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ABSTRACT Modern vehicles rely heavily on interconnected electronic control units (ECUs) through
in-vehicle networks to perform crucial functions such as braking and monitoring engine RPMs. However,
the increased number of ECUs and their connectivity to the in-vehicle network poses a security risk
due to the lack of encryption and authentication protocols such as the controller area network (CAN).
To address this problem, machine learning (ML) based intrusion detection systems (IDSs) have been
proposed. However, existing IDSs suffer from low detection accuracy, limited real-time response, and high
resource requirements. This study proposes an accurate and low-complexity IDS for in-vehicle networks
based on feature fusion and ensemble learning called the Feature Fusion and Stacking-based IDS (FFS-
IDS). FFS-IDS fuses multiple features extracted from raw network traffic and then classifies traffic instances
into intrusive and non-intrusive categories using a stacking ensemble learning of basic machine learning
classifiers. Specifically, a decision tree is employed as a base classifier, and random forest is used as a meta-
learner. This work implements and validates the FFS-IDS using real-time car hacking data sets and achieves
better performance than individual decision tree classifiers and popular ensemble learning methods such as
Random Forest, LightGBM, AdaBoost, and ExtraTree algorithms. The results demonstrate that FFS-IDS can
detect Denial of Service (DoS), Gear spoofing, and RPM spoofing attacks with up to 99% accuracy and Fuzzy
attacks with up to 97.5% accuracy using benchmark datasets. Overall, this study shows the effectiveness and
practicality of FFS-IDS in detecting intrusions in in-vehicle networks, which is essential for ensuring the
cybersecurity and safety of modern vehicles. Future work in this area could involve exploring additional
feature extraction techniques and fine-tuning hyperparameters to improve the performance of IDSs further.

INDEX TERMS Controller area network, in-vehicle network, intrusion detection system, feature fusion,
ensemble learning, car hacking.

I. INTRODUCTION

Modern vehicles are equipped with electronic control units
(ECUs) and robust computing systems, which have made
them communication and computing-enabled terminals for
intra-vehicle and inter-vehicle network communication [1],
[2], [3]. This increased communication has led to more
functionality and comfort, but it has also increased security
threats [4], [5], [6]. The susceptibility of the controller
area network (CAN) to different types of cyber attacks,
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including fuzzy attacks, DoS attacks, and spoofing attacks,
has been a significant concern due to the lack of encryption
and authentication policies in the de facto standard of in-
vehicle networks [7]. Intrusion detection systems (IDSs) are
vital tools for protecting in-vehicle networks by identifying
unauthorized events in the networks [8], [9]. Machine
learning (ML) and deep learning (DL) methods have been
successfully implemented in developing effective IDSs for
various applications [10], [11], [12], [13], [14].

However, most existing ML-based IDSs suffer from low
detection accuracy, limited real-time response, and limited
computing resources due to the availability of a large number
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of features of network traffic [1], [15], [16], [17]. This work
proposes an effective IDS (called FFS-IDS) for the CAN
bus of in-vehicle networks to address these issues. FFS-IDS
involves feature fusion and stacking-based ensemble learning
to detect intrusions in in-vehicle networks. It fuses multiple
features derived from primary features extracted from raw
network traffic, capturing more information about network
activity and improving the IDS’s accuracy. It then classifies
traffic instances into intrusive and non-intrusive categories
based on stacking ensemble learning of basic ML classifiers,
where a traditional decision tree is used as a base classifier
and random forest is used as a meta-learner.

This work contributes to the field of in-vehicle network
security by proposing a feature fusion method that combines
basic features of in-vehicle network traffic to construct
more comprehensive data subsets. This approach captures
a broader range of information about network activity,
improving the accuracy of intrusion detection. Additionally,
I propose a stacking-based ensemble learning approach
that further combines the outputs of multiple classifiers to
improve detection performance. Specifically, we use a Bayes
classifier, decision tree, and random forest classifier in a
hierarchical structure to learn from the comprehensive data
subsets. Finally, I validate the proposed methods using a real
car hacking benchmark intrusion detection dataset for in-
vehicle networks. The experimental results demonstrate that
this approach significantly outperforms existing state-of-the-
art methods regarding detection accuracy and false positive
rate.

This paper is organized as follows. Section II provides an
overview of existing research on intrusion detection in in-
vehicle networks. Section III presents the intrusion detection
problem in in-vehicle networks. Section IV introduces the
proposed FFS-IDS system based on feature fusion and
stacking-based ensemble learning for detecting intrusions in
in-vehicle network traffic. The experimental setup, including
the benchmark dataset and performance metrics used to
evaluate the proposed system, is detailed in Section V. The
results of the experiments are presented and compared with
existing state-of-the-art methods in Section VI. Section VII
highlights threat to validity of this work. Finally, Section VIII
summarizes the contributions and discusses future directions
for further research.

Il. RELATED WORK

There has been a growing interest in developing effective
network traffic classification methods in academia and
industry in recent years. Various techniques and features
have been proposed for this purpose, including deep packet
inspection, port number-based classification, and statistical
classification methods [11], [18], [19], [20], [21].

Deep packet inspection methods effectively identify
known patterns and classify network traffic based on
payload content-based information. However, they require
specific hardware and have limitations in identifying
multimedia-based and encrypted traffic. Port number-based
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classification methods use transport layer headers’ port
numbers to classify network traffic accurately. However,
they fail to classify traffic from modern applications that do
not use popular port numbers. Statistical information-based
methods extract high-level features from basic packet header
information, and ML and DL-based methods often use this
extracted information to classify network traffic accurately.
However, these methods may require significant computing
resources and may not always provide high accuracy in
network traffic classification [22]. These in-vehicle intrusion
detection approaches’ diverse strengths and limitations
are compared in Table 1, allowing for a comprehensive
understanding of their suitability for different scenarios.

