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ABSTRACT Fuzz testing is a vulnerability discovery technique that tests the robustness of target programs by
providing them with unconventional data. With the rapid increase in software quantity, scale and complexity,
traditional fuzzing has revealed issues such as incomplete logic coverage, low automation level and
insufficient test cases. Machine learning, with its exceptional capabilities in data analysis and classification
prediction, presents a promising approach for improve fuzzing. This paper investigates the latest research
results in fuzzing and provides a systematic review of machine learning-based fuzzing techniques. Firstly,
by outlining the workflow of fuzzing, it summarizes the optimization of different stages of fuzzing using
machine learning. Specifically, it focuses on the application of machine learning in the preprocessing phase,
test case generation phase, input selection phase and result analysis phase. Secondly, it mentally focuses on
the optimizationmethods ofmachine learning in the process ofmutation, generation and filtering of test cases
and compares and analyzes its technical principles. Furthermore, it analyzes the performance gains brought
by applying machine learning techniques to fuzzing, mainly including coverage, vulnerability detection
capability, efficiency and effectiveness of test cases. Lastly, it concludes by summarizing the challenges
and difficulties in combining machine learning with fuzzing and presents prospects for future trends in this
field.

INDEX TERMS Vulnerability discovery, fuzzing, machine learning.

I. INTRODUCTION
In recent years, there has been a proliferation of network
attacks and a rapid increase in the number of vulnerabili-
ties, leading to potential risks such as information leakage
or loss. Vulnerability discovery techniques aim to identify
and patch vulnerabilities before they are exploited by attack-
ers [1], effectively reducing security threats and maintaining
the secure operation of networks. Fuzz testing, as an effec-
tive method for vulnerability discovery, attempts to trigger
program anomalies by automatically or semi-automatically
generating test cases, monitoring target program execution
and providing feedback to adjust the generation of test cases.
It offers the advantages of easy deployment and broad appli-
cability. The concept of fuzz testing was initially proposed
by Miller in 1990 [2], who designed a tool called Fuzz to
test the robustness of target programs using unconventional
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data. The value of fuzzing has been explored, black-box [3],
white-box [4] and gray-box fuzzers [5] have appeared one
after another. Countless scholars have carried out continuous
improvement and enhancement, and the coverage rate and
anomaly triggering ability have been improved to different
degrees. However, traditional fuzzing still faces several chal-
lenges, such as an insufficient number of existing test cases,
weak ability of generated test cases to trigger vulnerabilities,
the lack of differentiation between test case weights during
input selection, and a relatively high degree of blindness
during the testing process.

With the remarkable performance of machine learning
techniques in statistical learning, natural language processing
and pattern recognition, researchers have applied these tech-
niques to the field of cybersecurity, including the detection of
malicious code [6] and intrusion detection [7].Machine learn-
ing can automatically learn grammar rules that conform to
syntax specifications from a large number of samples, effec-
tively addressing classification problems in fuzzing, such as
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FIGURE 1. Basic flow of fuzzing.

determining the validity of generated test cases and the usabil-
ity of seeds for mutation. Furthermore, machine learning can
reduce manual effort and minimize the time overhead of
fuzzing. Therefore, combiningmachine learningwith fuzzing
provides new ideas and methods for alleviating the bottle-
necks of traditional fuzzing techniques. How to balance the
advantages of both to better enhance vulnerability detection
is still an area that requires further research. This paper
focuses on the background of machine learning, analyzes
and reviews a large body of literature on the combination of
machine learning and fuzzing. Taking the basic process of
fuzzing as a vein, it introduces various improved methods
of fuzzing implementation based on different machine learn-
ing models, comparing and analyzing their enhancements
and improvements. Furthermore, it introduces the perfor-
mance gain of different machine learningmethods for fuzzing
and demonstrates the effectiveness of machine learning for
fuzzing improvement. Moreover, it identifies existing issues
in applying machine learning techniques to fuzzing and pro-
vides insights into future development trends.

The primary contributions of our work can be summarized
as follows:

(1) This paper refers to and examines a large amount of
relevant literature and highlights the latest research results in
the past five years, which can better grasp the future direction
of the fuzzing field. Not only that, this paper analyzes and
organizes research on fuzzing in different areas, such as
fuzzing in the Internet of Things, web applications, compilers
and deep learningmodels, which encompasses common areas
where fuzzing can be used.

(2) This paper focuses on the workflow of fuzzing and
introduces the application of machine learning methods in
four different stages: preprocessing, test case generation,
input selection and result analysis. It compares and contrasts
various improvement techniques, explaining their underlying
technical principles and the resulting optimization enhance-
ments. Finally, it provides a comprehensive summary of
the performance gains achieved through the utilization of
machine learning algorithms. It facilitates readers to better
understand the overall workflow of fuzzing and helps them
to carry out in-depth research.

(3) By comparing different improvement methods, the
problems and challenges in this field are analyzed and sum-
marized, and the possible hot research directions in the field
of fuzzing in the background of machine learning are put
forward.

Section II provides a brief overview of the basic pro-
cess of fuzzing. Section III introduces the application of

machine learning techniques at different stages of fuzzing,
comparing and analyzing the strengths and technical princi-
ples of different fuzzing tools. Furthermore, in Section IV,
the performance gains to fuzzing from different machine
learning approaches are theorized. Next, the challenges faced
by existing fuzzing techniques are analyzed, and in SectionV,
the existing liberation schemes are presented as well as an
insight into the future trends in the field. Finally, Section VI
summarizes and concludes the work presented in this paper.

II. OVERVIEW OF FUZZING
A. BASIC FLOW OF FUZZING
Fuzzing involves constructing a large number of illegal
test inputs, fuzz testing the target program, monitoring its
execution, observing and recording any abnormal behavior,
analyzing the cause of abnormality or crashes, and finally
detecting vulnerabilities. The basic flow of fuzzing can be
divided into six parts: pre-processing, test case generation,
input selection, test execution, evaluation and result analy-
sis [8], as shown in Figure 1.

The preprocessing stage primarily involves collecting rel-
evant information about the target program and specifying
the strategy for fuzzing to assist the fuzzing tool in detecting
or observing the target program. This stage typically relies
on program analysis techniques such as instrumentation [9]
[10], symbolic execution [11], [12] and taint analysis [13],
[14]. Existing research efforts have focused on integrating
one or more of these techniques into hybrid fuzzing to
improve overall performance. For example, Risk-AFL [10]
proposes a risk-guided seed selection method based on AFL.
During program operation, the risk fitness of the seeds is
calculated based on the risky functions and function calls
on the program execution path by means of the instru-
ment, and the seed selection strategy of AFL is improved
accordingly. Intriguer [11] optimizes symbolic execution by
utilizing field-level knowledge to more effectively simulate
symbolically relevant instructions. TaintPoint [14] applies to
the seed mutation stage of general fuzzing and obtains more
accurate taint analysis results to guide mutation.

