
Received 1 November 2023, accepted 20 December 2023, date of publication 26 December 2023,
date of current version 22 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3347551

Refining Line Art From Stroke Style
Disentanglement With Diffusion Models
FANGLU XIE , MOTOHIRO TAKAGI, (Member, IEEE), HITOSHI SESHIMO, AND YUSHI AONO
NTT Human Informatics Laboratories, Kanagawa 239-0847, Japan

Corresponding author: Fanglu Xie (fanglu.xie@ntt.com)

ABSTRACT A beginner who wants to create illustrations has difficulty improving his/her ability without
expert advice. Especially in the initial steps, line drawings are critical but hard to evaluate because there
are many assessment points, such as shape, variation in thickness, stroke fluency, and shadow expression.
Moreover, there is nowell-summarized line art dataset based on expert knowledge to support skill refinement.
Furthermore, the evaluation criterion is always subjective. To solve this problem, we custom-build
systematized line artworks formed by cataloged stroke styles and propose a machine learning method that
can automatically give clues to refining the artworks. We request 10 professional-level artists to create line
art in six patterns; the stroke styles of the images are systematically summarized. Using this specific dataset,
we train an auxiliary classifier to identify and remove features of those patterns to refine all line artwork
commonly. We also implement an enhancement step that uses diffusion models to add more informative
details to the generated results. The proposed method can automatically identify where strokes are needed
to change and generate high-quality refined versions. Our method performs better than the previous method
regarding L2, lpips, and SSIM scores while giving specialized clues to different stroke styles.

INDEX TERMS Disentangled representation, image generation, line art refinement, denoising diffusion
probabilistic models.

I. INTRODUCTION
The two main steps of illustration creation are line drawing
and coloring. Illustration beginners always make mistakes
in drawing lines and fail to realize where they went wrong.
However, the evaluation of line drawings is complicated
because there are too many assessment points, such as
variation in thickness, stroke fluency, shadow expression, and
drawing style. Furthermore, the evaluation criterion is always
subjective based on the artists’ experience and preferences.
If beginners are trying to enhance line drawings, they need
advice from experts. However, it is impractical to expect that
dedicated tutors can provide advice anytime and anywhere.
Our solution is to create an automatic line refinement system
based on expert knowledge that can give beginners specific
advice and generate refined artwork, as a practical substitute
for experts.

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei .

FIGURE 1. Example of proposed line art refinement. Features from line
art patterns(fuzzy, casual, overlap, no strength, hand-shaking) can be
distinguished and handled appropriately. Our method first distinguishes
the stroke style and removes them in the latent space. Then the content
features are converted into a low-dimensional refined result; the
low-dimensional result is converted into a final version with clear lines
through the denoising enhancing step.

An important issue is how to build a system that can
summarize and apply expert knowledge. We analyze the
composition of line art. Line artwork encompasses both
content and style. The content determines where the lines
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should be drawn, and it also reflects the artist’s interpretation
of the object’s shape. In this paper, we refer to all these
aspects collectively as ‘‘content.’’ On the other hand, the style
is reflected in the shape of the lines. The style also heavily
depends on the artist, as it represents the characteristics of
brush strokes and drawing techniques, such as how the line
thickness changes and the lines connect. To make a system
to provide professional and targeted advice, We consulted
experts and referred to textbooks. Drawing insights from an
art book [1], we identify five different stroke styles.

Many studies are closely related to our problem setting,
such as research on image style transfer, sketch simplifica-
tion, image disentanglement, etc. Traditional versatile image
transfer strategies [2], [3] struggle to effectively capture
and separate the distinct style attributes from underlying
content.When these methods are applied to line artwork, they
encounter difficulties in separating the complex line styles
because of the unique slender characteristic of lines. There
are other methods designed especially for the topic of line art
refinement. Liu et al. [4] demonstrate that for successful style
transfer in line art, the perceptual understanding of content
should reach the level of perceiving centerlines(a proximate
of the line topology). These methods indicate that the key
to a successful line refinement is extracting correct content
features. Sketch simplification [5], [6], [7] has the goal of
cleaning line artwork automatically. However, these methods
refine all artwork in a uniform and simplified style, and
so lose a lot of significant details, especially variation in
thickness. A key function of our proposal is to retain the line
refinements that yield impactful artistic features.