TABLE 1. Comparison of network traffic classification methods.

Method Effectiveness| Limitations | Resources| Accuracy
Deep High for | Specific High High
packet known hardware, (specific
inspection patterns multime- patterns)
dia/encrypted
traffic issues
Port Accurate for | Modern Low Moderate
number- traditional applications
based applications | with  non-
classifica- standard
tion ports
Statistical Effective High Variable Variable
information-| with resources,
based ML/DL varying
methods accuracy

Several approaches have been proposed for detecting intru-
sions in in-vehicle network traffic using different techniques
and features. For instance, Alshammari et al. [23] employed
K nearest neighbor and support vector machine-based classi-
fiers to detect intrusions in CAN bus traffic. Based on network
traffic specifications, Olufowobi et al. [24] developed a
real-time IDS for in-vehicle network traffic attacks and eval-
uated their system’s performance using a synthetic and CAN
intrusion dataset. In addition, Olufowobi et al. [25] proposed
an adaptive cumulative sum method that utilizes statistical
change-based information to detect attacks in CAN traffic
quickly. Barletta et al. [26] used distance-based information
to develop IDSs for in-vehicle networks. They suggested
using the k-mean clustering algorithm with an X-Y fused
Kohonen network, which demonstrated high performance
in detecting intrusion from the CAN dataset. However,
their system has computational complexity. Lee et al. [27]
developed an IDS for detecting CAN attacks in in-vehicle
network traffic using offset ratio and time interval-based
information. They demonstrated the performance of their
model by simulating different types of attacks, such as Fuzzy
attacks, DoS attacks, and impersonation attacks.

DL methods have also been explored for detecting attacks
in in-vehicle network traffic [28]. Song et al. [10] presented
a deep convolutional neural network (CNN) based approach
for detecting attacks in CAN traffic, which reported high
attack detection accuracy. Similarly, Lo et al. [6] proposed
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TABLE 2. Comparison of intrusion detection approaches in in-vehicle network traffic classification.

Category | Study Features Dataset Method Results Strengths Limitations
ML Alshammari| Statistical CAN bus | KNN High detection | High accuracy in detect- | Limited evaluation with
et al. [23] features, traffic and SVM | rate with low | ing intrusions in CAN | a single dataset, may
Payload classifiers false positives bus traffic not generalize to other
features datasets
Olufowobi | Network Synthetic Real-time High detection | Real-time detectionofin- | Limited evaluation using
et al. [24] traffic and CAN | IDS rate with low | trusionsinin-vehicle net- | synthetic and CAN
specifica- intrusion false positives work traffic intrusion dataset, may
tions dataset not generalize to other
datasets
Statistical-| Olufowobi | Statistical CAN traf- | Adaptive Quick detection | Fast detection of attacks | Limited evaluation using
based et al. [25] change- fic cumulative of attacks in CAN traffic synthetic and CAN
based sum method intrusion dataset, may
informa- not generalize to other
tion datasets
DL Barletta et | Distance- CAN k-mean High High performance in de- | High computational
al. [26] based dataset clustering performance tecting intrusions from | complexity
informa- algorithm with the CAN dataset
tion with X- | computational
Y fused | complexity
Kohonen
network
Lee et al. | Offset In-vehicle Simulation High detection | Simulated different types | Limited evaluation using
[27] ratio network rate with low | of attacks and demon- | a small dataset, may
and time | traffic false positives strated high performance | not generalize to other
interval- of the model datasets
based
informa-
tion
Song et al. | DeepCNN | CAN traf- | CNN High accuracy | High accuracy in detect- | Computationally expen-
[10] fic of attack detec- | ing attacksin CAN traffic | sive due to the high com-
tion plexity of the CNN model
Lo et al. | Spatialand | Car hack- | CNN and | Correct classi- | Accurately classifies net- | Computationally expen-
[6] Temporal ing dataset | LSTM fication of net- | work traffic using spatial | sive due to the use of DL
features work traffic and temporal features models
Lokman et | Auto- CAN traf- | Anomaly Detection  of | Effective in detecting | Limited evaluation using
al. [30] encoder fic detection anomalies anomalies in CAN traffic | a single dataset, may
in  in-vehicle not generalize to other
network datasets
Ashraf et | LSTMnet- | UNSW- IDS High accuracy | High accuracy in detect- | Computationally expen-
al. [31] work NBI15 in detecting in- | ing intrusion in UNSW- | sive due to the use of DL
and CAN trusion NBI15 and CAN intrusion | models
intrusion datasets
datasets

using DL methods and different features, such as spatial and
temporal features, to detect intrusions in the car hacking
dataset. They used a CNN for extracting spatial features and
a long short term memory (LSTM) network for extracting
temporal features, and the extracted features can correctly
classify network traffic of the car hacking dataset.

Leveraging the taxonomy from Table 1 and highlighting
the potential of ML/DL and statistical methods, Table 2
dissects the strengths and limitations of diverse approaches,
features, datasets, and results. However, direct comparisons
remain challenging due to individual study goals, data
sources, and evaluation criteria.