The test case generation phase is mainly to obtain a large
number of test inputs, and based on the relevant information
obtained in the preprocessing phase, select the appropri-
ate generation method or mutation strategy to construct a
large number of test cases which are suitable for the target
program. The test case generation phase consists of seed
selection, mutation strategy scheduling and test case gener-
ation. Seed selection is a process of evaluating the likelihood
that a seed could trigger a program anomaly and prioritizing
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FIGURE 2. Classification of fuzzing.

the higher quality seeds for mutation, so as to reduce the
number of invalid test cases generated. Mutation strategy
scheduling is similar to the idea of seed selection, prioritizing
near-excellent mutation strategies to improve test case bypass
and reduce mutation blindness. Test case generation can be
categorized based on the generation method as generation-
based, mutation-based and based on a combination of the two.
There are more studies on the application of machine learning
techniques to this phase, which are described in detail below
in the context of existing studies.

The input selection phase screens constructed test cases
before execution, eliminates invalid cases, and reduces com-
putation time.

The test execution phase involves entering the constructed
test cases into the target program, monitoring the execution
of the program, and identifying and recording abnormal state
changes.

The evaluation phase selects suitable indicators to assess
fuzzing effectiveness and vulnerability mining ability. The
results are fed back to the test case generation phase to
optimize the fuzzer.

The result analysis phase analyzes output results after
fuzzing execution. Based on abnormal program states,
causes and defect categories are identified to better detect
vulnerabilities.

B. CLASSIFICATION OF FUZZING
Fuzzing can be classified according to different classification
bases. As shown in Figure 2. black-box fuzzing, gray-box
fuzzing and white-box fuzzing can be classified according to
the degree of analysis of the information inside the program.
According to the way of test case generation, they can be clas-
sified as generation-based fuzzing, Mutation-based fuzzing
and combined generation and Mutation-based fuzzing.

1) BLACK-BOX, GRAY-BOX AND WHITE-BOX
Black-box fuzzing cannot analyze the internal state and
structure of the target, but only obtains internally irrelevant

information such as the input data format of the target.
In addition, during the testing process, black-box fuzzing
cannot track the execution status inside the target and can
only determine the status of the target by detecting the output
data of the target [8]. Black-box fuzzing tools are simple
to implement and fast to test, and are more suitable for
target programs with highly structured input data, as well as
complex and difficult to analyze target programs. However,
its detection is not satisfactory.

White-box fuzzing is the opposite of black-box fuzzing in
that it obtains sufficient internal information about the target
to generate high-quality test inputs. White-box fuzzing has
better performance in the coverage of programs and in the
detection of deep vulnerabilities. However, the method can
seriously affect the efficiency of fuzzing because a detailed
and comprehensive analysis of the target program consumes
a lot of resources.

Gray-box fuzzing is between black-box and white-box,
and only part of the in-ternal information of the target is
obtained for fuzzing. The method aims to obtain satisfactory
test results with limited internal information and a good
testing strategy. Compared to both black-box and white-box,
gray-box is more flexible and has more advantages. Gray-box
fuzzing can find a suitable balance between detection capa-
bility and resource consumption to obtain the best detection
results.

2) GENERATION-BASED, MUTATION-BASED AND
COMBINATION OF GENERATION-BASED
AND MUTATION-BASED
The generation-based test case generation approach is mainly
based on the known input case format or protocol syntax to
generate new test cases. The method needs to generate and
process inputs according to the specification of the expected
input format or protocol.

Mutation-based test case generation is based on exist-
ing test cases with certain mutation methods (e.g., bit-flip,
byte-inversion, arithmetic increment/decrement and splicing
operations) [15]. In general, blind mutation or manipulation
of data generates a multitude of invalid test cases. The intro-
duction of machine learning techniques can guide mutation
operations and improve the quality of generated test cases.

The test case generation approach based on a combination
of generation and mutation considers both variation and gen-
eration approaches for different test scenarios to maximize
their advantages and better guide test case generation.

III. FUZZING IN THE CONTEXT OF MACHINE LEARNING
Existing fuzzing tools have problems such as low degree
of automation and weak vulnerability triggering ability of
fuzzing test cases, the excellent data processing and classi-
fication prediction ability of machine learning technology is
utilized and applied to different stages of fuzzing, which can
realize the quality optimization of fuzzing test cases and the
efficiency improvement of vulnerability detection.
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FIGURE 3. Schematic diagram of machine learning-based fuzzing process.

Currently, machine learning is primarily applied in the pre-
processing stage, test case generation stage, input selection
stage and result analysis stage of fuzzing. The basic process
of fuzzing combined with machine learning algorithms is
illustrated in Figure 3. In the preprocessing stage, machine
learning algorithms can analyze and predict the program
information obtained during preprocessing, enhancing the
effectiveness of program analysis techniques combined with
fuzzing. In the test case generation stage, machine learning
algorithms can be used to optimize seed selection, guide
mutation strategies and mutation point selection, facilitating
seed and test case generation. In the input selection stage,
machine learning algorithms can filter and select test inputs.
For example, machine learning algorithms can be used for
vulnerability prediction and classification processing of test
inputs, prioritizing the selection of test inputs that are more
likely to trigger vulnerabilities when passed into the target
program. In the result analysis stage, machine learning can
efficiently and reasonably analyze the numerous test results,
enabling the identification of true vulnerabilities within a
large number of crashes and anomalies.

Based on the general process of fuzzing, this section
provides a detailed introduction to the application and
improvements of machine learning algorithms in different
stages of fuzzing. It systematically elucidates fuzzing meth-
ods based on different machine learning techniques and
intuitively presents the performance of different fuzzingmod-
els in tabular form.

A. PRE-PROCESSING
The preprocessing stage of fuzzing can utilize program
analysis techniques such as instrumentation and symbolic
execution to extract program features or runtime informa-
tion, providing support for generating subsequent test cases.
For instance, Pangolin introduces the concept of incremental
fuzzing, which involves a polyhedral path abstraction method

to accelerate constraint solving in cooperative execution [16].
The results of constraint solving are then used to guide
the subsequent fuzzing process, improving the efficiency
of vulnerability discovery. Liu et al. propose SiCsFuzzer,
a tool that adopts a sparse instrumentation-based tracing strat-
egy combined with ‘‘warm-up’’ optimization to improve the
efficiency of fuzzing for closed-source programs by elim-
inating the redundancy overhead in the coverage tracking
process of closed-source software without compromising
coverage calculation accuracy [17]. Meanwhile, Xiao et al.
leverage runtime information obtained through instrumenta-
tion as rewards in a deep reinforcement learning network,
guiding the generation of more targeted and directed test
cases [18].
Many researchers have dedicated efforts to combine these

techniques with fuzzing, complementing each other. The
hybrid fuzzing methods overcome difficulties by employing
one technique when the other encounters bottlenecks, lead-
ing to higher coverage and the exploration of deep program
regions to discover deep-seated vulnerabilities. MPFuzz pro-
poses a hybrid fuzzing technique that combines symbolic
simulation and grammar-based [19]. Symbolic simulation is
used to guide the testing process for achieving high cover-
age, while grammar-based fuzzing generates test instructions
conforming to the syntax specifications of microprocessor
RTL designs. The combination of both techniques efficiently
generates test instructions for microprocessor RTL designs.
Furthermore, the utilization of deep learning techniques can
learn code space features suitable for both techniques before
program execution, serving as guidance for hybrid fuzzing.
This approach effectively enhances code coverage and sig-
nificantly improves defect detection capabilities. Gao et al.
introduce a hybrid testing method based on deep learn-
ing [20]. The algorithm flow is illustrated in Figure 4. Given
a program, a graphical representation of its paths is con-
structed, and a gated graph neural network (GGNN) model is
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FIGURE 4. The overall framework of deep learning-based hybrid fuzzing [20].

