center servers, we also considered the
power consumption factors of different boards, and the
comparison results are presented in the last two rows of
the table. In all tables, ‘-’ marked cells indicate that the
current design does not support the algorithm or that relevant
information has not been disclosed.

From the comparison, it can be seen that for ModExp with
a modulus bit width of 2048, our designed GPU accelerator’s
performance is increased by about 1.9× compared to
previous work [21], and after standardization based on
GPU computing power and power consumption, our relative
performance can reach 4.6× of theirs. For Paillier encryption
with a key bit width of 1024 (amodular bit width of 2048), the
scaled energy efficiency of our designed accelerator can reach
4.8× compared to the implementation by Cheng et al. [22] on
the V100 GPU.

In the work by Zhou et al. [23], they considered using
QAT to offload ModExp in Paillier encryption. As shown in
Table 5, with the help of a sophisticated asynchronous task
scheduler design, as described in Section V-B, we achieved
about a 46% improvement in the performance of paillier
encryption implemented on the same model ASIC compared
to previous work.

Table 6 shows the comparison of FPGA accelerators. It can
be seen that the previous works [24], [25] designed relatively
fixed circuits, which means that their FPGA bitstreams can
only support one specific algorithm at a time, thus unable to
accelerate all cryptographic performance bottlenecks related
to FL. In contrast, our design can flexibly support multiple
FL algorithms, thereby meeting end-to-end FL acceleration
needs.

In terms of performance, existing works [24], [25], [26] are
all based on embedded FPGAs, and [24], [25] did not make
full use of FPGA hardware resources. However, in the actual
FL deployment environment, FPGAs are usually chosen for
more powerful devices deployed on servers. This makes
their research and actual application scenarios quite different,
leading to much less acceleration effect than our accelerator.

C. END-TO-END PERFORMANCE OF FEDERATED
LEARNING TASK
Two commonly used public datasets, Kaggle datasets on
breast cancer [56] and motor temperature [57] are used, and
we selected two of the most common FL training tasks to
evaluate the end-to-end performance of accelerators: logistic
regression and linear regression. The breast cancer dataset
has a size of 569, and 800 data samples were randomly
selected from the motor temperature dataset for testing, with
the training set and test set divided in 7:3. The test results are
shown in Fig. 9.

From the comparison results in Fig. 9, our accelerator
exhibits considerable acceleration performance in end-to-
end linear regression and logistic regression tasks. Compared
with the software (SW) implementation, the GPU and ASIC
(QAT) implementations achieve around 3× acceleration, and
the FPGA is close to 2× acceleration.
To compare the hardware acceleration performance in

large-scale training, we also trained a linear regression task
using the entire motor temperature dataset, which consists of
133016 data samples. The test results are shown in Fig. 10.

With an increasing amount of computation, the hardware
operator acceleration effect becomes more pronounced.
Compared with the SW’s single iteration time, the time
overheads for using GPU, ASIC (QAT), and FPGA oper-
ators are reduced by 12.0×, 7.7×, and 2.2×, respectively.
In summary, through these experiments, we verified the
performance improvement effect of our proposed unified
acceleration architecture and three hardware operators on
end-to-end training tasks in FL.

In Section VI-B, we reported that our proposed cryp-
tographic acceleration operators’ performance outperforms
existing work. And the computational overhead of cryp-
tographic operations during FL tasks accounts for over
85% of the total time. SectionVI-C demonstrates how our
consistency framework effectively improves the running
speed of federated learning tasks. It should be noted
that our focus is to provide a platform that supports
various heterogeneous hardware, rather than aiming for
maximum acceleration for each hardware design. While
ensuring generality may result in a slight performance loss,
we believe that supporting heterogeneity in practical business
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environments and simplifying deployment difficulties is
highly
valuable.

VII. CONCLUSION AND FUTURE WORK
In this work, we proposed a unified FL acceleration frame-
work that can handle the hardware heterogeneity challenge
of multiple participants, by supporting various hardware
devices simultaneously. The proposed framework defines FL
as four layers, namely BASIC OP layer, MOD OP layer,
PHE SDK layer and FL APP layer. With this definition,
the FL application can be successfully decoupled from the
underlying hardware operators, so that the framework can
support multiple heterogeneous computing devices at the
same time.

Furthermore, based on our proposed unified framework,
we designed acceleration solutions aiming at three types of
hardware, namely GPU, ASIC, and FPGA. We verified the
effectiveness of these solutions in improving the performance
of specific PHE algorithms and end-to-end FL tasks.

This research, however, is subject to several limitations.
In our experimental and production environments, each
compute node involved in FL is located in the same data
center, which makes the communication delay of data in the
network very low, and the computing power becomes the
main bottleneck limiting the training performance. However,
in actual FL tasks, long-distance network transmission
may introduce additional latency, creating new bottlenecks.
Due to the limited experimental environment, although
we demonstrate that the proposed architecture is effective
in improving computational performance, the impact of
network latency has not been fully evaluated in this research.

As for future work, on the one hand, we will continue to
work on improving the effectiveness of compute acceleration,
for example, considering the use of specific modules pro-
vided in advanced heterogeneous hardware, such as Tenser
Core and High Bandwidth Memory. On the other hand, it can
be combined with the relevant research results in the field of
high-performance networks to study the specific needs of the
network in FL, and perform cooperative optimization for both
end-point side and network side, which will be conducive
to further improving the end-to-end performance in practical
applications.
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