Overall, the studies discussed in this section have shown
promise in detecting intrusions in in-vehicle network traffic
using various methods [29]. However, each approach has its
strengths and limitations. For example, DL-based methods
such as CNN and LSTM networks have shown high
accuracy in detecting intrusions, but they are computationally
expensive due to their high complexity. On the other hand,
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statistical methods such as the adaptive cumulative sum
method and distance-based IDS have shown promise in
detecting attacks quickly with less computational complexity.
Still, they may not perform as well as DL-based methods.
When choosing an intrusion detection method for in-vehicle
network traffic, it is essential to consider the trade-off
between accuracy and computational complexity. Further-
more, more research is needed to evaluate the generalizability
of these methods to different datasets and their robustness
to different types of attacks. Based on the literature review
presented and compared in Table 2, some research gaps can
be identified:

o Limited research on statistical features: While some
studies have explored statistical features, there is still a
lack of research on effectively utilizing them to develop
accurate and efficient IDSs for in-vehicle network
traffic.

o Lack of comparative studies: Although various tech-
niques have been proposed for detecting intrusions in

2047



IEEE Access

A. Altalbe: Enhanced Intrusion Detection in In-Vehicle Networks

in-vehicle network traffic, there is a lack of comparative
studies that evaluate and compare the performance of
these techniques. Comparative studies can help identify
the strengths and weaknesses of different methods and
provide insights into which methods are most effective
in detecting intrusions in in-vehicle network traffic.

« Limited research on resource-constrained environments:
Many existing studies have focused on developing
IDSs for in-vehicle network traffic in resource-rich
environments without computing power or memory
constraints. However, there is a lack of research on
developing effective IDSs for in-vehicle network traffic
in resource-constrained environments, such as those
found in many embedded systems.

« Lack of focus on new types of attacks: While the existing
studies have proposed different approaches for detecting
various types of attacks, there is a need for more research
on identifying and detecting new types of attacks that
may be specific to in-vehicle network traffic. As the
automotive industry continues to evolve, attackers may
develop new attack techniques specific to in-vehicle
network traffic, and it is crucial to have IDSs that can
effectively detect such attacks.

Despite their high performance, DL models can be
computationally expensive due to their high complexity.
Therefore, it is crucial to develop accurate IDSs for in-vehicle
network traffic that utilize less computationally expensive
ML models and statistical features.

Ill. FORMULATING THE PROBLEM OF INTRUSION
DETECTION IN IN-VEHICLE NETWORKS

Intrusion detection in in-vehicle networks identifies abnormal
events or attacks in the network traffic dataset. To frame this
problem, we can define the following notations:

Let DT = iy,ip,...,iy be the set of N instances in
the in-vehicle network traffic dataset, where each instance
represents m-dimensional feature space 1. Thus, for an
instance ij, the features are denoted as i; = fi1, fi2. fi3, - - - » fims
and i; € 1.

To perform intrusion detection, we need to define a
mapping ID that maps the input space I to an output
space O, indicating the number of classes for network
traffic classification. In binary classification, the output space
consists of two classes, which can be denoted as O =
intrusive, non-intrusive, normal, anomaly, 0, 1, or positive,
negative. In multi-class classification, the output space
has more than two classes and can be denoted as O =
01,02, ....,0;, Where i > 2.

This work aims to find a suitable mapping ID: I — O that
classifies in-vehicle network traffic into attack classes based
on a given network dataset. This study proposes a decision
tree-based approach, alonure fusion, and stacking methods.
The proposed approach is discussed in detail in the following
section.

Strengths of this problem formulation include the precise
definition of notations and the focus on identifying abnormal
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events in in-vehicle network traffic. Limitations of this
formulation include the lack of discussion on the types
of attacks that can occur in in-vehicle networks and the
assumption that the network dataset is already given.

IV. DESIGN OF THE PROPOSED FEATURE FUSION AND
STACKING-BASED IDS (FFS-IDS)

This work proposes the Feature Fusion and Stacking based
IDS (FFS-IDS) for in-vehicle networks, as shown in Figure 1.
The FFS-IDS leverages multiple features extracted from raw
network traffic to classify traffic instances into intrusive and
non-intrusive categories using ensemble learning of basic
ML classifiers in a stacking approach. The proposed system
operates in three phases, which are described below.

fim} il {fay, fua fiy
12: {fo0, 220 23 o fom} i: w fa2, s
Preprocessor
mo —>®—> —

Natwork Tratic NG {f, fs s e find o o e
Capture Traffic Dataset with
basic features

Traffic Dataset with
basic preprocessed
features

Phase 1: Basic datpset co

Meta learner Base algorithm, ¢ bT2 <

< <
algorithmy, DTn

Traffic Datasets with
feature combinations

Phase 3: Sacking based learning Phase 2: Data subset construction

FIGURE 1. Design of the proposed feature fusion and stacking-based IDS
(FFS-IDS).

A. PHASE 1 - CONSTRUCTION OF THE BASIC DATA SET
The first phase involves extracting basic features from raw
network traffic and constructing a benchmark dataset. These
features capture relevant information about network traffic,
including spatial, temporal, and content features. Each record
in the dataset represents a network traffic instance in terms
of j features as described in Section III. The raw data may
contain noise, missing, and non-uniform scale data values.

Data preprocessing is applied to prepare the captured
data for further processing by ML models. This involves
handling null values, removing noise, removing redundant
and irrelevant information, and converting data attributes to
a uniform scale.

To demonstrate the performance of the proposed FFS-IDS,
we use the car-hacking dataset, which is available in CSV
format and contains fields such as Timestamp, ID, DLC,
DO0-D7, and Tag. Table 3 describes the attributes of the car-
hacking dataset.

