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ABSTRACT Object detection is a widely applied approach in addressing many real-world computer vision
challenges. Despite its importance, object detection is computationally intensive and time-consuming, even
with advanced CPU-GPU combinations. With the rise of edge computing and smaller AI accelerators,
there is an increasing need to deploy efficient object detection applications on near-edge devices, such
as drones and autonomous vehicles. However, these applications often face significant challenges and
performance limitations due to restricted computational resources. Traditional object detection methods,
e.g., Regional Convolutional Neural Network (RCNN) and You Only Look Once (YOLO), have extensive
weight parameters, leading to high demands on memory and computing resources. Therefore, it is important
to compress and optimize object detection models by reducing both the size and the number of weight
parameters. This review article delves into the current state of object detection methods and simplification
strategies, with a focus on deep-learning compression techniques. We investigate various approaches
to mitigate these computational challenges, including replacing the regional proposal network (RPN),
compressing model backbones, and modifying model heads, specifically for near-edge devices with limited
and energy-efficient CPUs and GPUs. While simplifying object detection models is expected to reduce
processing time significantly, it can also negatively impact model accuracy. Therefore, we discuss the
ongoing challenge of finding the optimal model compression that balances speed while maintaining high
accuracy.

INDEX TERMS Compression, edge computing, RCNN, object detection, YOLO.

I. INTRODUCTION
Object detection is an important task in computer vision,
responsible for localizing and recognizing specific objects
in digital images and videos [1]. This technology has two
main goals: to locate an object in an image and to determine
the object’s class. These two objectives can be achieved by
a unified operation that includes segmenting the image to
isolate objects and then classifying each segmented area,
thus combining object localization and classification into
coa cohesive process. The segmentation of an image into
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semantically meaningful objects has been a key area of study
in computer vision for a long time. Yet, there is still room for
improvement in achieving completely accurate segmentation
because of the differences between how computers process
images and how humans see them. The second aspect of
object detection is the recognition of these segments and their
categorization into specific object classes. Object detection
is closely related to object classification as well as semantic
and instance segmentation. It is a computer technology that
falls under the broader domain of computer vision and image
processing, comprising of the identification and localization
of specific objects, such as humans, buildings, or cars,
in digital images and videos.
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Object detection plays a significant role in computer
vision and is renowned for its wide range of applications
in various domains like scientific research and industrial
production. Prominent examples include multi-category [2],
[3], face [4], text [5], pedestrian [6], logo [7], video [8], [9],
vehicle [10], and medical image detection [11], [12]. The
development of object detection has experienced a significant
shift from traditional methods to modern deep learning-based
approaches. Historically, object detection techniques before
the advent of deep learning relied on manually designed
features and heuristic methods for identifying and locating
objects in images.

The advent of deep learning, particularly the emergence
of Convolutional Neural Networks (CNNs), has presented a
major breakthrough in this field. CNNs have shown remark-
able accuracy and efficiency in image classification [53],
[54], [56], paving theway for adopting CNNs as the backbone
architecture of deep learning-based object detection. Within
this domain, two prominent approaches have emerged, known
as one-stage and two-stage object detection methods, which
have emerged as the most prominent in computer vision.

The modern object detection approaches based on deep
learning are distinguished by their underlying architecture
and the number of stages in the detection process. One-
stage object detection accomplishes the task of detecting and
localizing objects in a single step. This method typically
employs a dense array of predefined bounding boxes across
the entire image and categorizes them into different object
classes. Examples of the one-stage methods include YOLO
(You Only Look Once) [14] and SSD (Single Shot MultiBox
Detector) [15]. These models are designed for real-time
performance and are particularly effective in scenarios
requiring fast object detection, such as autonomous driving
and video surveillance.

On the other hand, as the name of the method indicates,
the two-stage method has two phases. Initially, this method
generates a set of region proposals to identify potential object
locations. These are then refined in a subsequent phase for
accurate classification and localization. A widely recognized
example of a two-stage object detection framework is
Faster RCNN (Regional Convolutional Neural Network)
[16]. Due to its computational intensity, the two-stagemethod
achieves higher detection accuracy, making it well-suited for
applications that prioritize precision, such as fine-grained
object recognition and medical imaging.

Deploying object detection on edge devices, such as
Raspberry Pi and Nvidia’s Jetson boards, introduces signif-
icant challenges due to their limited resources [33], [34],
[35]. These challenges include the limitation of power
consumption, GPU performance and capacity, CPU cores and
speed, as well as the size of RAM available on these devices.
Although there are ways of augmenting edge computing
power with cloud resources (e.g., task offloading), our study
is focused exclusively on object detection computations per-
formed on edge devices without relying on cloud resources.
This approach is crucial for maximizing the advantages of

edge computing, including real-time processing capabilities
and the protection of user privacy.

Consider a scenario where a smart surveillance system is
deployed in a public space. If object detection is conducted
directly on edge cameras, they can instantly detect and
send alerts for any suspicious activities, providing real-time
responsiveness. In contrast, if the video stream is transmitted
to the cloud for processing, data transmission will be
delayed; retrieving results could result in missed or delayed
alerts, which may compromise security [105]. Additionally,
transmitting sensitive images to the cloud for analysis
brings up serious privacy concerns, including issues about
data ownership and confidentiality [106]. In this scenario,
computation exclusively on edge devices becomes a strategic
choice. It ensures immediate response, minimizes latency,
and bolsters data privacy. This method can be considered a
more appropriate and effective solution, specifically tailored
to the application’s unique requirements.

Performing object detection directly on edge devices,
rather than offloading these tasks to the cloud, can offer
several advantages. These benefits include:

1) Real-Time Responsiveness: Object detection at the
edge allows for real-time inference, eliminating the
communication delays associated with cloud process-
ing. This is particularly important for time-sensitive
applications like autonomous vehicles and surveillance
systems, where immediate detection and response
become essential requirements.

2) Reduced Latency: Direct object detection on edge
devices is especially beneficial for applications requir-
ing low-latency computation, such as augmented real-
ity (AR). In AR, any noticeable delay can negatively
impact the user experience. Edge computing avoids
the need to transmit data to remote cloud servers for
processing, thereby significantly reducing delays.

3) Privacy and Data Security: Edge computing offers an
effective solution by facilitating the processing of data
locally, right where the data is generated, thereby elim-
inating the necessity for extensive data transmission.
This approach particularly protects sensitive data, like
images or videos, as it avoids sending this information
to remote cloud servers. As a result, it substantially
lowers the risk of data breaches, thereby ensuring
enhanced privacy and security.

4) Bandwidth Efficiency: By processing data locally,
edge devices with limited bandwidth can conserve
network resources. This is particularly important in
scenarios involving multiple edge devices. If each
device were to send data to the cloud, it could quickly
result in network congestion. Local processing on edge
devices helps mitigate this issue.

However, performing object detection solely on edge
devices also presents several challenges:

1) Limited Computational Resources: Edge devices
often have limited computational power and memory

2990 VOLUME 12, 2024



A. Setyanto et al.: Near-Edge Computing Aware Object Detection: A Review

FIGURE 1. Traditional vs. Deep object detection approahces.

compared to cloud servers. In many cases, executing
complex object detection models on these devices
efficiently necessitates optimization or model simpli-
fication.

2) Model Size and Complexity: Deep learning models
for object detection are generally large and complex,
posing a challenge to accommodate them within the
limited memory of edge devices. To address this
issue while still preserving accuracy, it is important to
employmodel compression techniques. These methods
aim to reduce the model size without significantly
affecting its performance.

3) Energy Consumption: Computation on edge devices
can lead to increased energy consumption, result-
ing in reduced battery life for battery-powered
devices. To mitigate this problem, implementing
energy-efficient methods and using hardware accelera-
tors, such as GPUs or Edge TPUs, is essential for better
energy management.

To overcome the above limitations in object detection
tasks at the edge, compression techniques can be effective
solutions. These methods aim to reduce the size and
complexity of deep learning models while preserving their
original models’ accuracy. By doing so, the compression
techniques can facilitate deploying object detection models
on resource-constrained devices like mobile phones and
embedded systems, where managing limited resources is
important.

More specifically, complex object detection models can
be optimized for edge devices by employing a range of
model compression strategies, such as network pruning [17],
[19], quantization [20], [23], knowledge distillation [24],
[27], and architecture design optimization [28], [29], [30].
Network pruning aims to remove redundant or less important
parameters, while quantization reduces the bit precision of
model weights. Knowledge distillation transfers knowledge
from a larger pre-trained model (e.g., a teacher model)
to a smaller one (e.g., a student model). Additionally,
architectural design optimization, as observed in models

like Fast-YOLO [28], Pelee [29], and Efficient-Net [30]
aims to develop compact yet efficient network architectures
specifically tailored for object detection tasks.

These compression and optimization techniques provide
two key advantages. First, the compression techniques reduce
the memory footprint and computational demands, enabling
efficient inference on edge devices with limited resources.
Second, they enable faster inference and lower power
consumption, which is particularly beneficial for real-time
applications.

This review article provides a comprehensive overview of
state-of-the-art advancements in object detection models and
compression techniques. We evaluate their efficacy regarding
detection accuracy, model size reduction, and inference
speed. Additionally, the article discusses the challenges in this
domain and explores potential directions for future research.
The insights gained from this work aim to significantly
contribute to developing more efficient and practical object
detection systems, especially for resource-constrained edge
environments. Moreover, these methods offer a viable
solution to the limitations of traditional models, enabling the
implementation of efficient and accurate detection systems on
edge devices. The continued exploration and enhancement of
these techniques are essential for expanding object detection
applications in various fields, such as robotics, surveillance,
autonomous vehicles, and smart devices.

The rest of this paper is organized as follows: Section II
discusses the motivation and contribution of this work with a
focus on the growing demand for efficient and lightweight
object detection models, particularly for deployment in
edge computing environments. In Section III, we provide a
comprehensive review of the evolution of object detection,
transitioning from traditional methods to those based on
deep learning. Section IV reviews deep learning compression
methods, including knowledge distillation, pruning, and
quantization, and their application in object detection.
Section V describes approaches for simplifying object
detection, such as replacing the backbone, streamlining the
Region Proposal Network (RPN), and refining the model
head. Section VI discusses the use of object detection in
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edge devices, focusing on aspects like the capacities of
these devices and the backbone of object detection. Finally,
Section VII concludes this paper and outlines future research
directions.