To address the issues mentioned above, we propose a
disentanglement strategy [8], [9], [10] that can extract the
common features across different styles of line art and
distinguish the style pattern at the same time. We then
implement an autoregressive process based on a conditional
denoising diffusion probabilistic model(DDPM) [11], [12],
[13] to refine the line art while retaining impactful details.
In this paper, the main contributions are as follows:

• Creation of a publicly available cataloged line art dataset
using stroke styles.1

• Development of specialized models to enhance the
disentanglement ability, allowing for the extraction of
different style features and precise content features from
line drawings. These models also provide style-specific
suggestions.

• Generation of high-quality refined line art characterized
by smooth and continuous lines with variations in their
strength.

II. DATASET
Image datasets grouped into systematic patterns are very
important to realize the disentanglement of stroke style
features. Our team collaborated with 12 professional artists

1Our dataset is available at https://github.com/ntthilab-
generation/lineart_dataset

FIGURE 2. The target and five line artwork patterns with annotations:
pat.0 ground truth(GT), pat.1 fuzzy, pat.2 casual, pat.3 overlap, pat.4 no
strength, pat.5 hand-shaking.

TABLE 1. User study: 20 volunteers identified their favorite stroke style
pattern.

to create a diverse dataset. The first artist led the design
of character images, while the second artist evaluated the
artwork’s quality and helped us choose the remaining
10 artists. The evaluator personally selected 10 artists to
ensure that they were all professionals with unique artistic
styles that covered a broad range of skills. Once selected,
these 10 artists were responsible for rendering the characters
in various stroke styles, based on the designed images. They
are asked to create line artwork in six patterns, one is used as
a sophisticated pattern (ground truth), and the other five are
mediocre patterns with five kinds of stroke details. To ensure
that the image information can be systematically disentangled
into content and stroke style, we limited the target object to
frontal face drawings in specified patterns. All of the artists
drew the artworks of 10 characters using clear lines in their
own style, which are taken as sophisticated data.

Our summarization is based on patternsmentioned in an art
textbook [1]. We define mediocre patterns as fuzzy, casual,
overlapping, lacking strength, and hand-shaking. Starting
from the sophisticated types, all artists drew five kinds of line
artwork with different stroke details, as shown in Fig.2.
• pat.1 fuzzy: carefully connecting short lines little by
little makes the lines look weak and messy.

• pat.2 casual: trying to draw vigorously leads to a lot of
broken bent lines that have uneven thickness and length.

• pat.3 overlap: lots of long lines stacked on top of each
other which looks messy.

• pat.4 no strength: no variance in the line thickness
gives the feeling of rigidity.

• pat.5 hand-shaking: drawing slowly and carefully
yields soggy lines.

Based on the reference book, these five patterns cover the
stroke styles seen most often in line sketch art. The expected
refinement suggestions for pat.1 fuzzy (resp. pat.3 overlap)
are to remove redundant short (resp. long) strokes that deviate
from the correct line position. For pat.2 casual, the refinement
is to reconnect the broken lines and set them in suitable
positions. In the case of pat.4 no strength, the refinement
is to enrich line thickness by adding or removing pixels of
the lines at appropriate positions. For pat.5 hand-shaking, the
network should smooth the curves into straight lines.
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We think that relying solely on subjective evaluation crite-
ria to create a dataset may make our makes experiments less
credible. So, we conducted a user study with 20 volunteers
to test the appeal of our sophisticated pattern designs, shown
in Table.1. We experimented with different stroke styles and
asked participants to rate their preferences to choose their
favorite pattern. The results showed that 60% of respondents
favored pattern.0, consistent with our established ground
truth(GT). This result shows that the preference of the public
is the same as our professional evaluator, which validates our
request.

Overall, our dataset consists of 600 grayscale images,
specifically 10 character head images in six patterns drawn
by 10 artists. The image size is 1024×1024. The six patterns
have an equal proportion in the data. We split the characters
in the ratio of 7 : 3 by artists for training : testing; yielding
420 training images and 180 test images.