The car-hacking dataset contains data fields of various
types, including time, categorical, and numeric fields.
However, this raw data cannot be directly used for ML
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TABLE 3. Attributes of the car-hacking dataset.

Attribute Description

Timestamp The recorded time of attack message

ID Identifier of CAN message in Hex

DLC The number of data bytes sent on the network
varies from O to 8

DO0-D7 Data bytes sent over the network

Tag Tag of the message as normal (R) or attack (T)

purposes. A CAN traffic preprocessor module is used to make
it compatible with ML algorithms that require numeric input,
as shown in Figure 2.

Timestamp D DLC o] S, 7 Tag (RIT)

Find missing values
based on DLC

Encode into Fill missing values with
numeric values ‘M’ (arbitrary symbol)
Shift Tag field to last

column
- | Encode into |
| Normalize | numeric values

Convert data HEX to
DEC and
M with 256

Preprocessed CAN traffic data

FIGURE 2. CAN traffic preprocessor for in-vehicle network intrusion
detection.

The preprocessing step involves encoding the ID field,
which represents the unique code for each message sent on
the CAN bus, into a numeric value ranging from O to the
maximum number of IDs (Max IDs). In the car-hacking
dataset, there are 29 unique CAN message IDs. The DLC
field, indicating the number of bytes sent over the network,
is normalized to arange of O to 1 using Eqs. 1 and 2 [32]. Here,
val; is the initial feature value i, while Min; and Max; are the
minimum and maximum values of feature i, respectively [33].

Normalizedvalue; = normalize(In(val; + 1)) @))

lizeto) = — ST D )
normalize(x;) = In(Max; + 1) — In(Min; + 1)

Here, val; is the initial feature value i, while Min; and
Max; are the minimum and maximum values of feature i,
respectively [33].

The data fields (DO to D7) contain data bytes in HEX
format, and the DLC field value indicates the length of the
data fields. The preprocessor module shifts the tag field to
the last column and fills non-available data bytes with an
arbitrary symbol, ‘M’. All values of DO to D7 are converted
from HEX format to DEC format, and ‘M’ is replaced
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with 256. Finally, all values of DO to D7 are normalized to
arange of 0 to 1 using Egs. 1 and 2.

To encode the tag field into numeric values, Normal (R) is
converted to 0, and Attack (T) is converted to 1 for further
processing with neural networks. The sklearn python library
was used to perform the data cleaning methods mentioned
above, specifically, the sklearn.preprocessing.LabelEncoder
function for encoding categorical to numeric values and
the sklearn.preprocessing.normalize function for normalizing
values to a uniform scale.

B. PHASE 2 - FEATURE COMBINATION-BASED DATA
SUBSET CONSTRUCTION

In Phase 2, we aim to construct a subset of the dataset
by combining multiple features generated in Phase 1.
As different features have different capabilities to detect
anomalous behaviour, using a relevant feature set is crucial in
the ML pipeline. I propose constructing comprehensive data
subsets based on feature fusion concepts to address this issue.

Network traffic data contain different types of infor-
mation analyzed in different dimensions, namely spatial
and temporal aspects of network data and data content
regarding network data behaviour. Efficient network traffic
classification requires temporal, spatial, and content features
derived from basic network traffic features, supporting and
complementing each other in detecting anomalies. Hence,
combining different features can result in accurate network
traffic classification by characterizing different anomalies
using comprehensive data features. Using a fixed or single-
feature dataset may not suffice in detecting anomalies in a
complex network such as the in-vehicle network.

I propose constructing a comprehensive data subset by
taking all permutations among different features using a
feature fusion method to address this issue. This approach
ensures both accuracy and diversity in network traffic by
combining different feature sets.

C. PHASE 3 - STACKING-BASED ENSEMBLE LEARNING

In Phase 3, we utilize a stacking-based ensemble learning
approach that combines the outputs of base classifiers trained
on each subset of the dataset generated in Phase 2. While each
basic algorithm is trained using a comprehensive feature data
subset for partial network traffic learning, it only predicts the
probability of a specific network traffic class. The goal of the
meta-learner is to take the output of the basic algorithms and
produce an overall detection of the network traffic class that
is more generalized and comprehensive.

To achieve this goal, we first train a set of basic learning
algorithms (BA1, BA>,...,BA,) to create basic models
(BM1,BM>, ..., BM,) using comprehensive feature data
subsets (DT, DTy, ..., DT,). The predicted probabilities
of these basic models, BA|(p1, p2, ..., pn), BA2(p1, p2, . . .,
Pn)s - .., BAL(p1, P2, . . ., pn) are then fed to the meta learner.
Based on a two-level stacking approach, the final model
(FM) is trained using ensemble learning of basic models
(BM1,BM>, ..., BM,).
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The proposed feature fusion and stacking-based IDS
algorithm is presented in Algorithm 1. The computational
cost of this algorithm depends on updating FM and is
O(N * ), where f is a constant value less than N. The feature
combination-based data subset construction phase requires
O(1). Therefore, the overall computational complexity of the
proposed algorithm in terms of space and time is O(N).

Algorithm 1 FFS-IDS Algorithm

Require: DT;: i Basic data subset, BA: Basic learning
algorithm, BM: Basic learning model, ML: Meta learning
algorithm

Ensure: Network traffic class predictions of the final
meta-learning model (FM)

1: Extract basic features from raw network traffic data
2: Construct comprehensive data subsets from basic fea-
tures using a combination and permutation approach
3: Seti < 1.
4: whilei < N do
BM; = BA (DT;)

5: end while

6: DT’ < NULL

7: Seti < 1.