II. MOTIVATION AND CONTRIBUTION
Compressing object detection is carried out to address the
increasing demand for efficient and lightweight models suit-
able for deployment in edge computing environments. This
research is motivated by the necessity to refine object detec-
tion techniques for smooth operation on resource-constrained
edge devices. These devices frequently face constraints in
processing power and memory, making it challenging to run
complex deep-learning algorithms effectively.

The primary objective of compression object detection is
to reduce computational complexity and model size while
maintaining acceptable accuracy. By achieving model com-
pression, object detection can be deployed on edge devices
without compromising performance. This optimization is
crucial for real-time applications where low latency and
rapid response are essential. Several solutions can be applied
to address the challenges associated with object detection
on edge devices, including limited computational resources,
model size, complexity, and energy consumption.

One viable approach is the application of model compres-
sion techniques, such as knowledge distillation or pruning,
aimed at reducing the size of the object detection model
without significantly sacrificing its performance. Quantiza-
tion, which necessitates reducing the precision of the model
weights, serves as an effective approach to minimize memory
requirements and improve inference speed. Another solution
is to explore lightweight backbone architectures specifically
designed for edge devices. These specialized architectures are
designed to have fewer parameters and computations while
maintaining acceptable levels of accuracy. Some significant
examples include MobileNet [31], SqueezeNet [32], and
Efficient- Det [30], all recognized for their efficiency on
resource-constrained devices. To further enhance energy effi-
ciency, hardware acceleration can be leveraged through the
use of specialized processors or accelerators such as Tensor
Processing Units (TPUs) [33] and Field Programmable Gate
Arrays (FPGAs) [36].

There are some dedicated hardware components developed
to accelerate neural network computations, enabling swifter
and more energy-efficient object detection on edge devices.
For example, Intel has introduced the OpenVINO Toolkit,
compatible with a wide range of Intel chips, including CPUs,
GPUs, FPGAs, and vision processing units [37]. Similarly,
Nvidia has introduced the EGX platform, offering support for
its various hardware, from the lightweight JetsonNanos to the
powerful T4 servers [38].
In this research, a comprehensive review of compression

methods in object detection for edge devices was provided
and the challenges encountered were analyzed based on state-
of-the-art literature. The main contributions of this research
are as follows:

1) The study concentrated on exploring how compression
techniques can be applied effectively in edge devices.

2) The study involved an in-depth examination of widely
used techniques, focusing on the compression and
replacement of backbone networks as well as the
simplification of the Region Proposal Network (RPN)
head.

Therefore, a comprehensive understanding of these meth-
ods and their effects is essential for effectively deploying
object detection systems on edge devices.

III. OBJECT DETECTION METHODS
Object detection is classified into two main methods:
traditional and deep-learning-based approaches. Traditional
approaches, steeped in a long history, are typically used
for detecting specific objects like faces or human bodies.
It extracts features from the image using specialized filters
and systematically scans them across the image.

This conventional approach, steeped in a long history,
is typically used for detecting specific objects like faces
or human bodies. It extracts features from the image using
specialized filters and systematically scans them across the
image. The deep-learning-based approach utilizes CNNs
for feature extraction. Certain deep learning methods involve
two steps: 1) initial pre-computing region proposals and
2) classifying each region into specific object categories.
Alternatively, other approaches aim to address challenges
in the two-stage process by integrating region proposal
generation and object localization inference into a single
computational step. Additionally, the availability of public
datasets is crucial, as it facilitates the effective training and
testing of these methods.

A. TRADITIONAL APPROACH (NON-DEEP LEARNING
APPROACH)
Object detection, as previously mentioned, is an important
area of computer vision research, with a particular emphasis
on detecting human forms like faces [45]. Haar cascade
classifiers have been recognized as a significant method to
detect and localize faces and other objects effectively when
trained with ample positive and negative images. This method
involves convolution operations between the input image
and a series of predefined filters. A key characteristic of
Haar cascade classifiers is their notable speed and efficiency,
which has led to their widespread use in various applications.
Another significant approach focused on face detection
employs the Histogram of Oriented Gradients (HOG). Unlike
Haar cascades, HOG assesses gradients at individual points
or pixel clusters in the image. This approach calculates the
gradient magnitude and direction at each point, compiling
these into a histogram of gradients. These features are
then utilized to identify specific objects within the image,
demonstrating the method’s distinctiveness and effectiveness
in object recognition tasks.
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TABLE 1. Comparison of existing survey object detection in the edge.

FIGURE 2. Object detection features approach.

Oxford-MKL (Multiple Kernels for Object Detection)
[46] represents a significant advancement in object detection.
Its main goal is to create an advanced object category detector
using a state-of-the-art classifier. This classifier carefully
examines all potential sub-windows within an image for the
target object’s presence. To facilitate this process, Oxford-
MKL employed multiple kernel learning [47], enabling the

optimal fusion of exponential kernel, each focusing on
different feature channels, such as edge distribution, dense
and sparse visual words, and feature descriptors at multiple
spatial levels. Given the time constraints in testing the
robust classifier on each image sub-window, Oxford-MKL
introduces a three-stage classifier. This classifier combines
linear, quasi-linear, and non-linear kernel Support Vector
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Machines (SVMs) for efficient processing. The Oxford-MKL
Framework enhances the discriminatory capabilities of the
kernel by increasing the non-linearity, thereby introducing a
higher level of computational complexity.

Deformable Parts Model (DPM) [48] is another impor-
tant approach in object detection. The method not only
outperformed the previously popular HOG but also secured
first place in the 2009 Pascal VOC challenge [43]. DPM
led to a paradigm in the way object detection was
approached. Instead of treating objects as undivided wholes,
it adopted a divide-and-conquer strategy. DPM uniquely
detects individual parts of an object and then intelligently
combines them to form a complete piece. The method
proved particularly effective when applied to articulate
objects exhibiting varying poses, like the human body
composed of the head, arms, legs, and torso. Each part
was assigned a specific model, and the detection process
was systematically applied to all parts, thereby eliminating
unlikely combinations and yielding highly accurate results.
DPM-based models, such as those proposed in [49] and [50],
showcased significant performance prior to the advent of
deep learning. While traditional methods, such as simple
template-based object models, struggled with geometric
deformations, and bag-of-words had limitations in pre-
cise object localization, DPM successfully addressed these
challenges.

ObjectDetection byContext and ImprovedHOG-Local
Binary Patterns (LBP) [51] capitalizes on the synergy
of contextual information, while a combination of HOG
and LBP features is further amplified through boosting.
The main goal of this method is to enhance the accuracy
and robustness of object detection. This is achieved by
considering the surrounding context of objects and leveraging
the discriminative capabilities of HOG and LBP features.
By integrating contextual information, the method delivers
improved results when objects vary in appearance and size
and are partially obscured. This enhanced approach boosts
the discriminative power of the feature representation and
effectively manages complex background disturbances. As a
result, it significantly contributes to the progression of
object detection, overcoming some of the limitations inherent
in traditional methods. This advancement underscores the
importance of contextual understanding and refined feature
representations in achieving higher detection accuracy.

Selective Search (SIFT+SVM) [52] combines the
Scale-Invariant Feature Transform (SIFT) method with the
SVM classifier. This method aims to efficiently identify
potential object locations within an image, simplifying the
object recognition process. By using the capabilities of SIFT,
known for its dominant performance in extracting stable and
invariant features from images, selective search effectively
captures the structural and visual information needed for
object recognition. SVM classifier, a popular machine
learningmethod, is then used to classify the extracted features
and determine whether an object exists in a given location.
Selective search achieves this by hierarchically grouping

similar image regions based on their resemblance and spatial
relationships.

The grouping process enables the method to generate a
diverse set of potential object locations, covering various
scales and positions within the image. To accomplish this,
it combined multiple image segmentation strategies and used
a similar measure to guide the grouping process effectively.
The selective search method has proven to be highly
promising, delivering a balanced trade-off between recall and
computational complexity, enabling a more efficient object
recognition process. By producing a diverse set of potential
object locations, selective search significantly enhances the
performance of the SVM classifier, thereby leading to
improved accuracy in object recognition.

B. DEEP LEARNING APPROACH: DOUBLE STAGE
COMPUTATION
The advent of CNN marked a significant milestone in image
classification, notably with the groundbreaking work by
AlexNet in 2010 [53], which initially focused on accurately
recognizing handwritten characters. Subsequently, a series
of breakthroughs have been recorded, resulting in the
widespread adoption of CNN architectures such as VGG-
16 [54], InceptionNet [55], ResNet [56], XceptionNet [57],
etc. These models, often trained on extensive datasets
like ImageNet [58], demonstrated exceptional performance,
allowing their weight parameters to be fine-tuned for new
problems, an approach known as transfer learning. This
concept of transfer learning was initially applied in the early
stages of deep learning-based object detection.While R-CNN
was the first successful object detection method, it suffered
from computationally intensive processes, mainly due to the
preparation of region proposals.

R-CNN, developed by Girshick et al. [59], was a
significant advancement in object detection, bringing the
potential of CNN to the forefront of object detection. R-
CNN uses a class-agnostic region proposal module that uses
selective search to generate approximately 2,000 potential
object candidates. These candidates are then passed through
a CNN, typically AlexNet [53], integrated with a region
proposal selective search [52] to extract a 4,096-dimensional
feature vector for each one.

The method utilizes trained class-specific SVMs to assign
confidence scores and applies non-maximum suppression
(NMS) to eliminate overlapping detections. It also includes
a bounding box regressor for precise object localization. The
training of R-CNN involves initially pre-training the CNN
on a large dataset like ImageNet, followed by fine-tuning
it on domain-specific images. This fine-tuning replaces the
last fully connected layer with a newly initialized N+1-way
classifier, where N represents the number of object classes.
Separate SVMs and bounding box regressors are trained for
each object class. However, R-CNN faced challenges with
slow inference time, approximately 47 seconds per image,
and required substantial computational resources [60].
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RCNN operates as a detector with four key components:
region proposal generation, feature extraction, SVM clas-
sification, and bounding-box regression. It uses a selec-
tive search for region proposal generation and extracts
fixed-length feature vectors from each using CNN. The
classification is done using class-specific linear SVMs, while
the bounding-box regressor accurately determines object
boundaries.