III. RELATED WORK
We briefly review previous image refinement methods and
analyze the characteristics of each method.

A. SKETCH SIMPLIFICATION WITH VECTORS
Several traditional methods simplify sketches by geometric
processing [14], [15], [16], [17]; unfortunately, they accept
the input of just stroke vectors, which means that they are
unable to process complex real-world sketches. Igarashi et
al. [14] simplify all sketched-type strokes by replacing each
stroke group with a smooth curve, but this results in the
loss of detail and poor-quality artwork. The methods of [15]
simplify vector images by calculating the closure area but fail
to handle raster images. Liu et al. [16] propose a vector graph
simplification method based on the agglomerative generation
of a graphic primitive through the use of a hard threshold;
it is unable to well handle arbitrary sketches. Cole et al.
[17] utilize depth and silhouette information obtained from
3D models to evaluate the significance of input strokes.
For stroke evaluation, this method employs item buffers and
priority buffers that determine line visibility and line density,
respectively. The main problem with these methods is that
they delete existing strokes to simplify the input sketches
resulting in monotonous and uninteresting lines.

B. STYLE TRANSFER ON LINES
From an analysis of line artwork construction, we posit that
a line drawing consists of two components: content and
style. Some technologies are designed based on this structure.
There are learning-based strategies for style transfer [2],
[18], [19] targeted to colored arts. They use deep learning
algorithms to extract general style and content and optimize
an image to achieve a visually appealing result that recreates
the original content in the desired style. Gatys et al. [18] find
that the representations of content and style are separable
in the convolutional neural network. Johnson et al. [19]
introduce perceptual losses, blending high-level features
with pixel-based losses for efficient style transfer. Xun

and Serge [2] introduce Adaptive Instance Normalization
(AdaIN); it applies dynamic adaptation of style image
normalization to content images for flexible style transfer.
However, when these methods are applied to line drawings,
they encounter challenges in extracting the special style. The
slender lines make separating meaningful line style from
content difficult. There is a style transfer proposal [4] that
targets line art but it demands extra input. Their proposal is
efficient in terms of achieving accurate line style transfer with
extra centerlines(a proximate of the line topology). Based on
a discussion of this work, we elucidate that the key point in
deep line art style transfer is to separate the detailed style
features from the precise content. All the previous works
demonstrate that for successful style transfer in line art, the
perceptual understanding of content must reach the level of
the perception of centerlines.

C. MULTI-DOMAIN DISENTANGLEMENT
Multi-domain disentanglement [8], [9], [10] refers to extract-
ing independent factors across multiple domains and the
domain-dependent factors that characterize each domain.
This method achieves good performance in extracting
domain-independent features. If we treat the patterns of line
art as different domains, our work is similar to amulti-domain
disentanglement task. The content independent of the patterns
is the domain-independent factor across multiple patterns,
and the style feature dependent on the patterns is the domain-
dependent factor. The methods of [8] and [9] employ aux-
iliary classifiers to learn domain-independent and domain-
dependent features through conditional adversarial training.
Yu et al. [10] utilize this structure to bridge multi-modal
translation and multi-domain translation. Inspired by this
assumption, we utilize conditional adversarial training to
extract detailed style features from different patterns and
content features across different patterns. Unlike these prior
methods, our proposal extracts detailed features based on a
systematic definition of line patterns to give structural advice
without recourse to extra centerlines.

D. ROUGH SKETCH SIMPLIFICATION
Sketch simplification is the research topic that reduces
a complex and busy draft to line art. Machine learning
methods for sketch simplification [5], [6], [7] can clean raster
sketches. Simo-Serra et al. [5] propose an automatic approach
that uses a fully convolutional network for simplifying
sketches directly from raster images. Mastering sketching [6]
offers improved multi-usability by employing generative
adversarial networks (GANs) [20] with training based onwild
datasets. The method of [7] achieves detailed line refinement
through manual selection by the user. This method achieves
high-quality simplification, but the correction is based on
the user’s judgment making it unsuitable for illustration
beginners. In addition, all these methods strongly simplify
the sketches, resulting in fewer impactful details than real
line artwork. They treat all artworks the same without
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regard for their different drawing styles, which may result in
unexpected refinement when processing extremely sketchy
strokes. Unlike sketch simplification methods, our proposal
can extract detailed stroke style features from different style
patterns and provide high-quality refinement strategies.