employed to predict whether a path is suitable for fuzzing or
symbolic execution. This leads to the development of Smart-
FuSE, which guides symbolic execution or fuzzing tools
attempt to execute the set of paths preferentially. Moreover,
considering the inaccuracies of model predictions, Smart-
FuSE proposes a hybrid mechanism that, among the set of
predicted paths suitable for executing fuzzing, passes the
paths uncovered by the fuzzing to symbolic execution, and
uses the symbolic execution technique to traverse the paths
for further improvement of the overall coverage.

Where AST denotes abstract syntax tree, depth denotes
path depth, X denotes the score suitable for fuzzing, and Y
denotes the score suitable for symbolic execution.

Hybrid fuzzing that incorporates one or more techniques
has become a new research branch aiming to combine the
advantages of multiple techniques and enhance vulnerability
detection capability. Many studies have improved combina-
torial strategy for hybrid fuzzing using ‘‘optimal strategy,’’
‘‘discriminative dispatch strategy,’’ and ‘‘Priority Based Path
Searching method’’ [21], [22], [23]. However, in the face of
large software vulnerability mining, the operational costs of
hybrid fuzzing tools are invariably high due to path explosion
problems caused by program branches. Applying machine
learning techniques to mitigate inherent shortcomings of a
single technique in hybrid fuzzing and thus improve fuzzing
performance is also a possible research direction for future
fuzzing development.

B. TEST CASE GENERATION
In the field of test case generation, machine learning can
be applied to scenarios such as mutation position selection,
mutation strategy schedule and structured test case genera-
tion. It effectively overcomes the limitations of traditional
fuzzing techniques, including blind mutation, ineffective

sample generation and reliance on manual involvement,
thereby greatly improving the quality of generated samples.

Machine learning has been widely used in this stage in
existing research. Therefore, in this section, we will divide
the discussion based on the problems addressed by machine
learning algorithms, and specifically introduce their appli-
cations in mutation strategy scheduling, seed selection and
test case generation problems. Not only that, we will also
analyze how different machine learning models contribute
to the improvement and enhancement of the efficiency and
capability of fuzzing.

1) SEED SELECTION
Seeds can be mutated using various mutation operations
to generate test cases. The quality of seeds is one of the
important factors that influence the effectiveness of fuzzing.
Selecting well-formed seeds can significantly save CPU time,
and mutations based on well-formed seed inputs are more
likely to generate test cases that reach deeper levels of the
program.

Wei Xiao et al. proposed a test case classification method
based on LSTM neural networks, where the test cases are
passed through LSTM and linear layers, resulting in two
output nodes. The activation function is applied to obtain the
probability of the input belonging to a certain class in the
label set [24]. The model is trained using the test cases and
their coverage states, and after multiple training iterations,
an accurate prediction model for input categories is obtained.
This model is used to learn high-level features of the input
file structure and assess the value of seeds. By prioritizing
the mutation of high-value seeds, the seed selection process is
guided. NeuFuzz proposes a hidden pattern learning approach
for vulnerable program paths based on LSTMmodels. Firstly,
the seed files are subjected to vulnerability detection. Then,
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TABLE 1. Seed selection.

the fuzzer is instructed to prioritize the vulnerable paths
identified by the trained model and allocate more mutation
energy to them. This method achieves maximum efficiency
in defect discovery [25]. With the increasing research on
graph embedding networks, V-Fuzz applies it to fuzzing and
proposes a fuzzing framework that combines graph embed-
ding networks and evolutionary algorithms. This framework
enables efficient testing of binary programs without requiring
source code [26]. V-Fuzz proposes a vulnerability detec-
tion model based on graph embedding networks, which
outputs predicted vulnerability probability values for each
function in the target program. These probabilities are sub-
sequently used to calculate fitness scores. During the test
execution using user-defined initial seeds, evolutionary algo-
rithms compute fitness scores for each seed and select
seeds with high fitness scores and triggering crashes as new
seed inputs. Subsequently, these seeds are mutated to gen-
erate more test inputs that have the potential to discover
vulnerabilities.

2) MUTATION STRATEGY SCHEDULING
The random selection of mutation strategies and the sequen-
tial selection of mutation positions in existing fuzzers are
important factors that affect the quality of test cases and
vulnerability detection. In this section, we will focus on the
application of different machine learning algorithms in the
problem of mutation strategy scheduling.

Genetic algorithms simulate the natural process of gene
recombination and evolution. Based on the principles of
biological evolution, they perform selection, crossover and
mutation operations on test cases to enhance their ability
to trigger exceptions. To address the issue of high ineffi-
ciency of test cases in fuzzing for industrial control protocol
vulnerability discovery and to automate and streamline the
fuzzing process, Zhang et al. designed a protocol fuzzer
called GA-Fuzzer that combines genetic algorithms with
fuzzing [27]. The model structure is shown in Figure 5. In the
paper, a dynamic fitness function is constructed. Through
monitoring the presence of danger point use cases within the
test case population, different fitness functions are selected.
Additionally, by introducing dynamic mutation and crossover
probabilities, the diversity of test cases within the population
can be adjusted based on the population’s state, aiming to

improve both the test hit rate and the test case coverage as
much as possible.

Zhou proposed an improved mutation method that imitates
mutation. It enhances the ability of poor individuals to bypass
defense mechanisms by imitating the mutation strategy of
good individuals, thereby improving the aggressiveness of
test cases and the efficiency of genetic algorithms [28].
Zhang et al. also proposed an improved mutation strat-
egy [29]. They set a threshold as a criterion, where individuals
with fitness values higher than the threshold still undergo ran-
dom mutation to maintain population diversity. Individuals
with fitness values lower than the threshold randomly select
an individual with a fitness value higher than the threshold,
learn its mutation method, and mutate themselves accord-
ingly, guiding the population towards high aggressiveness
evolution.