This research highlighted the importance of pre-training
CNNs on larger datasets like ImageNet, followed by targeted
fine-tuning. During fine-tuning, a (N+1)-way classification
layer is initialized and optimized using SGD. The training
process involves defining positive and negative examples
based on IoU (Intersection Over Union) thresholds, with
region proposals classified as positives or negatives depend-
ing on whether they fall above or below the threshold. To pre-
vent overfitting, the research included a larger set of positive
examples with IoU overlaps between 0.5 and 1, even if they
are not exact matches to ground truth instances. Combining
CNNs with region proposals, R-CNN significantly improved
object detection performance on datasets like PASCALVOC,
outperforming methods reliant on simpler features like HOG.

C. DEEP LEARNING APPROACH: SINGLE STAGE
COMPUTATION
Single-stage object detection is an advanced computer vision
method designed to swiftly and accurately identify objects
in an image in a single stage. Unlike the traditional two-stage
method that requires complex region proposal and subsequent
object classification, single-stage detectors directly predict
object bounding boxes and class probabilities, eliminating
the need for an intermediary stage. The streamlined method
has gained immense popularity for its real-time perfor-
mance and high accuracy, making it suitable for various
applications, including autonomous vehicles, surveillance
systems, and image analysis tasks. In this context, the
principles, advancements, and challenges of single-stage
object detection, including the innovative architectures and
techniques that had contributed to its success in recent years,
were analyzed.

YOLO [14] represents a well-received object detection
model. Unlike two-stage detectors that approach object detec-
tion as a classification problem with multiple components,
YOLO adopts a unique method by treating it as a regression-
related issue. It directly predicts both bounding box attributes
and object classes. In the YOLO framework, the input image
is divided into an S×S grid, each responsible for detecting
objects whose centers fall within its cell. YOLO predicts
multiple bounding boxes per cell, each represented by five
elements the center coordinates (x and y), box dimensions (w
and h), and a confidence score.
Inspired by the GoogLeNet [55] model for image classi-

fication, YOLO is pre-trained on ImageNet data and then
augmented with additional convolutional and fully connected
layers. During training, each grid cell is optimized to predict
a single class to achieve better convergence, but it can

predict multiple classes during inference. The model is
optimized using a multitask loss function that combines
the losses of all predicted components. One significant
advantage of YOLO is its real-time performance, surpassing
other models in accuracy and speed within the single-stage
category. However, it has faced certain limitations, including
challenges in accurately localizing small or clustered objects
and restrictions on the number per cell. These shortcomings
were addressed in later versions of YOLO. As a one-stage
object detector, YOLO achieves real-time detection for all
images and webcam streams by predicting fewer bounding
boxes per image compared to alternative methods. It adopts
a unique method by framing object detection as a regression
problem, allowing a unified architecture to efficiently extract
features from input images to predict bounding boxes and
class probabilities directly. The network runs at an impressive
45 frames per second on a Titan X GPU, outperforming both
Fast and Faster R-CNNs in speed.

YOLO pipeline divides the input image into an S×S grid,
with each cell responsible for detecting an object. Confidence
scores are determined by considering the probability of an
object contained in a box and the IOU, indicating the accuracy
of this containment. Each grid cell predicts B bounding
boxes, their associated confidence scores, and conditional
class probabilities for C categories. The feature extraction
network comprised 24 convolutional layers and two fully
connected layers. YOLO experiments on the PASCAL VOC
dataset yielded impressive results, achieving a mean average
precision (mAP) of 63.4% while running at a high speed
of 45 frames per second, outperforming both Fast and
Faster R-CNNs. Although YOLO may encounter certain
challenges with precise localization, its localization errors are
significantly lower compared to other methods. As a result,
YOLO is an efficient and accurate object detection model,
suitable for real-time applications and achieving impressive
results in various scenarios.

SSD [15] is a pioneering single-stage method to object
detection. Its primary innovation lies in directly predicting
category scores and bounding box offsets for a set of
predetermined default bounding boxes distributed across
multiple feature maps with varying scales. Each feature map
specializes in detecting objects at specific scales, achieved
by strategically spacing the default bounding boxes across
a range of layers. For every default box, SSD predicts
both confidence scores and offsets pertaining to all object
categories.

To achieve real-time processing speed while maintaining
accuracy comparable to two-stage detectors such as Faster
R-CNN, SSD incorporates additional auxiliary convolution
layers into the VGG-16 architecture. During training, ground
truth boxes are matched with the most suitable default ones
using the Jaccard overlap, and the network is fine-tuned
through a weighted sum loss function and a process called
hard negative mining. Despite its impressive performance,
SSD tends to encounter certain challenges with respect to
detecting small objects. These issues were subsequently
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addressed by adopting more advanced backbone architec-
tures, such as ResNet, and implementing minor adjustments
to enhance its capabilities.

D. DATASET
Labeled datasets play a significant role in supervised
machine learning, serving as essential resources. There are
several widely used public datasets for object detection
methods such as PASCAL VOC [43], Microsoft COCO [44],
VISUAL GENOME, NUScenes, wildfire smoke dataset, etc.
In addition to datasets containing object bounding boxes,
general datasets with a single label for each image, such as
ImageNet, are also crucial for training CNN and building
robust models. The availability of pre-trained CNN models
is of significant importance for deep learning methods.

IV. DEEP LEARNING COMPRESSION METHODS
Deep learning methods are known for their large size and
considerable computational complexity and requirements,
posing a significant challenge for deployment on devices
with limited resources. To tackle this, various compression
techniques have been developed, such as knowledge dis-
tillation, pruning, and quantization, aiming at reducing the
size and complexity of deep learning models for easier
implementation on resource-constrained devices.

A. KNOWLEDGE DISTILLATION
Knowledge distillation is a method aimed at training a com-
pact model by transferring knowledge from a larger, more
complex one. The method applied a soft target distribution
during training, generated by a cumbersome model with a
high temperature of softmax operator, for each instance in
the transfer set. Temperature is a variable to set the softmax
operator. Larger temperatures lead to generating a softer
distribution of pseudo-probabilities among the output classes.
Initially, the distilled model is trained with the same high
temperature as the source model, but it eventually transitions
to a temperature of 1 after the training process. For example,
in [61], this research employs MnasNet (1.0x), which is
not compact enough to operate on a less powerful device.
However, the reduced version of MnasNet (0.5x - student
version) can achieve a speed comparable to MobileNet v2 on
such a device, albeit at the cost of accuracy. By leveraging the
knowledge gained from an ensemble of models or a highly
regularized one, the distilled is effectively compressed into
a smaller, more manageable form suitable for deployment.
Figure 4 illustrates the knowledge distillation concept.
In 2020, Matsubara et al. [61] proposed the Head Network

Distillation method to compress the initial layers of DNN.
The primary goal was to enable efficient classification
of complex images with lower computational demands.
By applying the concept of knowledge distillation,Matsubara
et al. successfully created a smaller student model capable
of matching the performance of the larger teacher model.
The results emphasized the effectiveness of the method, as it
allowed for aggressivemodel compression, reduced inference

time, and improved accuracy. Li et al. [62] conducted research
on knowledge distillation in the field of object detection. The
loss values between the teacher and student models were
compared, and it was reported that this technique effectively
improves performance while reducing the size of the models.
This is in line with previous research by [61], further
confirming its effectiveness in optimizing these models.

Kang et al. [63], conducted similar research, by introducing
a conditional framework. This innovative method enabled
knowledge distillation on a per-instance basis, focusing
on object classification and localization. This technique
facilitated the transfer of specific object-related information
to the student model, resulting in improved detection per-
formance. This research reflects ongoing efforts to advance
the procedure’s sophistication and adaptability in object
detection.

Chawla et al. [64], conducted similar research on data-free
detection models. It used the Deep Inversion for Object
Detection (DIODE) technique, which facilitated knowledge
distillation without the need for training datasets. By using
DIODE, the effectiveness of this technique was enhanced
without training data. This research exemplified efforts to
overcome the limitations posed by training data in respect to
knowledge distillation.

Bharadhwaj et al. [65] designed the Detect-Track-Count
(DTC) framework, which focused on efficiently counting
vehicles on edge devices. DTC used ensembled knowledge
distillation to improve the detection accuracy of the Tiny
YOLO model. This research also leveraged this procedure in
order to enhance object detection performance.

Tao et al. [66] proposed an efficient and strong cloud-based
machine learning framework that used knowledge distil-
lation in 2023. The Neural Manifold Distillation (NMD)
method was used to simplify the complexity of the deep
learningmethodwithout compromising the performance. The
designed framework enabled the use of lighter and more
efficient models within a cloud-based environment, thereby
enhancing computational efficiency in resource-constrained
systems. This research is consistent with previous ones,
contributing to the ongoing efforts to optimize knowledge
distillation across various contexts and environments.

B. PRUNING
Pruning is a commonly adopted technique for compressing
DNN, with the objective of reducing both the model size and
computational complexity. This was realized by removing
redundant or insignificant connections, weights, or neurons
from the network while preserving the entire performance,
as shown in figure 5. For example, a study conducted by
Liang et al [71]. demonstrates that Edge Yolo, a prunedmodel
from YOLOv4, with a size of 25.27MB, achieves a mAP
of 47.3%, while only accounting for 10.2% of the original
YOLOv4 (245.78MB), as opposed to its original mAP of
65.7%. This research proves that pruning methods have
significant potential in reducing model size with minimal
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FIGURE 3. Challenges of object detection in edge devices.

FIGURE 4. Knowledge distillation.

performance deviation. Several of the listed research focused
on various pruning methods in DNN, each presenting a
unique method and addressing specific limitations in the
field.