E. ENHANCING IMAGES WITH GENERATIVE MODELS
To generate enough details to represent effective charac-
terization of the different patterns, we design an image
enhancement step on a generative model to further modify
the results.

Two generative models have gained popularity recently
due to their ability to generate images. One is GAN [20];
it utilizes two networks(a generator and a discriminator)
to compete and generate samples. GANs are known for
producing high-quality and sharp samples, such as generating
realistic images. Ledig et al. [21] propose a very deep
ResNet [22] architecture using the concept of GANs [20]
to form a perceptual loss function for photo-realistic super-
resolution single images. Simo-Serra et al. [6] utilize
supervised adversarial training with a paired dataset and
an unsupervised dataset(free sketches) to achieve data
augmentation. Motivated by these methods, we made an
experiment [23] on utilizing the GAN structure to enhance
blurred line art. However, GAN training is unstable and
suffers from issues like mode collapse, where the generator
focuses on generating a subset of samples. Furthermore,
based on our experiments [23], the generated results lack
varieties of textures when training on the limited dataset.

The denoising diffusion probabilistic model(DDPM) [11]
is another generative model. It is an auto-regressive model
and uses diffusion processes to generate samples. Due to
its autoregressive generation process, DDPM can generate
high-quality images with complex and varied textures, which
is suitable for refining line art. Conditional DDPM [12],
[13], [24] are proposed to transfer parts of reference images
by diffusion models. Palette [13] is a unified framework
based on a conditional DDPM model for image-to-image
translation tasks (colorization, inpainting, uncropping, and
JPEG restoration) without task-specific customization or
optimization instability. Our work introduces a conditional
DDPMmodel based on [13] to make refined sketches clearer
and more similar to real line art.

IV. PROPOSED METHOD
In this paper, we present a two-step line art refinementmethod
and evaluate the capability of each step. Figure 3 shows the
overall architecture. The main idea of our framework is to
identify the different patterns of stroke styles and separate
them from the content features. Only the content features
are utilized to achieve efficient line art refinement. Towards
this end, we design the first feature extraction step(FE
step) that generates initial images independent of patterns.
Then, based on common results, the second step is a further
enhancement step to create high-quality images based on
the DDPM method (DDPM step). First, we introduce the

feature extraction step in Section. IV-A. Then, we describe
the knowledge of the diffusion model and detail the second
step in Section. IV-B.

A. DISENTANGLEMENT ON STROKE STYLE FEATURES
To disentangle the stroke style features(pattern-dependent
style) from the content, we design two specific encoders,
a style encoder Es and a content encoder Ec, which extract
the style and content features, respectively. We use the
layers of the vgg network [25] to compose the encoders.
In addition, an auxiliary classifier, C , is used to identify
the patterns. This classification has two roles: one is to
give accurate classification results and specified drawing
comments; and the other is to help separate the style features
from the content features. Through an adversarial learning
method with a GRL [8] layer, this structure helps to yield
pattern-dependent styles and separate them from the content
features, simultaneously. The low-dimensional style and
content features are fed to generatorG to output rough interim
images. All networks,Es,Ec,C andG, are trained at the same
time by using the sum of losses given by Eq. 1. Lclass,Lrec,
Lcon and Lenh are introduced in the following paragraphs.

LFEtotal = Lclass + Lrec + Lcon + Lenh (1)

We assume that the pattern-dependent style feature f is is
used for tuning the line style while the common drawing
information is present in the content style f c. Ii denotes the
input line artwork with pattern i and I0 is the target line
artwork(ground truth). Style encoder Es and content encoder
Ec are designed to extract the pattern-dependent style f is =
Es(Ii) and the content f c = Ec(Ii), respectively. They all
use the same structure as the vgg network. We can get the
complete drawing feature f i from the sketch by combining
style and content in an adaptive instance normalization
process [2] way as

f i = AdaIN(f is, f c) = σ (f is)

(
f c − µ(f c)

σ (f c)

)
+ µ(f is) (2)

We expect that pattern-dependent style features f is can be
separated from the common feature and then grouped by
our designed patterns in the latent space. To achieve that,
we add a gradient reversal layer (GRL) [8] to Ec, following
f grlc = GRL(f c). The encoders are then trained to disentangle
f is from f c by an adversarial classification training process
that minimizes