DARWIN proposed a mutation scheduling optimization
method based on evolutionary strategies. It systematically
optimizes and updates the probability distribution ofmutation
methods using evolutionary strategies, selects an approximate
optimal mutation strategy, and guides seeds tomutate towards
high-quality directions [30]. AMSFuzz introduced an adap-
tive mutation scheduling framework [31]. It adaptively
adjusts the probability distribution of mutation operators
using a multi-armed bandit model to determine the capabil-
ities of the mutation operators. It also utilizes a seed slicing
mechanism to select the mutation positions and mutation area
sizes for seeds, thereby improving the efficiency of fuzzing.
SEAMFUZZ also proposed a fuzzing method for adaptive
selection of variation strategies. By learning the individual
characteristics of different seeds, different mutation strategies
are applied to different seeds. SEAMFUZZ clusters seeds
into clusters based on their grammar properties and uses
Thompson sampling variants to learn the probability dis-
tribution of selecting different mutation strategies for each
cluster, customizing effective mutation strategies for each
seed cluster [32].
Reinforcement learning is the process of adjusting agent

behavior during interaction with a system, aiming to max-
imize the received rewards based on executed actions and
system state transitions. Böttinge et al. formalized fuzzing
as reinforcement learning problems using Markov Decision
Processes (MDP) [33]. The fuzzy agent learns a policy by
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FIGURE 5. Flow chart of test case generation algorithm based on genetic algorithm.

TABLE 2. Mutation strategy scheduling.

observing the reward induced by mutations of a particular set
of actions performed on the initial program input. The learned

policy is used to generate new higher-rewarded inputs, which
in turn improves the quality of test cases. DRLFuzzer uses

VOLUME 12, 2024 14443



A. Zhang et al.: Machine Learning-Based Fuzz Testing Techniques: A Survey

MDP and deep Q_learning algorithms to help the fuzzer
automatically select mutation operations [34]. Furthermore,
it realizes the combination with hardware mechanisms during
program execution to effectively improve the path coverage
and execution efficiency of fuzzing. A method based on
the DDPG reinforcement learning algorithm was proposed
by RLFUZZ to improve traditional fuzzing techniques [35].
After modeling traditional fuzzing as a Markov decision
process, the DDPG reinforcement learning algorithm with an
integrated value function and policy function is used to select
an optimal action selection strategy for the process. This
helps to reduce the blindness of sample mutation, enables
mutation samples to obtain maximum code coverage reward,
reduces the generation of invalid samples, and thus improves
the efficiency of traditional fuzzing techniques.

3) TEST CASE GENERATION
Test cases can be generated through mutation operations on
seeds or automatically generated based on the known speci-
fication format of test inputs. The content of test cases serves
as the payload for attacking the target program, directly influ-
encing the effectiveness of vulnerability detection. Therefore,
constructing effective test cases with high code coverage can
enhance the efficiency of fuzzers in vulnerability detection.
In this section, we introduce three techniques for fuzzing
based on test case generation: generation-based fuzzing,
mutation-based fuzzing, and combination of generation and
mutation-based fuzzing.

• Generation-Based

In the generation-based test case generation approach,
machine learning algorithms are primarily used to learn the
format specifications of the target program. By learning from
well-structured corpus features, these algorithms generate a
large number of high-quality test cases that adhere to the
specifications.

For fuzzing against the PDF file format, Godefroid et al.
proposed Learn&fuzz, which considers the use of deep learn-
ing algorithms to enhance the syntax-based fuzzing case
generation process [36]. Learn&fuzz introduces a genera-
tion model based on Char-RNN to learn PDF objects and
a SampleFuzz algorithm that can conduct fuzzy processing
when sampling new objects, intelligently guiding the gener-
ation of well-formed PDF input files. While their experiment
did not achieve better results, it was still a commendable
effort. In 2021, Liu and Yang proposed an automatic test
case generation model based on BLSTM and attention mech-
anism, along with an improved sampling algorithm based on
Learn&fuzz [37]. BLSTM models were employed to extract
and preserve information in the training samples considering
both forward and backward factors. The attention mechanism
highlights key positions of sample sequences and prevents
information loss. The sampling algorithm’s performance was
improved by adding mutations that better predict character
sequences. This paper proposed test case generation model

can learn the intrinsic format of test cases and automate
the generation of more well-formed test cases. Wang et al.
also introduced a machine learning framework that can gen-
erate a large number of seed files [38]. They used the
Transformer model to learn the internal formatting docu-
ment syntax of PDF files and guide the generation of a new
sequence of objects. These objects were then assembled to
form a new PDF file with complete formatting for subsequent
fuzzing. Experiments showed that for the mupdf software
(version 1.4.0), this approach not only achieves faster cov-
erage growth but also increases the upper limit of code
coverage.

GANFuzz proposed an automated test case generation
method that enables the generation of test cases without rely-
ing on protocol-specific format specifications [39]. Firstly,
a real protocol message corpus is used as training data and
is partitioned using three clustering strategies. Then, a test
case generation model is built using Generative Adversarial
Networks (GANs) [39]. By using the generated model based
on real protocol messages, fake protocol messages with dif-
ferent degrees of similarity to real protocols can be generated.
The SeqGan algorithm is introduced to update the gener-
ator’s parameters using reinforcement learning techniques,
addressing the issue of the inability to apply backpropa-
gation during the training process of protocol messages.
Finally, this approach generates a large number of effec-
tive test cases. When these test cases are applied to the
Modbus TCP protocol, the experiment confirms their good
vulnerability detection ability. However, overall, GAN-based
fuzzing methods may somewhat reduce the efficiency of
fuzzing.

Security of industrial control protocols is a crucial aspect
in overall industrial safety. To overcome the limitations of
traditional fuzzing heavily reliant on industrial protocol spec-
ifications, Wang et al. proposed a pointer-generated network
(PGN)-based approach to handle the generation of fuzz test-
ing data [40]. The aim is to intelligently learn the real
sequences of industrial control protocol messages using a
pointer-generated network and generate well-structured syn-
thetic test cases similar to actual data frames without detailed
protocol specifications. The architecture of this model com-
bines three components: a seq2seq model, an attention
mechanism, and a pointer network model. It also incor-
porates a coverage mechanism, as illustrated in Figure 6.
Firstly, a hierarchical LSTM unit is employed as both
the encoder and decoder of the seq2seq model to retain
the temporal dimensionality information and feature vector
dimensionality information. The encoder consists of bidi-
rectional LSTM units that learn the character probability
distribution within protocol messages. The decoder utilizes
a unidirectional LSTM unit to predict the learned protocol
sequence and generate test cases for fuzzing with semanti-
cally valid data fields and well-formed sequential grammar.
Secondly, a coverage mechanism is introduced to address the
issue of message repetition in the seq2seq model generation.
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FIGURE 6. The specific generative model structure [40]. Where the generation probability of time step t pgen∈ [0, 1].