8

9

- whilei < N do

: Setj <« 1.
10  whilej <N do
11: EN;; = BM; (DT;)
12: DT’ + =y (ENjj)

13:  end while
14: end while

15: FM <« y (DT")
16: Return FM

The proposed system’s overall effectiveness and accuracy
depend significantly on the accuracy of the base models.
To ensure high performance and computational efficiency,
I carefully selected the decision tree algorithm as the base
learning algorithm and the random forest algorithm as the
meta-learning algorithm. The decision tree algorithm is
well-suited for classification tasks, providing highly accurate
results with minimal computations [34], [35]. On the other
hand, the random forest algorithm is known to achieve high
classification accuracy through multiple decision trees, even
in the presence of noise and overfitting issues [35], [36].

V. EXPERIMENTAL SETUP AND IMPLEMENTATION

This section presents a comprehensive overview of the
experimental setup, implementation, dataset, performance
metrics, and results of the proposed approach for detecting
intrusions in in-vehicle networks. I also provide a detailed
analysis of the results and highlight significant observations
from the comparative analysis with the outcomes of existing
approaches.
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A. EXPERIMENTAL SETUP

To implement the proposed FFS-IDS, and state of the
art methods including DT, RF, LightGBM and ExtraTree
methods, I utilized the Anaconda distribution of Python and
various libraries such as Pandas, Numpy, and Scikit-learn for
loading the dataset, performing pre-processing operations,
constructing a comprehensive feature combination-based
data subset, and using decision tree and random forest
algorithms as base learning and meta-learning algorithms,
respectively. The experiments were conducted on a machine
with an Intel Core 13-2330M CPU @ 2.20 GHz, 4 GB RAM,
and 1 TB HDD running on the Windows operating system.
The results are recorded for FFS-IDS and the identified
algorithms, DT, RF, LightGBM and ExtraTree methods.

To ensure fair comparisons, we used the default
hyper-parameters of the identified algorithms as defined in
the Scikit-learn library, as presented in Tables 4 - 8. I also
utilized commonly used performance metrics to evaluate the
effectiveness of the proposed FFS-IDS approach. I compared
the results with existing approaches for detecting intrusions in
in-vehicle networks. Furthermore, I analyzed the results and
highlighted significant observations from the comparative
analysis.

TABLE 4. Hyper-parameters of decision Tree classifier.

Parameter Description Default Value

criterion Splitting criterion "gini" (Gini impurity)

splitter Split strategy "best" (chooses best
split)

max_depth Maximum depth of tree | None (no limit)

Minimum number of | 1
samples per leaf
Minimum number of | 2
samples required for a
split

Number of features to
consider at each split
Seed for RNG None
Logging level 0 (no logging)

min_samples_leaf

min_samples_split

max_features "auto" (all features)

random_state
verbose

TABLE 5. Hyper-parameters of random forest classifier.

Parameter Description Default Value
n_estimators Number of trees in the 100
forest

max_depth Maximum depth of a | None (no limit)
tree
Minimum number of | 2
samples required for
split

Minimum number of | 1
samples required in a

leaf

min_samples_split

min_samples_leaf

bootstrap Whether to use boot- | True
strap sampling
max_features Number of features to | ‘auto’ (sqrt of total fea-
consider at each split tures)
oob_score Whether to compute | False
out-of-bag scores
random_state Seed for the random | None
number generator
verbose Logging level 0

VOLUME 12, 2024



A. Altalbe: Enhanced Intrusion Detection in In-Vehicle Networks

IEEE Access

TABLE 6. Hyper-parameters of LightGBM classifier.

Parameter Description Default Value
Boosting Type Boosting algorithm gbdt
Objective Loss function binary (for binary clas-
sification)
n_estimators Number of boosting 100
rounds
learning_rate Learning rate 0.1
num_leaves Number of leaves per | 31
tree
feature_fraction Fraction of features to | 0.9
consider
bagging_fraction Fraction of data points | 0.8
for bagging
bagging_freq Bagging frequency 5
min_child_samples | Minimum child sam- | 20
ples
min_split_gain Minimum gain required | 0.0
for split
max_depth Maximum depth of the | -1 (no limit)
tree
random_state Seed for RNG None
verbose Logging level -1 (no logging)

TABLE 7. Hyper-parameters of AdaBoost classifier.

Parameter Description Default Value
base_estimator Weak learner type None
n_estimators Number of boosting | 50
rounds
learning_rate Shrinkage parameter 1.0
algorithm Boosting algorithm | ‘SAMME.R*
variant
random_state Seed for RNG None
verbose Logging level 0

TABLE 8. Hyper-parameters of ExtraTree classifier.

Parameter Description Default Value
n_estimators Number of trees in the 100
forest
max_depth Maximum depth of | None (no limit)
each tree
min_samples_split | Minimum number of | 2
samples required to
split a node
min_samples_leaf | Minimum number of | 1
samples required at
each leaf
bootstrap Whether to bootstrap | True
the data when building
trees
max_features Number of features to | "auto" (sqrt of total fea-
consider at each split tures)
oob_score Whether to compute | False
out-of-bag score
random_state Seed for the random | None
number generator
verbose Logging level 0 (no logging)
class_weight Weights associated | None
with classes
warm_start Use warm starting | False
when fitting

B. BENCHMARK DATASET

To assess the performance of the proposed FFS-IDS system
in detecting intrusions in in-vehicle networks, we utilized
the car hacking dataset introduced in [37]. This dataset
comprises in-vehicle network traffic data recorded by ECUs
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over the CAN bus and includes normal and attack traffic.
The dataset comprises messages transmitted by ECUs using
specific identifiers, which are then received by all connected
ECUs [10], [38].