Lclass =
∑
i=1

li log{C(AdaIN(f is, f
grl
c ))} (3)

Combined feature f i is classified by the patterns. Lclass
measures the cross entropy between the (ground truth) pattern
label li and C(f i). While in the backpropagation step, the
gradient values are back-propagated to the parameters of the
style encoder (θs) as usual, while the reverse is performed for
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FIGURE 3. Our two-step network architecture. In the FE step, style encoder Es, content encoder Ec , generator G, pattern classifier C ; all are trained
simultaneously. In detail, given a sketch as input, the network is trained to distinguish and disentangle the pattern-dependent features from the content
features. And only the content feature is pushed to the G to synthesize a roughly refined image. Then, in the FE + DDPM step, the rough results are
transformed into high-detailed enhanced images through a conditional DDPM model.

the content encoder (θc).

θs← θs −
∂Lclass

∂θs
, θc← θc − (−

∂Lclass
∂θc

) (4)

The reversed gradient values passed through the param-
eters of content encoder θc make it impossible to classify
the pattern from content feature f c. That is, only the
pattern-transparent component is pushed to f c, and, as a
result, only the pattern-dependent component is expected to
be retained in stroke style feature f is.
The generator needs to realize two generation processes.

One reconstructs the original image from the input merged
stroke style and content features, while the other generates
a common result solely based on the input content features.
To meet the reconstruction requirement, we design a function
loss, Lrec, that processes the input merged stroke style and
content features of the original images. In addition, to ensure
that the content is successfully extracted, we also set a loss
function, Lcon, between the content feature of the input and
the content feature of the generated results.

Lrec =
∑
i=1

||G(f i)− I i||
2 (5)

Lcon =
∑
i=1

||Ec(G(f c))− f c||
2 (6)

Simultaneously, we design another loss function, Lenh,
to refine images without pattern features by inputting the
content features to generator G.

Lenh =
∑
i=1

||I ′ − I0||
2
=

∑
i=1

||G(f c)− I0||
2 (7)

B. ENHANCING LINE ART WITH DIFFUSION MODEL
The FE step yields corrected lines that have accurate
shapes but are blurred in style, see Fig. 1. We design the

following steps using the conditional diffusion model to
convert rough sketches into clean, high-quality images. Two
feature encoders and the classifier load the parameters of
the trained models after the FE step. The generated results
from the FE step are adjusted by the DDPM training step
by a U-net [26] structure. Diffusion models [11] convert
samples from a standard Gaussian distribution into samples
from an empirical data distribution through an iterative
denoising process. Conditional diffusion models [13] make
the denoising process conditional on an input signal. This
takes the form of image-to-image processing following
p(I0|I′). Given a training output image I ′, we generate a noisy
version Ĩ0 =

√
γ I0 +

√
1− γ ϵ. We train the U-net f θ to

denoise the noisy version with a noise level indicator γ , for
which the loss is

E(I ′, I0)Eϵ∼N(0,I )Eγ ∥f θ (I ′,
√

γ I0 +
√
1− γ ϵ, γ )− ϵ∥11

(8)

V. EXPERIMENTS
Our experiments evaluate performance in terms of disentan-
glement and image generation quality. To confirm successful
disentanglement, we record the classification accuracy of
the pattern-dependent feature and show that this feature
can be separated from the content features. Furthermore,
we compare the image generation results with state-of-the-
art works. Image generation results are used to determine
the quantitative error between results to the ground truth
and several qualitative observations. Sketch simplification
methods [6], [7] use pre-trained models while the other
methods [2], [3], [10], [13] use the same dataset (our dataset)
for training.

For the implement details, we use a machine com-
prising 2 NVIDIA RTX A6000 48GB. The first step,
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TABLE 2. Average pattern classification accuracy from features.

FIGURE 4. Comparison of a latent stroke style and content feature for
pattern i .

FE , is trained for 1K epochs, while the second step,
FE + DDPM , is trained for 3K epochs using the PyTorch
framework. The number of diffusion steps is 2K during
training, and the variances βt are scaled linearly from
1 × 10−6 to 0.01. The code for the FE step utilizes the
diffuseVAE [27] resource, but we modify the VAE structure
by using 2 Vgg [25]. Additionally, we introduce an auxiliary
classifier in 2 convolution layers and 3 linear layers, along
with an AdaIN layer [2] and a GRL layer [8]. The code for
the DDPM step is derived from the Palette [13] sources.