Li et al. [67] designed DeepCham, an adaptive deep
learning method designed for mobile object recognition,
leveraging edge computing. This pruning method selectively
removes unimportant connections and neurons, resulting
in model compression and improved inference efficiency.
However, the research lacks a detailed analysis of the
limitations or potential trade-offs associated with the pruning
process. Han et al. [68] addressed this limitation using Deep
Compression, a comprehensive framework that combined
pruning with trained quantization and Huffman coding. The
proposed method achieved substantial model compression
while minimizing accuracy loss. One of the challenges in
pruning lies in determining an optimal threshold that strikes
a balance between compression and performance.

Hinami and Satoh [69] introduced a novel method for
object detection using a large-scale R-CNN combined with
classifier adaptive quantization. This innovative method
combined two significant methods, e.g., pruning and quan-
tization, which reduce the model size by eliminating redun-
dant parameters and decreasing the precision of weights
and activations. The combined method balances accuracy

and computational efficiency through adaptive quantization.
However, the research did not explicitly discuss the potential
limitations or drawbacks of applying the pruning method.

Nguyen et al. [70] conducted research aimed at inves-
tigating the effects of weight pruning on YOLO CNN
in the context of object detection. A high-throughput and
power-efficient FPGA (Field-Programmable Gate Array)
implementation of YOLO CNN was created with the goal of
reducing model size and improving inference speed through
weight pruning techniques. The primary achievement was
significant model compression without a substantial loss in
detection accuracy. However, the pruning process impacted
fine-grained object detection, which was perceived as an
important consideration.

Liang et al. [71] conducted research introducing Edge
YOLO, an intelligent real-time object detection system
designed for autonomous vehicles. The method is based
on edge-cloud cooperation to optimize system performance.
To achieve this, the pruning method was used to reduce the
size of the YOLOv4 backbone network, thereby enhancing
the speed and efficiency. A balance was successfully
reached between accuracy and speed in AI scenarios on
edge computing platforms by strategically reconstructing
the backbone layers and implementing channel pruning.
However, the research lacked comparative analysis with other
state-of-the-art object detection systems and failed to provide
a detailed analysis of the trade-off between accuracy and
energy consumption.

Lastly, Liberatori et al. contributed to this field by
conducting research focused on face mask detection using
YOLOv4, a popular object detection model [72]. The
research mainly investigated the effectiveness of pruning
and quantization methods in optimizing this model for
deployment on low-end devices. Two distinct strategies were
applied: one-shot pruning with fine-tuning and an iterative
one with learning rate rewind, followed by fine-tuning. The
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FIGURE 5. Pruning in neural networks.

experimental results showed significant improvements in
performance, particularly in terms of frames per second
(fps). However, there exists a trade-off between reducing the
model size and maintaining mAP levels. One limitation of the
research was the absence of a detailed explanation regarding
the specific parts of YOLOv4 that underwent pruning and
quantization, which are perceived as valuable aspects for a
comprehensive understanding of the proposed method.

Pruning offers an effective means of compressing DNN
while maintaining its performance. This research investigated
various methods, including selective pruning, the combi-
nation of pruning and quantization, and pruning designed
for specific tasks, namely object detection. Further research
is needed to comprehensively investigate the limitations,
potential trade-offs, and optimization strategies associated
with the pruning method in DNN.

C. QUANTIZATION
Quantization has been perceived as a potential technique
for optimizing neural networks in recent years, enabling
efficient inference and reducing model size. Like the research
conducted by Li et al. [21], they demonstrated that a 4-bit
model can perform very closely to the 32-bit floating-point
version, even on mobile-friendly networks. Their model,
the 4-bit RetinaNet detector with MobileNetV2 backbone,
experiences only a 2.0% mAP loss compared to its full-
precision baseline. The research in the provided list focuses
on various aspects, ranging from adaptive quantization to
fully quantized networks. This section analyzed the listed
research and their valuable contributions to the quantization
field.

Hinami and Satoh [69] proposed a novel approach called
large-scale R-CNNwith classifier adaptive quantization. This
investigation focused on developing object detectionmethods
at a larger scale with limited resources. The evaluation
introduced the concept of classifier adaptive quantization
(CAQ), which necessitated optimizing the bounding box
search process using inverted index and vector quantization
residual (RVQ) methods. By leveraging these methods,
the goal was to accelerate the object detection process
and enhance classification precision. However, the research
mainly evaluated the proposed method within the R-CNN
framework and did not extensively discuss the potential limi-
tations or trade-offs associated with the adaptive quantization
method used.

In 2018, Jacob et al. introduced a novel method titled
Quantization and Training of Neural Networks for Effi-
cient Integer Arithmetic-Only Inference [20]. The primary
objective was to achieve efficient neural network inference
using integer arithmetic, specifically on hardware platforms
capable of integer operations. Experiments comprising the
quantization of weights and activations into 8-bit integers
were conducted while maintaining model accuracy through
fine-tuning. However, the research did not thoroughly explore
the performance of the proposed scheme on platforms other
than MobileNets, and the impact of integer quantization
on other neural network types was not discussed in detail.
Li et al. further introduced a fully quantized network
(FQN) designed for object detection [73]. The goal was
to enhance computational efficiency by using low-bit arith-
metic accelerated by dedicated hardware. FQN necessitates
quantizing network weights and activations using low-bit
fixed-point arithmetic. Fine-tuning techniques were used to
optimize these quantized weights and activations. However,
the uniform nature of the quantization method and the
absence of specific adjustments for different networks could
limit its optimality. The method was evaluated using the
COCO dataset, with particular attention to the computational
costs associated with fine-tuning.

Ding et al. proposed the REQ-YOLO framework, focusing
on object detection for FPGAs [22]. The block-circulant
matrix method was used, while heterogeneous weight quan-
tization was introduced through the Alternative Direction
Method of Multiplier (ADMM). The method significantly
improved weight compression and storage efficiency by
influencing the unique characteristics of block-circulant
matrices. However, the evaluation was limited to YOLO
and the framework’s performance in other models was not
addressed. The research lacked comparisons with state-of-
the-art quantization methods and did not provide a detailed
analysis of the trade-offs between compression and model
accuracy.

Gholami et al. conducted a thorough survey on quan-
tization methods for improving the efficiency of neural
network inference [74]. The survey explored various aspects
of quantization, including symmetric and asymmetric, static
and dynamic, granularity, as well as uniform and non-uniform
quantization. It emphasized the potential benefits of applying
quantization techniques such as INT8 and INT4, which could
substantially enhance inference speed while minimizing the
loss of accuracy. Furthermore, the challenges inherent in
quantization were emphasized, particularly the need to strike
a delicate balance between compressing the model and
preserving its accuracy.

The earlier discussed research investigated different meth-
ods and advancements in neural network quantization, from
adaptive quantization to fully quantized networks. These
procedures represent a collective effort by preliminary
research to optimize network performance and efficiency.
Meanwhile, it is clear that there remains a need for further
research to effectively address the limitations and challenges
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associated with quantization. Investigating its applicability
across different network architectures and hardware plat-
forms is an avenue that requires further exploration.

V. OBJECT DETECTION METHODS COMPRESSION
Efficiently compressing object detection models is essential
to make them suitable for limited-resource devices. Typically,
native object detection methods demand significant memory
for model storage and are computationally intensive due
to many arithmetic operations. Simplifying these methods
becomes crucial to minimize memory usage and computa-
tional requirements. Various significant efforts have been
proposed to achieve this, including techniques such as
backbone replacement, simplification of region proposal
network (RPN), and streamlining the model head.

A. BACKBONE REPLACEMENT
In recent years, research has made significant progress
in developing efficient backbone architectures for object
detection, focusing on improving speed, reducing energy
consumption, and accuracy. The collective efforts are poised
to revolutionize the field by enabling real-time and resource-
efficient object detection applications. Numerous research
contributed to this advancement by introducing innovative
backbone architectures, each designed to tackle specific
challenges and offer novel approaches to object detection.

Lee et al. introduced VOVnet, a significant backbone net-
work designed to improve energy and GPU computation effi-
ciencies while preserving the benefits of DenseNet [75]. This
approach necessitated using One-Shot Aggregation (OSA)
to merge intermediate features simultaneously, effectively
tackling the drawbacks associated with dense connections
and reducing energy consumption. VOVnet came in both
lightweight and large-scale versions, which were applied to
both one and two-stage object detectors. Comparative exper-
iments showed VOVnet’s superiority over DenseNet and
ResNet, particularly in terms of speed and energy efficiency
for real-time object detection. However, its evaluation could
have been strengthened by providing a detailed analysis of the
trade-offs between accuracy, speed, and energy consumption.
A more comprehensive comparison with other advanced
object detection architectures would have enhanced its
practical relevance. Yukang Chen et al. introduced DetNAS,
a framework designed to streamline Neural Architecture
Search (NAS) specifically for object detection [76]. It used
a one-shot supernet technique to efficiently explore all
potential architectures in the search space. This innovative
approach led to the development of an architecture that not
only surpassed manually crafted networks but also reduced
computational complexity, particularly in terms of FLOPs
(Floating Point Operations Per Second). As a result, DetNAS
provided a valuable advancement in the automated design
of efficient backbones for object detection. However, the
research did not explicitly mention the limitations of the
proposed framework or the scope of its generalization to other
detectors and datasets.

Gao et al. proposed a novel architecture known as
Res2Net, designed to significantly enhance the multi-scale
representation abilities of CNN [77]. This improvement
was achieved by introducing hierarchical residual-like con-
nections, effectively expanding receptive fields, and con-
sequently enhancing performance across diverse computer
vision tasks. The research introduced both the innovative
Res2Net block and a comprehensive description of the entire
Res2Net architecture, as well as its compatibility and ease
of integration with other neural network modules, including
cardinality and squeeze and excitation (SE) blocks. Despite
showing competitive results on datasets such as CIFAR-
100 and ImageNet, the research had significant limitations.
It lacked a thorough analysis of critical factors such as
model size reduction and computational cost and failed to
include comparisons with the latest neural network modules:
EfficientNet and ResNet. These aspects are essential for
determining the practicality and adaptability of Res2Net in
different resource-constrained scenarios.