Additionally, a general-purpose intelligent industrial control
protocol fuzzing framework called PGNFuzz is proposed
based on this method. Experimental results demonstrate
that PGNFuzz outperforms GAN-based and LSTM-based
seq2seq model fuzzers in industrial control protocol fuzzing
scenarios.

Stateful protocols can pose testing difficulties for fuzzing,
and in the case of unknown industrial protocols, seqfuzzer
proposes a fuzzing method based on the seq2seq struc-
ture [41]. Real traffic in industrial networks is captured,
pre-processed, and passed into the seq2seqmodel as a dataset.
The LSTM model is used as both encoder and decoder of
seq2seq to automatically learn temporal features of state-
ful protocols. By learning the syntax of the real protocol
sequence, spurious protocol messages similar to real mes-
sages are generated as test cases for fuzzing. The experiments
verify that seqfuzzer can generate test cases conforming to the
EtherCAT protocol format with unknown protocol structure
and detect various vulnerabilities. However, there are many
protocols in industrial networks, and building a generalized
protocol fuzzing method for industrial networks needs to face
the challenge of various different private protocols. Future
research targeting generalized fuzzing frameworks will also
provide significant value to industrial safety.

In fuzzing for web applications vulnerabilities, A test
case generation method for Web applications based on
an improved LeakGAN algorithm has been proposed by
Liu [42]. In the optimized LeakGAN algorithm model,
the generator consists of two LSTM models acting as
the manager module and the worker module, respectively.
Additionally, batch normalization is introduced to process the
input test cases, preventing extreme data distribution. The dis-
criminator applies an attention mechanism to guide the
generator in generating test cases. This method enables the

generation of a large number of valid test cases that adhere to
the syntactic structure.

Despite their widespread use, compilers and interpreters
are still prone to defects that can cause abnormal behavior in
programs. DeepFuzz [43] has proposed a test input generation
method based on the seq2seq model to implement fuzzing of
compiler test suites. The seq2seq model uses LSTM as the
encoder and decoder and is trained to learn the language pat-
terns of C programs. More syntactically correct C programs
are generated as test inputs by employing insertion, replace-
ment, and deletion strategies to fuzz the compiler. To address
the problems of insufficient syntactic correctness and low
generation efficiency in existing methods for generating test
cases, a feedforward neural network-based compiler fuzzing
case generation method is proposed in FAIR [44]. FAIR cap-
tures the widespread long-distance syntactic dependencies
existing in the source code. Subtrees are extracted from the
abstract syntax tree to form a sequence of code snippets.
A self-attention-based feedforward neural network is used
to capture the syntactic correlations between code snippets.
By learning a series of context-aware feature representations
in the input sequence, it predicts subsequent code sequences.
For JavaScript engines, Montage utilizes LSTM to learn
syntactic and semantic relationships between segments in
a regression test set to guide the reconstruction of a given
regression JavaScript test case and generate more effective
test cases for use in JS engine fuzzing [45]. Similarly, COM-
FORT [46] has designed a test input generation model based
on the GPT-2 model, which can generate more syntactically
correct JS programs using the specification rules defined in
the ECMAScript standard.

The application of deep learning models in the test case
generation phase is widely studied. Seq2seq is a typical
encoder-decoder model that can be used to generate more
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TABLE 3. Generation-based test case generation.

and higher quality test cases by selecting LSTM, BLSTM,
RNN, and their variants as encoders and decoders based on
data characteristics. The Transformer model is an attention-
based encoder-decoder model that dynamically selects all
inputs through attention mechanisms, effectively preventing
information loss and highlighting key positions in training
samples. Therefore, attention mechanisms can be applied
to various deep learning models. Although the basic RNN
model can effectively handle long sequence data, it suffers
from problems such as long-range dependencies and vanish-
ing gradients. In contrast, the LSTM model can effectively
address these issues by introducing cell states on top of the
RNN and using gate structures to update and delete cell states.
The LSTM model uses the output information from the pre-
vious part as input for the current training, thus achieving test
case generation. Many studies currently focus on designing
and implementing test case generation models based on the
LSTM model, which have shown good performance in han-
dling PDF files, various protocol information and compilers.
BLSTM, considering both forward and backward factors on
top of LSTM, extracts and retains more information from
the training samples, thereby improving the prediction accu-
racy of the model. Deep learning models possess powerful

learning and data processing capabilities, giving them an
advantage in the generation of fuzz testing test cases. They
can generate more high-quality test cases that conform to
format specifications based on specification information such
as syntactic format.

• mutation-based

Mutation-based fuzzing focuses on generating new test
cases by modifying certain fields of valid inputs. The main
optimization directions are selecting appropriate mutation
positions and improving the fitness function. Typically,
a fuzzer can guide the mutation process based on the evalua-
tion results of test input performance to effectively generate
inputs [47].

Rajpal et al. [48] proposed a technique that uses informa-
tion from training data for mutation coverage to predict a
heatmap of complete input files. This heatmap corresponds
to the mutation probabilities for each file location that leads
to new code coverage. It guides the generation of effective
test cases, reducing time wasted on invalid test cases and
improving the overall efficiency of fuzzing. DeltaFuzz [49]
is a fuzzing technique based on historical version informa-
tion. By analyzing the differences between historical versions
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and the target program, it locates the points of change.
Then, it identifies the affected basic code blocks based on
impact analysis. Finally, it calculates the fitness value of
test cases based on execution traces and iteratively generates
new test cases using a genetic algorithm to improve test
case quality. Experimental results have shown that DeltaFuzz
reaches the target faster compared to existing fuzz testing
tools.

DYNFuzz [50] proposes a neural network-based directed
grey-box fuzzing method. It uses an LSTM neural network
to learn mutation patterns at different positions in previous
input files and predicts the mutation gains at different posi-
tions in the current input file. This optimization helps in
guiding future fuzz search. The entire DGF process consists
of two stages: exploration and exploitation. The seed inputs
in fuzzing are divided into two groups: coverage seeds for
path exploration and directed seeds for exploitation. In the
exploration stage, the fuzzer queries a trained neural net-
work model before mutating the seed. The model returns
a coverage heatmap for the corresponding complete input
file, indicating probabilities of mutation-induced new code
coverage for each position in the file. The mutation posi-
tions are sorted based on the probabilities from the coverage
heatmap, giving priority to positions with a higher likelihood
of mutation gains. In the exploitation stage, the distance
between basic blocks and target points is calculated using the
LLVM method, and each directed fuzzing seed is assigned
a distance value for priority sorting and seed mutation
optimization.

In protocol-oriented fuzzing, Xiang and Ma [51] aimed to
avoid generating a large amount of redundant data. They uti-
lized the returned error codes to indicate the code coverage of
test cases and optimized the calculation method of individual
fitness function based on two aspects: the similarity between
individuals and the seed queue, as well as the error codes
of seeds. This approach adjusted the evolution direction of
genetic algorithms in a timely manner based on the fuzzing
results, effectively improving the efficiency of fuzzing for the
Modbus TCP protocol.