A. DISENTANGLED REPRESENTATION
We conduct several evaluations to investigate the feature
disentanglement performance of our method.

1) PATTERN CLASSIFICATION PERFORMANCE
We evaluate the average accuracy achieved in classify-
ing the five patterns. First, we test the performance of
classifier C ; the results are shown in Table 2. The first
row, Ours(AdaIN (f is, f c)), shows that training yields the
classification accuracy of 85.33% for the combination of the
stroke style features and the content features with the training
data input. Moreover, this trained model also works for the
test data (87.14%). The second row, Ours(f is), shows that
stroke style details can also be identified in training and test
data with accuracy of 68.0% and 69.14%, respectively, which
shows that our network works when only stroke style features
are input. If stroke style feature f is is discarded, the accuracy
drops to the level of chance (the third row Ours(f c)) shows
that content features cannot be identified.

These results show that the trained classifier can identify
which type the stroke style feature belongs to. Furthermore,
our method can distinguish the pattern-dependent (stroke
style) components and pattern-transparent (content) compo-
nents.

2) FEATURE VISUALIZATION
To analyze the information extracted from the content
features, and the patterns and their relationships more

FIGURE 5. Feature visualization results of all images from one artist,
labeled by patterns and characters. Each cluster covers all patterns and
is marked by one character. f c clusters of each character are tighter than
those of AdaIN(f i

s, f c ).

intuitively, we output visual images of latent features andmap
the latent codes according to multiple labels.

We output t-SNE visualizations [28] of the extracted
features in Fig. 6 based on the training dataset. The figures
are color-coded to indicate the patterns, see Fig. 6(a),
the clusters of f is are consistent unlike those of f c, see
Fig. 6(c). In Fig. 6(b), when the pattern of stroke style
is added to the f c, the features points (AdaIN (f is, f c))
are separated. Furthermore, when f c are labeled by the
artists or characters (Fig. 6(e,f)), the latent code tends to
concentrate with regard to the characters, but is smoothly
distributed in terms of the artist. This situation shows that
the content features are dependent on both the character and
the artist. These results show that stroke style feature f is can
be disentangled successfully from content features f c and
separated successfully by the patterns.

3) DISPERSION ANALYSIS
To prove that our proposal extracts the same content
information from different mediocre sketches, we further
analyze the dispersion of latent codes by visual output and
latent mapping.

We show visual images of latent features in Fig. 6 to
analyze the relationship between stroke style features f is and
content features f c. For example, when the input one-channel
image size is 1024×1024, the latent codes are 64×64 blocks
multiple by 512 channels. As sampled results(e.g. the 512-th
channel) are shown in Fig. 4, the input images are the
same item but drawn in patterns from pat.1 to pat.5. The
first row are the visual images of f is and the second row
shows the visual images of f c. We can see that the f c
results have a slender shape that characterizes the common
drawing position across different patterns of stroke style.
Moreover, although they are drawn using different stroke
style patterns, they are close to each other. In contrast, f is
results are different for different patterns. It can be concluded
that similar content features can be extracted from different
mediocre input images, and the specified different patterns of
stroke style can be extracted, which means that the patterns
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FIGURE 6. Latent feature visualization results. (a) pattern-dependent style features f i
s are clustered by pattern i . (b) combined feature AdaIN(f i

s, f c )
is dispersed compared to f c . (c) f c cannot be clustered by pattern i , and each group covers all patterns. (d,e) f c are labeled by the artists/characters.
The latent code tends to concentrate according to the artist but is smoothly distributed in terms of the characters.

FIGURE 7. Image generation results when prediction step number t increases for pat.2.

of stroke style features can be separated successfully from the
content features.

Furthermore, we analyze the dispersion of latent code
clusters by analyzing the t-SNE latent maps shown in Fig. 5.
In each map, f c are clustered on the mean while combined
features AdaIN (f is, f c) are clustered around them. This result
shows that the dispersion of the latent codes increases when
patterns of stroke style are added to the content. This shows
that once the pattern of style is added to the content features,
our method makes the combined features AdaIN (f is, f c)
separate from each other.