Tan et al. addressed the challenge of scalable and efficient
object detection by introducing EfficientDet [30]. Several sig-
nificant optimizations were proposed, including the weighted
bidirectional feature pyramid network (BiFPN) for effective
multi-scale feature fusion and a compound scaling method.
By utilizing EfficientNets, which were pre-trained on the
ImageNet dataset, as its backbone architectures, EfficientDet
achieved leading performance on the COCO dataset. A series
of extensive experiments were conducted to analyze the
complex adjustments between model size, computational
cost, and accuracy across various resource constraints. This
research highlighted EfficientDet as an efficient and scalable
architecture for object detection. However, it does not
specifically delve into the limitations of this method, nor
does it explore how various hyperparameters might affect the
model’s performance.

Chen et al. [78] addressed the need for lightweight
one-stage object detection solutions specifically designed
to operate efficiently on CPU-only devices by introducing
RefineDetLite. An innovation that cleverly combined the
Res2NetLite backbone with the RefineDet module, designed
to handle CPU constraints effectively. To validate this
approach, a series of experiments were conducted using
the MSCOCO dataset. The results showed the ability of
RefineDetLite to achieve competitive performance while
remaining optimized for CPU-only devices. The research
showcased impressive results, outperforming existing meth-
ods in terms of efficiency. However, it was important to
emphasize that the evaluation was limited to the MSCOCO
dataset. Further investigation is required to assess how
well the model generalizes to other datasets and tasks.
To support the research findings, a direct comparison with
GPU-based methods and addressing challenges related to
object occlusion would be beneficial.

Hong and Song proposed ResNeXt101S, an improved
model for deep object detection backbones, particularly
focusing on feature layers [79]. The model aimed to enhance
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the quality of features in deeper layers while ensuring
compatibility with varying image resolutions. A series of
experiments were conducted on the customized benchmark
datasets to assess the performance of the model under dif-
ferent image scales. The results indicated that ResNeXt101S
demonstrated promising accuracy and adaptability across
different resolutions. However, the use of customized bench-
mark datasets for evaluation brings into question the model’s
generalizability to real-world scenarios. To provide a more
comprehensive understanding of ResNeXt101S capabilities,
further evaluation and direct comparisons with state-of-the-
art models on a broader range of datasets would be valuable.

Li et al. explored the application of a plain Vision
Transformer (ViT) as a backbone for object detection,
employing a fine-tuned ViT specifically for this task, thereby
avoiding the need for hierarchical backbone redesign [80].
It was found that plain ViT backbones, pre-trained as
Masked Autoencoders, were capable of competing effec-
tively with existing methods that rely on more complex
hierarchical backbone structures. They introduced ViT-Det,
a detector achieving a notable 61.3 AP box score on
the COCO dataset, utilizing only ImageNet-1K for pre-
training. This approach underscored the feasibility of using
general-purpose backbones without task-specific designs,
highlighting the importance of separating pre-training from
fine-tuning phases. While the method showed considerable
promise, further research is necessary to fully evaluate its
effectiveness across a wider range of object detection tasks
and datasets.

Wang et al. [81] proposed a novel approach named Fast-
DARTSDet, aiming to expedite the process of differentiable
architecture joint search for both the backbone and FPN
in the context of object detection. This innovative strategy
tackled the architecture search problem through combina-
torial optimization on graphs. It not only led to improved
performance compared to manually designed networks but
also reduced the computational requirements associated
with such searches. FastDARTSDet showed competitive
performance, particularly on the MS-COCO dataset, where
it outperformed state-of-the-art Neural Architecture Search
(NAS) methods for object detection. The efficiency of the
proposed approach, which required only 4.2 GPU days,
a substantial reduction compared to prior NAS methods
designed for object detection, was emphasized. In addition,
the evaluation mainly focused on the MS-COCO dataset.
To further strengthen the results, a broader comparative anal-
ysis against other NAS methods and evaluations on diverse
datasets would enhance the understanding of FastDARTSDet
capabilities and their potential in various practical scenarios.

Zhou et al. [82] conducted a comprehensive survey that
focused on efficient CNN and network compression methods
applied to object detection. A detailed examination of the fun-
damental components, comprised of backbones, necks, and
heads, was reported. Within this context, the survey empha-
sized the significance of efficient backbones, characterized
by simplified structures and a reduced parameter count

compared to traditional types, thereby making it suitable
for resource-constrained devices. Various representatives of
efficient object detectors were also introduced, showcasing
methods applied to achieve efficiency. These approaches
included strategies like increasing network depth and width
or reducing parameter volume. However, the survey could
benefit from a more in-depth analysis of the complex
adjustments between efficiency and accuracy, specifically
concerning different backbone architectures and compression
methods.

This research attempted to address the challenges encoun-
tered in object detection using different approaches. However,
the common goal was to create backbone architectures that
excelled in computational, speed, and energy efficiencies,
as well as preserve or enhance detection performance.
These diverse approaches comprise a range of techniques,
including one-shot aggregation, hierarchical connectivity
formation, network compression, and the application of
Neural Architecture Search (NAS) methods for automated
architecture design.

The research also reported specific limitations, despite stat-
ing promising results in enhanced backbone efficiency. For
instance, some failed to thoroughly examine the difference
between accuracy and efficiency, especially when consider-
ing various resource constraints. Additionally, some others
limited the model evaluations to specific object detection
datasets and tasks. This limited scope raises questions about
their findings’ broader applicability and transferability to
different datasets and diverse object detection tasks.

The progress achieved through these various approaches in
enhancing backbone efficiency presents significant opportu-
nities to optimize object detection performance across a range
of applications. These advancements are particularly valuable
for real-time object detection and for deploying models on
resource-constrained devices. In this situation, the survey on
efficient CNN and network compression methods plays a
relevant role in providing comprehensive insights into the
current state of progress and future research directions for
the development of more efficient and practical backbone
architectures designed for object detection. With these results
and breakthroughs, the future of object detection holds great
potential for practical implementations across diverse fields
and applications.

B. RPN SIMPLIFICATION
In this section, RPN simplification was analyzed by investi-
gating a collection of research studies that focus on optimiz-
ing RPN to enhance the efficiency of object detection. This
research reported diverse strategies, including feature fusion,
parameter compression, and innovative network architec-
tures, all aimed at achieving a delicate balance between
computational efficiency and accuracy in real-time object
detection tasks. Through this comprehensive examination,
the main objective is to uncover common themes and recent
advancements and address existing challenges within the
domain of simplified RPN. The main aim is to pave the way
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for developing more efficient and practical solutions in object
detection.

Kim et al. [83] proposed a novel neural network archi-
tecture for real-time object detection, which effectively
balances high accuracy with computational efficiency. This
approach was achieved through a thoughtful redesign of
the feature extraction segment within the object detection
pipeline. This redesign followed the lesser channels with
more principle layers, meaning it used fewer channels per
layer but stacked more to maintain accuracy. Major building
blocks, e.g., concatenated ReLU, Inception, and HyperNet,
were introduced to enhance the network performance further.
In RPN, these blocks optimized efficiency by using only
the first 128 channels in the feature map. The results of
the experiments, conducted on well-established object detec-
tion benchmarks, showcased the effectiveness of PVANET.
It achieved an impressive mAP of 83.8% and 82.5% on
VOC2007 and VOC2012, respectively, securing the second-
place ranking. Meanwhile, PVANET exhibited exceptional
computational efficiency, with a requirement of only 750 ms
and 46 ms per image on an Intel i7-6700K CPU with a
single core and NVIDIA Titan X GPU, respectively. This
was accomplished while consuming only 12.3% of the
computational cost compared to ResNet-101, which secured
victory in VOC2012. The research lacked a detailed analysis
of the dissimilarity between accuracy and computational cost,
and it failed to explicitly discuss potential limitations or
the extent of its applicability to other datasets or real-world
scenarios. PVANET represents a significant advancement in
real-time object detection, effectively combining DNN with
lightweight design principles, offering a promising avenue for
future research in this field.

In 2018 Li et al. conducted research on efficient object
detection for resource-limited embedded devices. The objec-
tive was to devise a method that could perform object
detection effectively while accommodating the constraints
of such devices [84]. This goal was achieved by intro-
ducing a two-stage object detection method, namely a
subnetwork-efficient feature fusion module (EFFM) and a
multi-scale dilation RPN to reduce the number of operations
and parameters in a two-stage detector. The results showed
that the proposed method outperformed Faster RCNN, based
on VGG16, in terms of accuracy. This improved performance
was achieved while using only half the computational
operations and one-third of the parameters. The EFFM
efficiently combines local channel information through the
use of pointwise and grouped convolutions, while RPN
improves recall rates by incorporating multi-scale dilation
and global feature weighting techniques. Although the
research mentioned the potential application of knowledge
distillation to further reduce parameters, it emphasizes
that this technique was limited to classification tasks. The
effectiveness of the method was evaluated on PASCAL
VOC datasets, showing promise for object detection on
resource-limited embedded devices. Its performance on other
datasets and tasks remains an area for further investigation.

The groundbreaking work by Chen et al. [85] led to the
proposal of the Multi-strategy Region Proposal Network
(MSRPN). This innovative architecture aims to enhance
object detection performance by overcoming the limitations
of the traditional RPN. To achieve this, MSRPN introduces
four significant improvements. First, it incorporates a novel
skip-layer connection network, which enhances pooling
layers and combines multi-level features. This enhancement
is aimed towards improving the quality of region proposals.
Secondly, MSRPN introduced improved anchor boxes with
adaptive aspect ratios and a well-distributed selection of
scales. These enhancements were designed to reduce the
number of predicted region proposals while increasing the
efficiency of object localization, specifically for small object
detection. Thirdly, MSRPN unifies the classification and
regression layers into a single convolutional layer. This
consolidation accelerates both training and testing speed
while simultaneously reducing model complexity in the
output layer. Lastly, the bounding box regression component
of the multi-task loss function in RPN undergoes improve-
ments in MSRPN. These enhancements are implemented
to enhance the performance of bounding box regression.
MSRPN distinguishes itself by outperforming five other
object detection methods, achieving state-of-the-art mAP
scores across PAS-CAL VOC 2007, 2012, and MS COCO
datasets when coupled with the deep VGG-16 model. One
outstanding feature is its superior performance in detecting
small objects while maintaining a rapid processing speed
of 6 frames per second compared to competitors. However,
it is important to acknowledge several limitations within the
paper’s findings, namely, the evaluation primarily focuses
on restricted datasets and relies exclusively on the deep
VGG-16 model. It emphasizes the necessity for further
validation across a wide range of datasets and models
to ensure broader applicability of the method. MSRPN
also requires significant computational resources, potentially
limiting its applicability on lower-end devices. The research
lacked a comprehensive analysis of the trade-offs between
the proposed improvements, which could impact the inter-
pretability of the results. Therefore, MSRPN presents a
promising approach to object detection, achieving state-of-
the-art performance while addressing the limitations of the
traditional RPN. The four main improvements contributed
to its success in object detection tasks. Further research is
needed to validate the proposed method on a wider range of
datasets and models while also addressing its limitations to
ensure broader applicability.