The car hacking dataset includes attacks that disrupt
normal vehicle operations, such as braking and RPM gauges.
It comprises five types of attacks: DoS attacks, fuzzy attacks,
and spoofing attacks on the gear system and RPM gauge,
in addition to normal data instances over the CAN bus.

The car hacking dataset lists its features, as presented
in Table 3. The dataset was created by logging in-vehicle
network traffic through a real vehicle’s on-board diagnosis
(OBD-II) port. Attack traffic was injected by adding fab-
ricated messages to the in-vehicle network. The dataset
comprises 300 instructions for each respective attack class,
with each instruction lasting for 3 to 5 seconds. The collected
data is presented in CSV format, with separate files for
normal and attack traffic, DoS, gear spoofing, RPM spoofing,
and fuzzy attacks. Table 9 details the data instances used to
validate the proposed FFS-IDS system.

TABLE 9. Car-hacking dataset.

Dataset Normal Attack
Normal instances 988872 NA

DoS data subset instances 3078250 | 587521
Fuzzy data subset instances 3347013 | 491847
Gear Spoofing data subset instances | 3845890 | 597252
RPM Spoofing data subset instances | 3966805 | 654897

I divided the car hacking dataset into training and testing
datasets in the ratio shown in Table 10 for training and
testing. The experimental setup utilized Python programming
language, the Anaconda distribution, and libraries such
as Pandas, numpy, and sklearn for dataset loading, pre-
processing operations, and constructing a comprehensive
feature combination-based data subset.

TABLE 10. Training and test datasets.

Dataset Type Training Test
. Attack 393964 193557
DoS data subset instances Normal | 2062102 | 1016148
Fuzzy data subset instances Attack 329502 162345
¥ Normal | 2242534 | 1104479
. . . Attack 400719 196533
Gear Spoofing data subset instances Normal | 2576186 | 1269704
. . Attack 438245 216652
RPM Spoofing data subset instances Normal | 2658295 | 1308510

C. PERFORMANCE METRICS

To analyze and compare the performance of the proposed
FFS-IDS system and existing ML approaches for detect-
ing intrusions in-vehicle networks, I computed commonly
used performance metrics, including classification accuracy,
false positive rate, and true positive rate. These metrics
are typically computed from the confusion matrix, which
represents the classification results of the IDS. The elements
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TABLE 11. Confusion matrix elements.

Definition
Normal/non-intrusive
behavior  that is
successfully labeled as
normal/non-intrusive
by the IDS.
Intrusions that are suc-
cessfully detected by
the IDS.
Normal/non-intrusive
behavior  that is
wrongly classified as
intrusive by the IDS.
Intrusions that are
missed by the IDS,
and classified as
normal/non-intrusive.

Sr No. | Element
1. True Negative (TN)

2. True positive (TP)

3. False positive (FP)

4. False Negative (FN)

TABLE 12. Confusion matrix.

Actual Predicted
Normal | Attack

Normal | TN FP

Attack FN TP

of the confusion matrix are defined in Table 11. The possible
outcomes for classifying events are shown in Table 12.

While the confusion matrix is a powerful tool for represent-
ing the classification results of IDSs, it may not be beneficial
for comparing different IDSs. Various performance metrics
have been defined in terms of the confusion matrix variables
to address this issue. These metrics produce numerical values
that can be easily compared, providing insight into the overall
performance of the IDS. Some commonly used performance
metrics include classification accuracy, false-positive rate,
and true-positive rate [39], [40], [41], [42]. By evaluating
these metrics, I can analyze and compare the effectiveness of
the proposed FFS-IDS system with existing ML approaches
for detecting intrusions in in-vehicle networks.

1) Classification accuracy: It is defined as the ratio of
correctly classified instances and the total number of
instances.

Correctly_classified_instances

CR = -
Total_number_of _instances
TP + TN

= 3
TP+ 1N + FP + FN )

2) Detection rate or Recall: It is computed as the ratio
between the number of correctly detected attacks and
the total number of attacks.

Correctly_detected _attacks

Total_number _of _attacks
TP

- 4
TP + FN @)

3) False positive rate (FPR): It is defined as the ratio
between the number of normal instances detected as
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attack and the total number of normal instances.

FPR
Number_of _normal_instances_detected _as_attacks

Total_number_of _normal_instances

_ FP
~ FP+ 1IN
4) Precision (PR): It is the fraction of data instances
predicted as positive that are actually positive.
TP
== ©)
TP + FP
5) F-measure (FM): For a given threshold, the FM is

the harmonic mean of the precision and recall at that
threshold.

&)

PR

2
M=—" (7

PR ¥ Recall

VI. RESULTS AND DISCUSSION
This study compares the performance of the proposed
FFS-IDS system with other commonly used classifiers,
namely the decision tree [43], random forest [44], Light-
GBM [45], AdaBoost [46], and ExtraTree [47], which are
ensemble learning methods. The evaluation of these methods
is based on the car hacking dataset.

I conducted ten independent experiments using FFS-IDS
and the other classifiers with their default hyperparameters.