B. IMAGE GENERATION RESULTS
We evaluate the quality of the synthesized images yielded by
the FE step and the FE + DDPM step both quantitatively
and qualitatively. First, we choose some metrics to evaluate
the results in terms of absolute accuracy and image quality.
Second, we sample some results from the FE + DDPM
step and choose the final results by experiments with a
discussion on sampling speed and quality tradeoffs. Third,
generation results of the FE step and the FE + DDPM step
are compared to state-of-the-art works. Finally, we discuss the
different refinement performances yielded by different style
patterns.

1) EVALUATION METRICS
We evaluated the L2 distance, Learned Perceptual Image
Patch Similarity (LPIPS), and Structural Similarity Index
(SSIM) score between the generated image and the ground

truth, see Table 4. These evaluation criteria judged our
experimental results from different perspectives.

L2 distance measures the pixel or feature differences
between two images. Learned Perceptual Image Patch Sim-
ilarity (LPIPS) quantifies the perceptual similarity between
images based on higher-level features and aligns with human
perception. These metrics are useful for evaluating image
similarity, assessing the quality of generated images, and
understanding the perceptual differences between images.
In addition, the Structural Similarity Index (SSIM) is a metric
that evaluates image similarity by considering both structural
and perceptual aspects. It measures how well the structure,
contrast, and luminance are preserved between two images;
it provides a comprehensivemeasure of similarity and quality.

2) DISCUSSION ON SAMPLING SPEED AND QUALITY
TRADEOFFS
Discussion on previous work [27] draws to a conclusion that
the best prediction steps are always the same as the training
noise level T, which always costs a long calculation time.
When applying the diffusion model to the issue of light
refinement in line arts, we discuss the length of the prediction
step t. As sampling step number t increases, the L2 loss
results of our FE + DDPM step results become worse, while
those of diffusion methods [13], become better, see Table.
3. The best result of our work is when t equals 25, while
DDPM’s results need a larger t (around 50 to 100). The image
generation results also show the same phenomenon, shown in
Fig. 7. Smaller t adds less noise to the original images which
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TABLE 3. Generation performance in terms of prediction step number t.

ensures that the line changes are not so large as to prevent
reconstruction of the stroke style features, merely to refine
them slightly. Furthermore, DDPM needs a larger t indicating
that the FE step achieves good refinement performance
on lines with different patterns of stroke styles, which can
offset DDPM’s initial prediction steps. The disentanglement
extracts common features among different patterns, which
helps the DDPM step easily refine different lines regardless
of the style patterns.

The experiment results show that adding the FE step to
the DDPM step helps to generate high-quality results with
smaller prediction steps compared to pure DDPM’s require-
ment for more steps. It can be inferred that the FE step can
replace the early-stage computation in the low-dimensional
space of the diffusion model, thereby reducing the sampling
time. This means that our approach achieves efficient and
rapid sample generation without sacrificing quality.

3) STATE-OF-THE-ART COMPARISONS
Line art refinement techniques need the technique points
on three topics: style, content, and suitability to treat the
line arts. Since there is no research that covers all these
topics, We compared our work with six previous standard
works in recent years that contain one or two topics. Sketch
simplification techniques [6], [7] can only change the shape
of contents, and they are specific to line art. Style transfer
method [2] focuses on changing the style. Image-to-image [3]
and Multi-domain disentanglement [10] can handle different
styles and content, but it is not specifically designed for line
art. Furthermore, the current image generation method using
DDPM models [13] is the best one that is good at treating
content in detail. We choose the best results of t = 25 as our
FE + DDPM final results and t = 50 as the best results for
the original DDPM method [13]. As shown in Table 4, the
best results are marked and indicate that our results of FE
step and FE + DDPM step are superior to those of previous
works [2], [3], [6], [7], [10], [13] across all the evaluation
metrics we have examined.

In addition, the visual comparison shown in Fig. 8 shows
that FE + DDPM step outperforms the previous works.
We can see that the synthesized results from FE step are
blurred while those from FE + DDPM step are sharp. Our
method first removes the stroke style that yields blurred
images, and then, based on the blur results, the FE + DDPM
step creates corrected clear line artwork. The rows follow

TABLE 4. Generation performance on test data. Bold and underline
indicate the best and the second best result.