Lin et al. introduced the Cropping Region Proposal
Network (CRPN), a novel framework designed to improve
object detection efficiency in large-scale remote sensing
images [86]. It comprised a weak semantic RPN for rapidly
identifying interesting regions and applied a dual-scale
strategy to generate effective cropping regions. CRPN
filtered invalid regions, reducing the computation burden
and facilitating the precision of object detection. Moreover,
it was modularized and easily integrated with mainstream
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detectors, forming an end-to-end detecting framework. The
effectiveness was proven on the public DOTA dataset, yield-
ing superior object detection efficiency and accuracy results.
There are certain limitations, namely the need for evaluation
on diverse datasets, a detailed analysis of computational
costs, comparisons with state-of-the-art methods, and further
exploration of hyperparameter impacts. CRPN presents a
promising approach for object detection in large-scale remote
sensing images, potentially advancing the field of intelligent
object detection systems.

Fan and Ling proposed a new approach for Real-Time
Visual Tracking using Siamese Cascaded RPN [87]. This
innovative framework was designed to address specific
limitations observed in one-stage Siamese-RPN trackers,
particularly the challenges in handling similar distractors
and variations in object scale. To enhance its performance
in complex backgrounds, CRPN incorporates hard negative
sampling within a cascade architecture. The research also
introduced a novel feature transfer block (FTB) module
that improves the use of this feature across different layers,
thereby enhancing the representation ability to discriminate
between objects. Additionally, CRPN refines the target
bounding box progressively through multiple regression
stages, resulting in more precise localization. The efficacy of
the framework is assessed based on six widely recognized
benchmarks, where it showed state-of-the-art results and
achieves real-time tracking performance. It is important to
acknowledge certain limitations, including the evaluation
conducted on a limited set of datasets and the absence
of comparisons with other tracking methods. The general
performance of CRPN shows its considerable potential in
real-life visual tracking scenarios.

Unlike previous research, Shih at al. introduced a novel
method in the book titled Real-Time Object Detection with
Reduced RPN through Multi-Feature Concatenation [88].
The approach targeted real-time object detection and focused
on mitigating memory and performance issues associated
with neural networks while maintaining accuracy. It also
adopted weight pruning techniques to compress network
parameters and introduces optimizations to RPN. These
optimizations included the use of 1× 1 convolutions, slimmer
channels, and dilated ones, all aimed at enhancing detection
accuracy. To address any potential loss of accuracy due to
pruning, a multi-feature concatenation technique combining
several feature maps was incorporated, thereby ensuring the
reduced RPN has sufficient information for precise region
detection. The performance of the method was evaluated
on both ZF-Net and VGG16, while the experimental results
exhibited significant parameter compression (81.3% and
73% for ZF-Net and VGG16), and simultaneously improved
detection accuracy (ranging from 2.2% to 60.2% and 2.6% to
69.1% for ZF-Net and VGG16, respectively). The innovative
approach was efficiently and accurately used to conduct
real-time object detection in computer vision applications.

In the following year, Siradjuddin et al. proposed a
two-stage detection approach, known as Faster RCNN,

for the detection of masked faces in images [89]. The
method used RPN in its first stage to efficiently identify
candidate regions. These were generated by sliding a small
network over the convolutional feature map and combining
anchor and bounding box offsets. In the second stage, these
candidate regions are subjected to processing through an ROI
Pooling layer for localization and classification using CNN
architecture. However, the approach has certain limitations,
namely the use of a restricted dataset, imbalanced data
during the training process, and potential challenges in real-
time applications. Further investigation and comparisonswith
other state-of-the-art methods for masked face detection
are warranted. It was reported that faster RCNN showed
promising results in the detection of masked faces, thereby
paving the way for future research in this field.

Zhang et al. also proposed an inventive method to
improve the quality of region proposals in weakly supervised
object detection in 2021 [90]. The main contribution is the
introduction of the Hierarchical Region Proposal Refinement
Network (HRPRN), a system engineered to iteratively
fine-tune region proposals through the use of multiple weakly
supervised detectors. HRPRN comprised several critical
components in its design, including image feature extraction,
Region of Interest (RoI)-pooling layer, weakly supervised
detector, hierarchical detector, and instance regression refine-
ment models. This structured approach empowers HRPRN
to gradually enhance the precision of object localization by
iteratively perfecting region proposals. An important aspect
of this proposal is the instance regression refinement model,
which generates coordinate offsets sensitive to the objects in
each stage, further improving the precision of localization.
The evaluation of the method was conducted on the PASCAL
VOC 2007 dataset, leading to a significant performance
enhancement in terms of mAP and CorLoc when compared
to the baseline method [1]. However, the research has some
limitations inherent to its approach. One limitation lies in the
fact that the evaluation is constrained to a relatively small
dataset. This raises questions about the ability of the method
to scale up and generalize effectively to larger datasets. The
research also recognizes the computational cost associated
with trainingmultiple weakly supervised detectors in a staged
manner. Irrespective of these limitations, HRPRN presented
promising results. Further research is needed to address these
limitations and explore the potential of the method when
applied to larger datasets, along with comparisons to state-
of-the-art methods.

Chen and Hao [91] conducted research to improve
hardware-efficient object detection for embedded systems.
The approach focused on achieving real-time inference
with minimal energy consumption and limited hardware
resources. The concept of a masked region proposal method
was introduced to address the challenges associated with
object detection in these constrained environments. This
innovative approach generated rectangular regions of interest
in regular shapes, effectively minimizing redundant compu-
tations during the detection process. Its effectiveness was
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validated by applying the approach to various detection
backbones, including SkyNet, ResNet-18, and UltraNet.
Their evaluation comprised three single-object detection
and tracking datasets (DAC-SDC, OTB100, and UAV123),
showing the method’s adaptability across diverse scenarios.
Comparative analysis with existing region proposal methods
showed that the masked approach offered simplicity and
efficiency, requiring less feature extraction before the region
proposal stage. An accelerator was designed to assess the
method performance on theXilinx ZCU106 FPGA, achieving
a 1.3 × speedup and approximately 30% reduction in energy
consumption with minimal accuracy loss. A design space
exploration was conducted to show that the accelerator had
the potential to achieve a theoretical speedup of 1.76×
when used with masked region proposals. While the results
of the proposed method showed promising potential for
hardware-efficient object detection in embedded systems,
it was also emphasized that the importance of further
evaluation across a broad range of datasets and hardware
types comprehensively assessed its generalizability and
effectiveness.

Lastly, Zhu et al. introduced a simple and highly effec-
tive Siamese network called Siamese-ORPN for oriented
visual tracking [92]. The main goal was to accurately
estimate the position of a target object across subsequent
video frames. To achieve this, Siamese-ORPN addressed
the shortcomings of existing tracking methods by using
oriented RPN and incorporating feature fusion. Oriented
RPN played a critical role in generating high-quality-oriented
proposals by predicting offsets and scales of related bounding
boxes. Meanwhile, the feature fusion network leveraged
different representations to predict a similarity map. The
proposed method adopted an end-to-end training approach
with a Siamese loss function. The results showed Siamese-
ORPN’s outstanding performance on the VOT2018 and
VOT2019 challenges, achieving a commendable speed of
85 frames per second. This showcased the advantages of
the method in terms of both accuracy and efficiency. It is
essential to acknowledge that the evaluation was limited
to VOT2018 and VOT2019 datasets. Further investigation
is needed to explore Siamese-ORPN suitability for various
tracking scenarios and datasets. Additionally, as a Siamese
network-based approach, the proposed method demands a
substantial amount of training data for optimal performance.
Siamese-ORPN presents a promising avenue for oriented
visual tracking, offering accurate and efficient results when
benchmarked against these challenges.

The previous research represented various efforts in the
field of object detection, sharing a common objective, namely
improving computational efficiency and enabling real-time
performance. This led to the introduction of novel neural
network architectures, innovative feature extraction methods,
and region proposal strategies, all with the aim of finding
the right trade-off between accuracy and computational cost.
A recurring theme in this research is the use of RPN to
efficiently generate candidate regions for object detection.

Several research used techniques such as feature fusion and
concatenation to enhance the quality of representations, lead-
ing to improved detection results. These investigations had
certain limitations, namely limited evaluations on specific
datasets, lack of comparisons with state-of-the-art methods,
and hardware-specific implementations. In-depth analyses
regarding the trade-offs between accuracy and computational
efficiency are often lacking. Collectively, these investigations
offered promising directions for advancing real-time object
detection and efficient model design in the future. It empha-
sized the importance of further validation on diverse datasets
and hardware platforms to ensure the practical applicability
of these advancements.

1) HEAD SIMPLIFICATION
In this section, the field of Head Simplification was explored,
including a series of research on optimizing and streamlining
object detection heads. These investigations present various
innovative approaches, such as top-down refinement mod-
ules, auxiliary detection heads, and dynamic routing spaces,
all united by the common goal of achieving a delicate balance
between computational efficiency and accuracy in object
detection tasks. Exploring these innovative strategies aims
to uncover the significant advancements, challenges, and
potential benefits associated with simplified object detection
heads. Ultimately, the exploration aims to pave the way for
developing more efficient and effective solutions in object
detection.