DOS ATTACK DATASET
—— Accuragy Precision Recsl F-mesure

R

% VALUE

LIGHTGEM ADABCOST EXTRATREE  FF3-IDS
MODEL

DOS ATTACK DATASET

——FPR FNR

% VALUE

RF oT LIGHTGEM ADABOOST
MODEL

EXTRATREE FFS-1D3

FIGURE 3. Comparison of the detection performance of the ffs-ids system
and other state-of-the-art methods on the DoS attack dataset.
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FUZZY ATTACK DATASET

——Accuray Precision Recall F-mesure
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MODEL

EXTRATREE FFS-1DS

FUZZY ATTACK DATASET

——FPR FNR

% VALUE

—_— .

RF o1 LIGHTGEM ADABOOST

MODEL

EXTRATREE FFS-1DS

FIGURE 4. Comparison of the detection performance of the FFS-IDS
system and other state-of-the-art methods on the fuzzy attack dataset.

TABLE 13. Comparison of intrusion detection methods for dos attacks on
in-vehicle networks.

Method Accuracy| Precision| Recall F- FPR FNR
measure

RF 93.0106 | 70.4131 | 97.1306| 81.6416 | 7.7742 | 2.8694
DT 91.1438 | 65.2186 | 95.6726| 77.5634 | 9.7189 | 4.3274
LightGBM| 92.3427 | 68.5362 | 96.3969| 80.1134 | 8.4296 | 3.6031
AdaBoost | 94.7714 | 76.4057 | 97.3987| 85.6344 | 5.7291 | 2.6013
ExtraTree | 95.7719 | 80.2230 | 97.6472| 88.0817 | 4.5854 | 2.3528
FFS-IDS | 99.0156 | 95.1942 | 98.8376| 96.9817 | 0.9505 | 1.1624

The performance of these classifiers was evaluated using
commonly used performance metrics. To compare the results
of these experiments, I visually represented the experimental
results using Figure 3 — 6.

Tables 13 — 16 summarize the comparative analysis of the
proposed FFS-IDS system with the existing approaches for
detecting intrusion in in-vehicle networks based upon car
hacking data set regarding the accuracy, precision, recall,
f measure, false-positive rate and false-negative rate.

Figures 3 — 6 and Tables 13 — 16 demonstrate that
FFS-IDS outperforms the baseline methods in detecting
intrusions from the car hacking dataset, achieving higher
accuracy, precision, recall, F-measure, FPR, and FNR. FFS-
IDS performs better in detecting DoS and spoofing attacks
than fuzzy attacks, which exhibit more complex behaviour.

Specifically, FFS-IDS achieved detection rates of up to
99% for DoS, gear spoofing, and RPM spoofing attacks,
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FIGURE 5. Comparison of the detection performance of the FFS-IDS
system and other state-of-the-art methods on the gear spoofing attack
dataset.

TABLE 14. Comparison of intrusion detection methods for Fuzzy attacks
on in-vehicle networks.

Method Accuracy| Precision| Recall | F- FPR FNR
measure

RF 05.9915 | 84.2108 | 84.5785| 84.3942 | 2.3310 | 15.4215
DT 93.3077 | 75.9962 | 69.8358 | 72.7859 | 3.2423 | 30.1642
LightGBM| 95.8887 | 82.2031 | 86.6858 | 84.3849 | 2.7586 | 13.3142
AdaBoost | 96.2368 | 83.5852 | 87.8961 | 85.6865 | 2.5372 | 12.1039
ExtraTree | 96.4661 | 84.4552 | 88.7616 | 86.5549 | 2.4014 | 11.2384
FFS-IDS | 97.5735 | 90.2819 | 90.8436 | 90.5619 | 1.4373 | 9.1564

TABLE 15. Comparison of intrusion detection methods for gear spoofing
attacks on in-vehicle networks.

Method Accuracy| Precision| Recall F- FPR FNR
measure

RF 97.4898 | 86.2737 | 96.6494| 91.1673 | 2.3802 | 3.3506
DT 96.3749 | 81.9309 | 93.5965| 87.3761 | 3.1951 | 6.4035
LightGBM| 97.6470 | 86.9407 | 97.0188| 91.7037 | 2.2557 | 2.9812
AdaBoost | 97.8024 | 87.7506 | 97.1689| 92.2199 | 2.0995 | 2.8311
ExtraTree | 97.5038 | 85.6352 | 97.7790| 91.3051 | 2.5388 | 2.2210
FFS-IDS | 99.1287 | 94.8628 | 98.8531| 96.8169 | 0.8286 | 1.1469

and up to 97.5% for fuzzy attacks, with a significantly
reduced FPR of 0.95% for DoS attacks compared to the other
individual and ensemble learning methods. The precision,
recall, F-measure, and FNR metrics also show similar
superior performance for the DoS attack class, as reported
in Table 13.

The comparative results presented in Figures 3 — 6 further
validate the effectiveness of FFS-IDS in detecting various
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FIGURE 6. Comparison of the detection performance of the FFS-IDS
system and other state-of-the-art methods on the RPM spoofing attack
dataset.

TABLE 16. Comparison of intrusion detection methods for RPM spoofing
attacks on in-vehicle networks.