TABLE 5. User study: 20 volunteers evaluate the generation results.

the order of pat.1 to pat.5. Analyzing the results from the
perspective of uniformity, the key aspect of the final results
is the ability of our method to generate images in a unified
stroke style from different patterns of input images. From the
comparison of the generated images across different patterns,
it is evident that only FE + DDPM can successfully refine
the five different style patterns. Furthermore, FE + DDPM
results are smoother, more coherent, and most similar to the
ground truth.

We also add a user study on generation quality evaluation
by evaluating the generated images. The sample generated
covers all artists and patterns from the validation data.
20 volunteers evaluate the sampled generated results 10 times
to evaluate the closest generated image to the ground truth,
shown in Table.5. Volunteers chose the results produced by
our proposed method as the ones that aligned most closely
with the ground truth, which earned the same results as
other quantitative metrics. All these results demonstrate that
our proposed networks can generate images that present the
stroke styles of professional artists.

4) DISCUSSION ON QUALITY BY PATTERNS
We also compare the refinement performances yielded by
different patterns. As shown in Fig. 8, compared to the
previous methods (2nd-7th columns), our method is able
to change the shape of the curves or the connection of
the lines. Our method smooths the redundant short lines
better than the previous method for pat.1 fuzzy. Moreover,
broken lines pat.2 casual can be reconnected, especially
the outline of the chin and the neck, unlike the previous
methods. In addition, our method attenuates more lines
for pat.3 overlap. Our method can create lines with much
more strength variance pat.4 no strength. Furthermore, our
method modifies sharp curves pat.5 hand-shaking better than
the previous methods. These results show that our network
reshapes images toward the ground truth style regardless of
the detailed strokes in the input line image. Once the FE
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FIGURE 8. Image generation results for test data. Our method smoothed the redundant short lines better than previous methods for pat.1 fuzzy.
Broken lines pat.2 casual are reconnected, especially the outline of the chin and the neck. Our method attenuated more lines given pat.3 overlap. Our
method is able to create lines with much more strength variance pat.4 no strength. Furthermore, our method modified the severe curves of pat.5
hand-shaking better than the previous work.

TABLE 6. Image generation results by patterns.

step is added to DDPM [11], the FE + DDPM results more
closely approach the ground truth, especially for pat.2 and
pat.4. Table. 6 reveals the superiority of our proposed method
over Palette [13] regardless of pattern. These patterns exhibit
greater dependency of stroke position on the content, which is
hard to offset. These results show that our method can better
handle

Overall, based on the above qualitative and quantitative
results, our proposed network that disentangles the stroke
style and content enhances the line refinement performance,
highlighting its strengths in capturing accurate shapes
and preserving structural similarity across a variety of
patterns.Moreover, ourmethods addmore informative details
resulting in the results being more similar to professional
artwork.

VI. CONCLUSION
We have created an original high-quality paired line artwork
dataset that covers the six patterns of stroke styles. Our pro-
posed approach can disentangle the pattern-dependent stroke
style features which helps the novice by providing expert-
level hints. At the same time, extracted pattern-independent
content features achieve correct line art refinements. More-
over, the proposal’s DDPM step increases the resolution and
quality of generated images.

This paper offers the following key contributions: Creation
of a novel cataloged line art dataset that encompasses
various stroke styles; Development of specialized models
with enhanced disentanglement capabilities to effectively
separate distinct style features and precise content fea-
tures from line drawings, which enables style-specific
recommendations; Generation of high-quality refined line
art with intricate details, resulting in visually appealing
output.

Experiments on the proposal’s classification accuracy,
disentanglement performance, and generation quality demon-
strate the efficiency of pattern-dependent feature removal
and the superiority of our method over previous methods.
Regardless of the stroke style patterns of the input image,
our method successfully suppresses its characteristics and
modifies them to more closely approach the target stroke
style. Moreover, disentanglement of the common features can
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replace the early stage process of the diffusion model, which
results in reducing the sampling time.

To make the proposal suitable for more arbitrary artworks,
we plan to develop adaptive methods that can represent a
wider variety of line styles.
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