In the field of web application vulnerability detec-
tion, Qu et al. proposed a test case optimization method
based on genetic algorithm to improve the effectiveness of
fuzzing [52]. They analyzed different types of attack elements
through traffic analysis systems and created a weighted web
attack feature database, which was then passed to the genetic
algorithm. The construction of the fitness function is based
on the analysis of the response information of the web sites
to calculate the actual fitness function value. By repeatedly
iterating through the selection, crossover and mutation oper-
ations, the best test case is generated. Experimental results
have shown that this method performs well in web vulnera-
bility mining.

In addition to improving the fitness function and designing
optimized mutation strategies during the test case mutation
generation phase, some research has also focused on the

problem of refining the initial sample set. Wang et al. utilized
a heuristic genetic algorithm to optimize chromosome selec-
tion methods by eliminating redundancy caused by duplicate
genes and selecting chromosomes that contain more genes
and richer gene combinations [53]. This optimization allows
for improved search conditions and enhanced efficiency of
fuzzing without needing to change the working process of the
genetic algorithm.

In summary, within the domain of mutation-based test
case generation methods, most studies rely on genetic algo-
rithms to generate diverse test cases. By improving the fitness
function and optimizing search conditions, the quality of
test cases is enhanced, effectively exploring the input space
to identify potential vulnerabilities and errors. It should be
noted, however, that the search process of genetic algo-
rithms may require numerous iterations and computational
resources, leading to potentially reduced efficiency when
dealing with large-scale complex systems. Moreover, for
target programs with complex software structures and vary-
ing variable types, further research is needed to address
the handling of non-numeric variables and the construc-
tion of appropriate fitness functions. On another front,
machine learning algorithms possess exceptional predictive
capabilities that can address the issue of selecting suitable
mutation positions. Through model training, these algorithms
forecast mutation gains for different mutation positions,
guiding the fuzzing tool to prioritize mutation at positions
with higher gains. This enables faster traversal of the tar-
get program and minimizes the time required to trigger
exceptions.

• Combination of Generation and Mutation Based

The combined approach of generation and mutation in
fuzzing aims to leverage the strengths of both techniques,
generating higher-quality and effective test cases.

When applied to network protocols, Wang et al. [54] pro-
posed an adaptive fuzzing method based on transformers.
Utilizing transformers, they learned semantic information of
the Modbus TCP protocol and generated test cases. By com-
paring the semantic similarity between protocols, they guided
the generated test cases to undergo byte-level mutations,
reducing the similarity among test cases and enhancing
the probability of triggering exceptions. This method com-
bines both generation and mutation approaches, dynamically
adjusting the mutation frequency of bytes that are prone to
triggering vulnerabilities. It not only ensures compliance with
the protocol’s syntax format but also improves the ability to
generate test cases that effectively trigger exceptions. Rapid-
Fuzz proposes a combination of an improved WGAN model
based on the gradient penalty and a mutated gene detec-
tion algorithm for test case generation [55]. The WGAN-GP
model is utilized to learn the numerical distribution of seed
samples and generate numerous new samples. RapidFuzz
proposes a mutated gene detection algorithm that sorts train-
ing set samples obtained from AFL based on the frequency
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TABLE 4. Mutation-based test case generation.

TABLE 5. Test case generation based on the combination of mutation and generation.

of sensitive mutation sites. To combine samples generated
by the GAN model with high-frequency mutation points
with those generated by the original AFL, a semi-random
method is employed. Through the rational combination
of generation-based fuzzing with mutation-based fuzzing,
RapidFuzz achieves significantly faster fuzzing speeds while
obtaining higher coverage.

Generation-based test case generation techniques often
require known specifications and relevant information. How-
ever, in most cases, fuzzing is a black-box testing technique
where limited known information is available for training
and optimizing the test case generation model. Addition-
ally, existing mutation-based test case generation techniques
exhibit strong randomness and often do not differentiate
between seed files that have different vulnerabilities, result-
ing in wasted time generating ineffective test cases. As a
result, research on the combined approach of generation and
mutation in test case generation has gained significant atten-
tion, aiming to leverage the advantages of both approaches
and improve the efficiency and vulnerability detection capa-
bility of fuzzing.

C. INPUT SELECTION
In the real world, due to the presence of a large number
of invalid test cases in the generated input and various
constraints protecting the target program, the efficiency
of fuzzing processing is greatly affected. To improve the

efficiency of fuzzing, machine learning techniques can be
utilized for input selection by classifying a large number of
test cases before testing, thus prioritizing and filtering out test
cases that are expected to trigger new paths or specific types
of vulnerabilities, as determined by testers.

Input selection involves the direct selection and elimination
of test cases. Hu and Pan proposed a Quasi-Recurrent Neural
Network (QRNN)-based fuzzing case filtering method for
network protocols that combines the processing and predic-
tion capabilities of the QRNNmodel for sequential data [56].
This method effectively learns the structural features of
network protocols to automatically filter invalid test cases,
thus improving the efficiency of network protocol fuzzing.
Karamcheti et al. proposed a gray-box fuzzing method based
on machine learning that directly models program behav-
ior [57]. The learned forward prediction model maps program
inputs to execution traces, and the entropy of the distribution
of execution traces is used to assess the model’s uncertainty
about the input. A higher entropy indicates higher uncertainty,
suggesting that the input may cover new code areas during
execution. This method filters out deterministic test inputs,
significantly reducing unnecessary executions and improving
the efficiency of fuzzing. Zong et al. developed a directed
gray-box fuzzer called FuzzGuard [58], which predicts the
reachability of test inputs without executing the target pro-
gram. By learning from previous execution inputs, it predicts
whether a program can execute the target error code with
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newly generated inputs. If the prediction result is unreach-
able, the input will not be executed. This method, built upon
the mature directed gray-box fuzzing tool AFLGo, improves
overall efficiency by filtering out unreachable inputs, thereby
saving actual execution time.

While research on input selection is limited, machine learn-
ing techniques have demonstrated their ability to enhance the
quality of test inputs, reduce unnecessary resource waste, and
outperform traditional fuzzing tools in terms of efficiency.

D. ANALYSIS OF RESULTS
The result analysis phase, which follows the completion
of fuzzing, focuses on analyzing and processing the output
information. In cases of abnormal output states, manual iden-
tification and analysis are typically required to determine the
cause of the anomaly, a process heavily reliant on domain
knowledge and the ability to perform vulnerability analysis
and reproduction.

To improve the automation of fuzzing and reduce the influ-
ence of subjective experience on analysis results, machine
learning techniques can be used for output classification,
facilitating the identification of abnormalities and their
underlying causes. Harsh et al. utilized four methods -
supervised, unsupervised, unsupervised + supervised and
semi-supervised - with various techniques such as decision
trees, support vector machines, K-Means clustering and Nave
Bayes, to experimentally address the root cause analysis
problem [59]. Given the lack of labeled data, Harsh et al.
proposed a semi-supervised method that is best suited for
most real-world scenarios and evaluated the feasibility of the
method on eclipse.