Method Accuracy| Precision| Recall | F- FPR FNR
measure

RF 96.8622 | 84.8024 | 94.9223| 89.5774 | 2.8166 | 5.0777
DT 95.7896 | 81.2167 | 91.5283| 86.0648 | 3.5048 | 8.4717
LightGBM| 96.8102 | 85.1031 | 93.9987| 89.3300 | 2.7243 | 6.0013
AdaBoost | 97.3244 | 88.8393 | 92.8263| 90.7890 | 1.9308 | 7.1737
ExtraTree | 97.2057 | 89.5561 | 90.9338| 90.2397 | 1.7558 | 9.0662
FFS-IDS | 99.2207 | 96.3853 | 98.2522| 97.3098 | 0.6171 | 1.7478

attack classes on different datasets, indicating that the feature
fusion-based subset of the car hacking dataset, integrated with
a stacking-based ensemble learning method, can improve
the performance of IDS significantly over the individual
decision tree classifier and most popular ensemble learning
methods. This dataset’s feature construction, followed by the
stacking-based ensemble learning method, extracts helpful
information for classifying normal and attack network traffic.

Traditional individual classifiers and popular ensemble
learning methods reported less accurate results with high
FPR and FNR values than FFS-IDS, mainly due to their
inability to extract relevant information for normal and attack
traffic classification. Moreover, these methods reported poor
performance in detecting the fuzzy attack class due to
the complex behaviour of fuzzy attacks based on injected
messages. Fuzzy attacks are difficult to detect compared
to other attack classes such as spoofing and DoS attacks,
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FIGURE 7. Box plot-based analysis over 10 independent experiments.

which require regular injection of attack messages into the in-
vehicle network. Regular injection of attack messages can be
easily detected for spoofing and DoS attacks. However, fuzzy
attack messages are injected into the network less frequently.

Figure 7 shows box plots of the accuracy, FPR, and
FNR metrics. It can be observed that the proposed FFS-IDS
has reported stable results in detecting different attack
classes, except for the fuzzy attack class, due to its complex
behaviour.

VIl. ADDRESSING POTENTIAL THREATS TO VALIDITY
Transparency and robustness are paramount in this research,
and I comprehensively address potential threats to the validity
of this study across four dimensions: internal, external,
construct and conclusion validity.
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« Threats to External Validity: The generalization of
these findings may be limited due to using a specific
car-hacking dataset. While this dataset captures various
in-vehicle network scenarios, the diversity in real-world
conditions may not be fully represented. Additionally,
the specific characteristics of the attacks in the dataset
may not cover the entire spectrum of potential intrusions
in in-vehicle networks.

o Threats to Internal Validity: The experimental design
involves using default hyperparameters for machine
learning classifiers, which could influence the internal
validity as the chosen parameters may not be optimal for
the specific characteristics of the dataset. Moreover, the
proposed FFS-IDS algorithm’s performance is evaluated
based on a specific configuration, and changes in the
dataset or algorithmic parameters might impact the
results.

o Threats to Construct Validity: The feature extraction
techniques employed in this study focus on specific
aspects of network traffic. Variations in network archi-
tectures or the introduction of new attack methodologies
might threaten the construct validity, as the chosen
features may not comprehensively cover all potential
intrusions.

o Threats to Conclusion Validity: The conclusions
drawn from the results are based on the specific dataset,
experimental setup, and evaluation metrics chosen.
Changes in any of these elements or introducing new
metrics could potentially alter the conclusions drawn
from this study.

VIil. CONCLUSION AND FUTURE WORK

The increasing number of ECUs in modern vehicles has led to
an increasingly connected internal network, the CAN, which
has made them vulnerable to malicious attacks. This work
proposed an effective IDS for in-vehicle networks called
FFS-IDS, which uses feature fusion and stacking-based
ensemble learning. FFS-IDS fuses multiple features extracted
from raw network traffic and classifies traffic instances
into intrusive and non-intrusive categories based on stacking
ensemble learning of basic ML classifiers.

The experimental results demonstrated that FFS-IDS
outperformed state-of-the-art IDSs in terms of detection
performance, achieving detection accuracies of up to 99%
for DoS, Gear spoofing, and RPM spoofing attacks, and up
to 97.5% for Fuzzy attacks on the car hacking benchmark
dataset. This research demonstrates the effectiveness and
practicality of FFS-IDS for detecting intrusions in in-vehicle
networks.

The future work outlined in the paper encompasses
addressing identified limitations and enhancing the proposed
FFS-IDS for in-vehicle networks. The paper acknowledges
the constraints of using a single dataset for evaluation and
default hyperparameters for machine learning classifiers.
To overcome these limitations, additional feature extraction
techniques can be explored to enhance the detection

VOLUME 12, 2024

performance of IDSs. Furthermore, the intention is to
fine-tune the hyperparameters of base algorithms, ensuring
a more robust and accurate IDS.

The future research directions involve empirical validation
and optimization of the FFS-IDS algorithm. The authors
propose conducting thorough experiments to measure the
execution time on diverse hardware configurations, analyz-
ing each algorithmic stage’s time consumption. Scalability
concerning dataset size and complexity will be rigorously
assessed. Additionally, a detailed analysis of resource con-
sumption will be conducted, including memory usage, CPU
and GPU utilization, and network bandwidth requirements.
The authors aim to compare the resource consumption of
their approach with existing IDS solutions, evaluating its
feasibility for real-world deployment.

The optimization focus includes exploring various tech-
niques to enhance the efficiency of the FFS-IDS algorithm.
This involves investigating alternative feature fusion meth-
ods, optimizing data subset construction algorithms, and
exploring lightweight stacking classifier architectures. The
overarching goal is to reduce execution time and resource
consumption while maintaining or improving the detection
accuracy of the system.

Moreover, the paper proposes investigating hardware-
specific adaptations, tailoring the FFS-IDS algorithm for
platforms like embedded devices or edge computing environ-
ments. This involves developing specialized implementations
that leverage the strengths of available hardware resources
while minimizing constraints.
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