Pinheiro et al. introduced an innovative architecture for
object instance segmentation, known as SharpMask [93].
This approach enhanced feedforward networks by incor-
porating top-down refinement modules, which enabled the
generation of highly accurate object masks by using features
from all network layers. The SharpMask head architecture
operates in two stages. First, it generates a coarse mask
encoding during a feedforward pass, which is then refined
in a top-down pass by leveraging features from progressively
lower layers. An extensive investigation of the various factors
influencing the network accuracy as conducted, including
input size, pooling layers, stride density, model depth, and
feature channels. SharpMask achieved state-of-the-art perfor-
mance in object proposal generation, showing improvements
of 10 to 20% in average recall compared to other setups while
running 50% faster than the original DeepMask network.
Despite this promising performance, the research emphasized
on several areas that required further attention, such as
evaluating the model on additional datasets, analyzing its
computational complexity, addressing robustness to lighting
changes and occlusions, as well as handling scenarios with
limited training data. The proposed refinement approach in
SharpMask showed significant versatility and adaptability
to other pixel-labeling tasks, emphasizing its potential to
advance object instance segmentation in terms of both
accuracy and speed.

Jin et al. proposed a concept known as the auxiliary
detection head (ADH), designed to enhance the performance
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of one-stage object detectors after four years [94]. This
ADH introduces implicit two-stage cascaded regression in a
single detection head, including classification and regression
subnets. The main goal is to refine object localization by
adjusting output boxes to support ground truth, thereby
facilitating learning more robust features. One significant
advantage of this approach is its seamless integration into
state-of-the-art object detection frameworks alongside the
existing prediction branch, allowing for joint training with the
original detection head. During inference, the ADH can be
removed without affecting the main detector head, leading to
reduced model size and faster inference time. The evaluation
conducted on the Pascal VOC and COCO datasets consis-
tently shows performance improvement over the baseline
without introducing additional parameters at inference time.
However, the research acknowledges certain limitations, such
as the evaluation being limited to two datasets, the absence
of comparisons with other two-stage cascaded regression
methods, and the lack of detailed computational cost analysis
and interpretability impact. Further research is essential to
assess the effectiveness of the method on diverse datasets
and compare it with other state-of-the-art object detection
methods.

In the same year as the work of Jin Guozheng, Song
et al. introduced the Fine-Grained Dynamic Head, offering
a new approach to fine-grained object representation in
object detection [95]. It has the unique capability to select
a pixel-level combination of features from various scales
within the Feature Pyramid Network (FPN) for each instance.
This optimizes the use of multi-scale features while simul-
taneously reducing computational costs. To achieve this, the
proposed method replaces the conventional head for FPN
with a fine-grained dynamic routing space. This routing space
dynamically allocates pixel-level sub-regions from multiple
FPN stages. The method also incorporated a spatial gate
featuring a novel activation function, further enhancing its
computational efficiency. Extensive experiments on state-of-
the-art detection benchmarks consistently exhibit the effec-
tiveness and efficiency of the Fine-Grained Dynamic Head.
It outperforms the conventional head, achieving state-of-the-
art results with reduced computational overhead. However,
to provide a more comprehensive understanding, the research
could benefit from clearer insights into its performance on
datasets outside those evaluated and potential computational
resource requirements compared to the conventional head.
The Fine-Grained Dynamic Head presents promising new
avenues for object detection, hinting at future advancements
in the field.

Miao et al. proposed a novel solution known as the
Generalized Representation Reconstruction Head (RRHead)
for object detection frameworks [96]. The main aim
was to independently optimize both fully connected and
convolutional-based detection heads, with a dual focus on
enhancing the representation of feature-label mappings,
including improving the encoding of location information.

An outstanding feature of RRHead is its effortless
integration into existing detection frameworks, eliminating
the need for any additional modifications. This integration
not only streamlines the implementation process but also
enhances the rationality and reliability of the detection
head representation. The RRHead comprises three main
components: Multi-Scale Feature Representation (MSFR),
Location Sensitivity Enhancement Representation (LSER),
and Feature Location Consistency Mapping (FLCM). MSFR
uses a pyramid pooling module to extract features at
different scales, thereby enhancing the representation of
multi-scale features. This feature is essential for capturing
information across different levels of granularity. LSER is
dedicated to optimizing the encoding of location information
through the use of a sensitivity module. This component
is critical in preserving spatial details relevant to precise
object localization in detection tasks. FLCM takes the
original feature map and enhances it to use the advantages
of multi-scale features and location data from both fully
connected and convolutional-based detection heads. This
refinement significantly improves the capability to map
features to labels effectively. Depending on the specific type
of detection head embedded, RRHead exhibits the ability to
retain location sensitivity representation information while
simultaneously enhancing feature-label space mapping in
fully connected and convolutional-based detection heads. The
effectiveness of RRHead is shown through extensive experi-
ments conducted on challenging benchmarks, establishing it
as a powerful tool for improving the detection performance
of existing frameworks and achieving new state-of-the-art
results. Although the research does not explicitly address
the limitations of this method, potential concerns include its
applicability to all object detection frameworks and variations
in computational costs depending on the specific architecture
and dataset used. RRHead offers valuable insights into
enhancing the design of object detection heads and represents
a promising advancement in the field.

The research by Zhu et al. [97] aimed to enhance object
detection performance in drone-captured scenarios. This
led to the introduction of TPH-YOLOv5, an improved
version of YOLOv5, with significant innovation, including
the integration of Transformer Prediction Heads (TPH) into
the YOLOv5 framework. This integration is relevant for
achieving precise object localization, particularly in scenes
with high object density. TPH uses self-attention mechanisms
to explore the model prediction potential, while CBAM
(Convolutional Block Attention Module) enriches its ability
to identify regions of interest within large image coverage.
The model classification accuracy, especially for visually
similar categories, was enhanced through the inclusion of a
self-trained classifier. To further enhance its performance,
a combination of data augmentation techniques, including
MixUp, Mosaic, and traditional methods, was adopted. A set
of strategic filtering techniques specifically designed for
object detection in drone-captured scenarios was also used.
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TPH-YOLOv5 exhibited state-of-the-art performance on the
VisDrone2021 test-challenge dataset, surpassing the previous
state-of-the-art model (DPNetV3) by 1.81% and competing
with the top-ranking model in the VisDrone2021 DET
challenge. However, the research acknowledged potential
limitations, such as its performance on non-drone images,
computational resource requirements, training time, and
interpretability. As the research strived to enhance object
detection in drone scenarios, it became crucial to explore
its adaptability to other image types and consider real-time
application requirements.

Dai et al. (2021), introduced a novel dynamic head
framework aimed at improving object detection performance
through the integration of attention mechanism [98]. It com-
prised three attention mechanisms, namely scale, spatial, and
task-aware, which collectively capture diverse information
within the feature tensor. This enhanced the representation
ability of object detection without introducing computational
overhead. The procedure was effortlessly integrated into
existing detectors by applying scale and spatial-aware
attention to the feature pyramid, while task-aware replaced
fully connected layers. The results of the evaluation con-
ducted on the COCO benchmark solidified the dynamic
head as the new state-of-the-art, showcasing its superior
performance. Though the investigation does not explicitly
mention limitations, further exploring its performance across
different datasets and architectures is necessary. It is intended
to provide valuable insights into designing attentions for
improved performance and introduces a new perspective of
head design.

Xia et al. proposed CBASH, a new method for weakly
supervised object detection, with a focus on the Advanced
Selection Heads (ASH) as the central component [99]. ASH
was devised to improve the quality and quantity of positive
object proposals by using a two-stage method. First, a coarse
selection head captures the most informative features from
the backbone network, generating initial proposals. Further-
more, a fine selection head further refines these proposals
by picking the most informative ones. CBASH effortlessly
incorporates ASH into the entire model, facilitating joint
training with a standard binary cross-entropy function.
Ablation research validated its effectiveness, exhibiting
significant performance improvements, particularly in terms
of mAP@50. ASH shows potential for addressing the
challenges of weakly supervised object detection. Further
research is needed to evaluate its limitations and compare
the performance with other state-of-the-art methods across a
wider range of scenarios.

Yi Shi et al. introduced an innovative approach, namely
MHD-Net, a novel lightweight traffic object detection
network [100]. The main focus of this research is to enhance
the performance of traffic object detection by refining its head
method and configuration. MHD-Net introduces a matching
strategy between the detection head and object distribution.
This strategy guides the rational configuration of the

detection head to effectively detect objects at various scales.
The research advocates a cross-scale configuration guideline,
suggesting the replacement of multiple detection heads with
only two. The approach balances model parameters, FLOPs
(floating-point operations per second), detection accuracy,
and speed, thereby enhancing themodel’s efficiency. A recep-
tive field enlargementmethod, combining dilated convolution
modules with shallow and deep supervision, was also
introduced. This combination led to improved detection
accuracy, specifically for small objects. As a result, the
proposed MHD-Net achieves state-of-the-art performance
on benchmark datasets such as BDD100K and ETFOD-v2
for traffic object detection. Further investigation is required
to determine its generalization to other datasets and object
detection tasks, specifically those including complex-shaped
objects or occlusions. Its suitability for real-time applications
with high frame rates needs to be carefully considered.

Jiang and Gu proposed a new Gating Head (G-Head) in
the context of one-stage object detection. The primary goal
was to enhance the interaction between different tasks and
promote effective multi-task learning [101]. The G-Head was
specifically designed to address the limitations associated
with the conventional parallel head structures. It consists
of three relevant modules Multi-Scale Aggregation (MSA),
Multi-Aspect Learning (MAL), and Gating Selector (GS).
The MSA module plays a significant role in acquiring shared
information by aggregating features from multiple scales.
Meanwhile, the MAL module focused on aspect-specific
features using its convolutional filters. The function of the GS
module is to adaptively select the most informative features
from different aspects and scales. By breaking down the
multi-task learning problem into distinct aspects, the G-Head
simplifies the training process and significantly achieves
significant performance improvements. It also achieves these
gains while requiring fewer parameters and performing
fewer floating-point operations per second (FLOPs). Through
extensive experiments conducted on the challenging MS
COCO dataset, the proposed G-Head sets a new state-
of-the-art benchmark with an impressive 48.7 Average
Precision (AP) score under single-model and single-scale
testing conditions. Although the research does not explicitly
list its limitations, future investigation is recommended to
analyze the method’s performance on alternative datasets and
compare its computational efficiency with other state-of-the-
art techniques. As a result, the G-Head method is an effective
and efficient approach for one-stage object detection. It shows
great promise for advancingmulti-task learning in the context
of object detection, signifying a significant advancement in
this field.