However, the application of machine learning techniques
to the post-fuzzing result analysis phase requires further
research due to the limited availability of labeled data sets
suitable for training and the predictive nature of machine
learning results, making it challenging to analyze and inter-
pret the output of fuzzing.

IV. PERFORMANCE GAINS EVALUATION
Different machine learning methods have their own charac-
teristics and can be applied to a variety of target scenarios.
So far, machine learning techniques have been applied in
the four main stages of fuzzing. In the preprocessing stage,
deep learning and reinforcement learning techniques can be
used to guide fuzzing in better utilizing program information.
In the test case generation stage, evolutionary algorithms can
be applied to guide seed mutation, and machine learning
techniques can learn effective structural features, optimize
seed selection, and generate a large number of test cases in
unknown format specifications. Reinforcement learning can
also be applied to select the approximate optimal mutation
strategy to improve the efficiency of test cases. In the input
selection stage, machine learning techniques can be applied to
predict the effectiveness and accessibility of test inputs. In the
result analysis stage, machine learning techniques can be

utilized to automatically classify and identify output results,
reducing manual cost. When applying machine learning to
improve fuzzing, it is necessary to balance multiple factors
and consider practical needs.

This section provides a further summary of existing
research, analyzing the gain effects of different machine
learning algorithms on fuzzing, mainly including coverage,
vulnerability detection capability, efficiency and test case
effectiveness.

A. COVERAGE
As one of the important indicators for evaluating fuzzing
performance, coverage reflects the possibility of triggering
crashes. Existing research on coverage indicators mainly
includes statement coverage, branch coverage, number of
triggered paths, edge coverage and basic block coverage.
MPFuzz [19] improves coverage by a factor of 4 over con-
ventional Fuzzer, while SmartFuSE [20] improved statement
coverage by 2.8%-3.4%, branch coverage by 20.7%-26.9%,
and increased the number of paths by 0.9-13.5 times.
In LAVA-M, a total of 929 program defects were discovered.
QYSM [21] explored over 20% of the code paths in libpng,
increasing the code coverage by about 3%. NeuFuzz [25]
can achieve more than 1000 new edge coverages in an hour,
which is about 4 times better than AFL. All five types of
errors in six real programs were detected at least 64 more
bugs than other compared fuzzer in LAVA-M. DARWIN [30]
averaged a 6.77% improvement in edge coverage in MOPT
and a 1.73% improvement in edge coverage in AFL. The
seeds generated by literature [38] covered up to 9914 paths,
which is much higher than traditional methods. It can be
seen that machine learning algorithms applied in fuzzing can
effectively improve coverage and greatly enhance the ability
to trigger crashes. Figure 7 shows the coverage ranges of
different literature. The figure mainly displays the coverage
interval implemented by different methods.

B. VULNERABILITY DETECTION CAPABILITY
The ability to detect vulnerabilities is the most intuitive
reflection of fuzzer’s performance. It mainly includes the
number of triggered crashes, errors and CVEs. Existing lit-
erature mostly evaluates fuzzer performance by testing on
public datasets and real-world applications. For example,
QYSM [21] detected 13 unknown errors in eight real pro-
grams. Literature [26] discovered 10 CVEs in real programs;
Literature [27], Literature [29], and Literature [42] conducted
experimental verification in a web target environment and
detected 4, 3 and 21 vulnerabilities respectively. AMSFuzz
[31] discovered an average of 226.2 bugs in LAVA-M,
detected 17 previously unknown bugs in real programs, 15 of
which were assigned CVE IDs. Compared with the baseline,
AMSFuzz triggered the most bugs in the same amount of
time. SEAMFUZZ [32] generated 56.4%-57.1% more crash
inputs, triggering a total of 606 crashes; discovered 99 unique
bugs, including 27 bugs that other baselines did not detect.
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FIGURE 7. Comparison of coverage across different literature.

Figure 8 shows a comparison of the number of vulnerabilities
detected by different methods. Due to the different target
datasets used in different literature, the number of bug detec-
tions also varies. Therefore, the bug quantity in this figure is
selected as the maximum number of vulnerabilities detected
in the literature.

C. EFFICIENCY
Efficiency mainly refers to the total number of covered paths
or the number of test cases that trigger program crashes in
the same amount of time. The more the quantity, the higher
the efficiency. The average discovery time of vulnerabilities
in [18] is 1.5 times higher than AFL. In an average runtime
of 30 minutes, QSYM [21] generated hundreds of test cases,
exceeding the number of test cases generated by other fuzzers
by 10 times. DARWIN [30] is 48.26% faster than MOPT
while, in the MAGMA benchmark test, after 5 hours of
fuzzing, DARWIN was able to find 15 bugs (a total of 21).
[39] discovered 5 bugs per 10,000 test cases. COMFORT [46]
detected 158 unique vulnerabilities by automatically running
on 250k self-generated test cases for 200 hours, of which
129 have been verified and 115 have been fixed by devel-
opers. In [51], only 2500 test cases successfully triggered
two denial-of-service vulnerabilities. In [56], the total number
of paths covered for BIND 9 within the same test time was
2360, an increase of approximately 85.1% in the overall path
coverage.

D. TEST CASE EFFECTIVENESS
Due to various filtering and protection mechanisms in the
target program, it is necessary to measure the effectiveness
of test cases. Test case effectiveness primarily refers to the
rate at which test cases can effectively input into the target
program, representing their bypass capability. Different liter-
ature sets different specific indicators for this purpose. For
example, in GANFuzz [39], the test rejection rate represents
the percentage of test cases that are rejected. A lower rejection
rate indicates better test case quality, and experimental results

FIGURE 8. Comparison of the number of vulnerabilities detected by
different methods.

show that GANFuzz achieves rejection rates as low as 43%.
PGNFuzz [40] introduces the test case identification rate,
which primarily measures the percentage of test cases rec-
ognized by the test target. Experimental results demonstrate
that PGNFuzz achieves an average test case identification rate
improvement of 8%-13%. Similarly, SeqFuzzer [41] achieves
a pass rate of 90.86%-99.99%. In [51], the acceptance rate has
been improved by approximately 45%.

V. PROBLEMS AND PROSPECTS
Research on machine learning-based fuzzing techniques is
currently a hot topic. Despite the numerous research results
available, the complex and diverse architecture, syntax and
input of target programs have resulted in a broad range of
vulnerabilities with various causes and types. As such, effi-
ciently and comprehensively detecting vulnerabilities using
fuzzing remains a challenge, requiring continued efforts to
address obstacles and limitations in this area.