Based on the research conducted by Zhu et al., a DualDA-
Net frameworkwas proposed for the purpose of cross-domain
object detection in remote sensing imagery [102]. This
framework is specifically designed to address the challenges
posed by the biased information that commonly occurs
between the source and target domains. To accomplish this,
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DualDA-Net adopted a teacher-student framework with dual
detection heads. These heads serve the dual purpose of
generating pseudo-labels for the target domain data and
progressively refining them. The framework consists of
two main components, namely coarse-to-fine consistency
alignment (CCA) and dual-head co-training (DHCT). CCA
focuses on supporting the feature distribution between the
source and target domains, effectively mitigating the shift
issue. On the other hand, DHCT incorporated dominant
and affiliated heads to reduce biased information and
improve the quality of pseudo-labels. This framework find
it difficult to accurately detect certain object categories with
unique sizes and aspect ratios. Addressing variations in
category distribution between domains is also an important
consideration. The presence of noisy labels in predictions
can impact performance, besides future investigation in
this area could explore oriented object detection techniques
and domain-specific strategies to enhance results across all
categories. The DualDA-Net framework shows promise in
cross-domain object detection in remote sensing imagery,
achieving success in the target domain.

Recent research in the field of object detection head meth-
ods share a common objective, to enhance object detection
performance through innovative architectural designs and
attention mechanisms. These approaches aim to strike a
delicate balance, achieving both high accuracy and compu-
tational efficiency while simultaneously tackling a range of
challenges such as domain shift, weakly supervised object
detection, and scenario-specific complexities. The proposed
methods offer a variety of solutions, including the integration
of top-down refinement modules, auxiliary detection heads,
dynamic routing spaces, fine-grained dynamic routing, etc.
Collectively, these innovations work to improve the overall
effectiveness of object detection systems. Additionally,
significant progress has been made in refining attention
mechanisms in this research. These mechanisms, including
scale, spatial, and task-aware attention, have exhibited
promising results in augmenting the representation capabil-
ities of object detection models. This research collectively
contributes valuable insights and techniques for advancing
the field of object detection, paving the way for more efficient
and accurate models in the future.

VI. DISCUSSION
Object detection has seen remarkable improvements in speed
and accuracy, mainly due to developments in deep learning
and the availability of large datasets. Yet, the substantial
computational and memory demands of deep learning
methods pose challenges for deploying object detection on
edge devices with limited hardware resources.

In this work, we mainly focus on the state of the art of
model simplification techniques to enable object detection on
resource-constrained edge devices. Table 1 on page 5 presents
the comparable survey paper related to our work. This survey
closes the existing gap among previous reviews. Object
detection development during the past two decades was

provided by [13]. However, they did not put an emphasis
on the simplification techniques and edge implementation.
The edge of object detection implementation is partially
discussed in [39] and [42]. While [41] explored the available
open source edge device related project and their energy
efficiency. Moreover, [40] discussed the general approach of
edge computing including the coordination of edge devices
and cloud computing, but they do not comprehensively cover
the model compression techniques in their review.

Edge devices are designed to operate efficiently under
limited conditions, focusing on features like compact size,
lightweight, and low power consumption. This focus often
leads to trade-offs, particularly regarding limited memory
and processing power (including CPUs and GPUs). These
limitations can be challenging for implementing near-edge
computing. To address these challenges, previous research
has focused on adapting and simplifying model complexities.
An overview of hardware configurations for various edge
devices is provided in Table 2. Devices such as the Raspberry
Pi primarily use CPUs, while others like the Jetson Nano
and Xavier combine CPUs with GPUs, offering memory
capacities of 4 GB and 8 GB, respectively. Additionally,
there are devices like the FPGA Virtex 7 VC707, which have
minimal memory, starting at just 18 kB. These hardware
specifications greatly impact the computational abilities and
power consumption of the devices.

When deploying deep learning object detection models on
edge devices, models like YOLOv4 with the CSPDarknet53
backbone face significant challenges due to their extensive
model sizes and the consequent demands on memory and
computing resources. For example, processing a 416 ×

416 image with YOLOv4 involves managing over 60 million
parameters during inference. These models require substan-
tial memory not only for storing the model itself but also for
holding the results computed during inference. A comparative
analysis of various object detection backbones, which vary
in size from 26 MB to 12 GB, is detailed in Table 3. This
variation is influenced by factors like kernel size, number of
layers, and input image dimensions.

The primary function of the backbone is to transform
the input into a feature space, and it typically accounts for
the largest portion of the model size compared to other
components, such as the head network. The size of a
model in neural network-based methods has two significant
consequences, namely, memory footprint and processing
unit requirements. Models essentially consist of learned
weight parameters acquired during training. These weight
parameters are essential for making inferences to predict
outputs. Before making inferences, the model must be
loaded into memory, which requires more memory for larger
ones. Inferences involve forward propagation, where the
input signal is multiplied by the weight of the model to
predict either numerical values (regression) or the class
(classification).

Edge devices usually feature processing units, such as
CPUs and GPUs, tasked with these computational processes.
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TABLE 2. Various edge devices capacity.

TABLE 3. Object detection backbone.

Considering the substantial size of backbones, efforts have
been made towards their replacement or reduction. For
instance, in YOLOv4 and YOLOv4 Tiny, the original 53-
layer backbone is replaced with a more compact 9-layer
version. Modifications to the head network are also explored,
though these tend to be less extensive due to the head network
generally having fewer layers than the backbone.

There are three well-known deep learning compression
techniques, namely knowledge distillation, pruning, and
quantization, as shown in Figure 3 and elaborated in
section IV. CNN is a fundamental component in the
field of deep learning object detection methods, including
well-known methods such as RCNN, YOLO, and SSD.
Most of the detection methods implement transfer learning
of common CNNs such as VGG 16 in the RCNN family,
YOLO VGG16, and SSD. These CNN models play a critical
role in the process, mainly by transforming the input image
into a smaller feature space. This transformation makes
subsequent tasks computationally lighter while still retaining
important information from the input image to maintain high
detection accuracy. The primary differences among object

detection methods such as RCNN, YOLO, and SSD lie in
when the feature extraction would be executed. For instance,
in the Early RCNN family, feature extraction occurs after
computing region proposals, while in YOLO it is initiated at
the initial stage of object detection.

YOLO and SSD follow a one-stage approach where, after
feature extraction, the subsequent tasks involve regression
of object properties, such as location and size, along with
object classification. Regression and classification tasks can
be accomplished using various methods, including SVM and
neural networks. More recently, in YOLO, bounding box
prediction and object classification are both carried out by
neural networks.

These object detection methods take feature space as
input and produce numerical bounding box predictions and
object class labels as output. To restructure the complexity of
object detection methods, simplifications can be made in the
network head, typically constituting the backbone. Replacing
the backbone with a smaller CNN size often comes at the
cost of feature quality, which can reduce detection accuracy.
A significant challenge is to maintain detection accuracy
while reducing network size, especially for deployment
on edge devices. Various compression techniques such as
quantization, pruning, and knowledge distillation have been
explored to minimize CNN while ensuring high accuracy
compared to the original algorithm before compression.
Knowledge distillation has shown promising results as
reported in prior research [61], [62], and [63], while pruning
and quantization have also been investigated by [66] and [72].

MSCOCO and PASCAL VOC serve as widely recognized
benchmark datasets, extensively used in various research
to evaluate system performance in the field of object
detection. Prior research explored different variations of
techniques such as knowledge distillation, network pruning,
and quantization to enhance the efficiency of the proposed
models when working with these datasets. The primary
evaluation metric commonly used in this context is mAP.
In the past, there has been a significant surge in research
attention directed towards compressing object detection
models. However, certain challenges within this context
remain partially unresolved. Specifically, the pursuit of
improving mAP scores and reducing computation time
remains highly prioritized. This is critical for achieving
real-time performance on devices with limited computational
resources.
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TABLE 4. State-of-the-art research papers on object detection compression method.

It is essential to acknowledge that there is no universal
solution that works effortlessly in every situation, despite the
progress made by some research in simplifying object detec-
tion methods. Evaluating the effectiveness of compression
approaches relies on two critical considerations, improving
latency during inference on target devices and managing
potential drops in mAP. It is relevant to emphasize the
importance of evaluations carried out in specific use-case
scenarios. The widely used standard datasets such as COCO
or PASCAL VOC have certain advantages; however, they
do not completely capture the complexities of real-world
applications, for example, the case of an agricultural drone
designed for automated fruit harvesting. In this scenario, the
diversity of object types is significantly smaller compared
to COCO or PASCAL VOC. Therefore, assessing the
performance of an object detector using general datasets
alone may not suffice in providing insights into its real-world
effectiveness.

VII. CONCLUSION
This research presented a comprehensive review of
deep learning-based object detection methods. The study

emphasizes that CNN architectures form the backbone of
these models, and the overall size of an object detection
model is largely influenced by the chosen backbone.
Compressing the backbone can significantly reduce the
model’s size. Beyond the backbone, the compression of the
head in object detection methods has also been a focus in
recent advancements.

The main objective was to investigate the state of the
art in object detection compression and to identify areas
for further research. This exploration included three key
deep-learning compression techniques: knowledge distil-
lation, pruning, and quantization. Regarding knowledge
distillation, future studies are encouraged to experiment
with different teacher-student model combinations. With
pruning, the challenge lies in determining the most effective
strategy for deep neural networks. Previous studies have also
examined quantization techniques and their impact on the
performance of object detection models.

Moreover, the varied responses of different target devices
indicate a need for more research to understand these
discrepancies fully. The specific use case is another crucial
factor; while some algorithms may perform well on general
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detection datasets like MS COCO, their effectiveness might
vary in scenarios with a different number or type of target
objects. Understanding these nuances is vital for developing
tailored and efficient object detection solutions.
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