A. MACHINE LEARNING MODELS CAN SLOW DOWN
FUZZ TESTING
Fuzzing combined with machine learning techniques has
emerged as a cybersecurity research hotspot. However, cur-
rent efforts focus primarily on improving fuzzing coverage
and achieving more accurate vulnerability detection by
leveraging the image recognition and feature extraction capa-
bilities of machine learning models to guide the generation of
high-quality fuzzing cases in various domains. Nonetheless,
given the time-consuming and computationally expensive
nature of machine learning model training, fuzzing execution
speed may be slower than traditional fuzzing methods, result-
ing in reduced overall efficiency.

To address this issue, some scholars have begun exploring
strategies to expedite the generation of highly structured test
cases. SmartSeed proposes a generic and efficient approach
for test case generation that employs a WGAN model to
learn valuable document features, which are then used to
generate additional high-value test cases [60]. RapidFuzz
introduces an improved Wassertein-Generative Adversarial
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Network implementation utilizing a gradient penalty-based
method to stabilize the GAN model training process and
optimize probability distribution learning on the original
dataset, addressing unstable model training and unexpected
behavior issues caused by weight cropping introduced in
WGAN [55].

As testing tasks become increasingly complex, parallel
computing is also being leveraged to enhance fuzzing effi-
ciency and effectiveness. Honggfuzz automatically supports
multi-process and multi-thread execution of fuzzing tech-
niques [61], ClusterFuzz deploys parallel fuzzing across
multiple machines and cores [62], and literature [63] presents
a parallelized task allocation method based on execution
paths to reduce duplicate tests among fuzzing instances, fully
utilize distributed computing resources, and improve paral-
lelized fuzzing efficiency.

Execution speed is a critical metric for fuzzing. While
improving machine learning models can reduce fuzzing time
and increase efficiency, it is crucial to balance overall fuzzing
efficiency with vulnerability detection capabilities through
continuous research in this area.

B. EXPANDED APPLICATION AREAS
As research on machine learning techniques gains momen-
tum, an increasing number of scholars are focusing solely
on applying machine learning models in fuzzing. However,
it is important to note that machine learning models are
susceptible to adversarial examples, which may contain vul-
nerabilities that can cause serious security issues. Yi Qin
proposed a hard-labeled black-box attack method based on
fuzzing for machine learning models and developed two
fuzzers, AdvFuzzer and LocalFuzzer, capable of generating
numerous successful adversarial examples [64].
In recent years, there has been a gradual increase in

research proposing fuzzing methods for machine learning
frameworks. For example, FAME is a DL framework fuzzy
system with an API mutation generation model and proposes
the optimization of layer and weight mutations capable of
detecting NaN errors and crash errors in deep learning frame-
works [65]. Park et al. proposed a mixed constraint mutation
(MCM) strategy for fuzzing deep learning systems, gener-
ating diverse variant results while preserving the original
input semantics by combining various image transforma-
tion algorithms [66]. Muffin proposed a new model fuzzing
approach to explore target libraries by developing metrics for
measuring inconsistencies between different deep learning
libraries and testing various models for differences, allowing
the generation of different deep learning models [67]. Deep-
Controller uses feedback obtained during test execution to
dynamically select seed and mutation strategies, proposing
adaptive seed selection strategy-AS2, which uses feedback
information from test execution to select seeds with high
fault detection potential, and an adaptive mutation strategy
selection method-AMS2, which analyzes the performance of
mutation strategies on different seeds and selects the most

suitable mutation strategy for different seeds [68]. Experi-
mental validation on eight deep learning models shows that
the method can generate more adversarial inputs and explore
more internal states of the deep learning model with less time
overhead.

Although existing fuzzing tools have been applied in var-
ious domains, such as file formats, network and industrial
protocols, binary programs and security vulnerabilities of IoT
devices, the application of machine learning models brings
advantages such as improved detection accuracy to fuzzing.
However, the models themselves may have security issues
such as resource leakage, crashes, computational errors and
anomalous behavior. An increasing number of scholars have
worked on extending fuzzing techniques to machine learn-
ing frameworks and conducted experiments to verify their
feasibility [65], [66], [67]. Hence, it is crucial to explore
the nature of fuzzing technology, extend it to more applica-
tion objects, and develop fuzzing techniques oriented toward
multi-domain vulnerability detection.

C. DATASET STANDARDIZATION
Currently, there is a lack of standardized datasets for bench-
marking in the field of fuzzing because different target
programs have different characteristics and requirements.
Researchers typically collect data through web crawlers,
generate test cases using fuzzing, or utilize some pub-
licly available datasets [69]. For example, in fuzzing for
file formats and protocols, the commonly used dataset is
LAVA-M [70], which was created by NIST and contains
various types of files and protocols such as JPEG, MP3,
PDF,HTTP, etc. The developers selected four programs, uniq,
who, md5sum and base64, to create a corpus and injected
some validated errors into each program. For fuzzing for
web application vulnerabilities, spider technology is mainly
used to collect and organize test input data, and the test
data set is constructed manually. For fuzzing for binary pro-
grams, publicly available datasets include AFLSmart [71]
and Fuzzingbook [72], which contain over 1,000 binary pro-
grams and their corresponding seed files that can be directly
obtained from the official website. The quality of the dataset
directly affects the training effect of the machine learning
model and the performance of the vulnerability detection
model. Therefore, it is meaningful to establish a standard-
ized dataset for programs and vulnerability types in various
fields.

D. EXPAND THE TYPES OF VULNERABILITY DETECTION
Three problems exist with current fuzzing techniques for
detecting vulnerability types. Firstly, a large number of cur-
rent fuzzers typically rely on program crashes as an indication
of detected anomalies, but not all vulnerabilities result in
program crashes, such as memory corruption, Trojans and
viruses. Secondly, vulnerabilities have increasingly been trig-
gered by multiple input points at different levels, and testing
a single input point may not effectively monitor program

VOLUME 12, 2024 14451



A. Zhang et al.: Machine Learning-Based Fuzz Testing Techniques: A Survey

anomalies, making it less effective in detecting vulnerabilities
of the multi-point trigger type [73]. Thirdly, for some newly
emerged vulnerability types, it can be challenging to build
machine learning models due to the lack of relevant reference
materials. Therefore, future research on how to detect more
types of vulnerabilities will become one of the key research
directions.

VI. CONCLUSION
The present study investigates the application of machine
learning in the field of fuzzing, based on an extensive review
of the relevant literature. Machine learning methods are most
commonly applied in the test case generation phase, where
genetic algorithms effectively generate diverse test cases to
improve the coverage and effectiveness of fuzzing. Deep
learning methods leverage their powerful pattern recognition
and feature extraction capabilities to generate more tar-
geted and high-quality test cases, further uncovering potential
vulnerabilities and abnormal behaviors in the system. Rein-
forcement learning employs reward mechanisms to guide
the generation of test cases that are conducive to explor-
ing and discovering abnormal behaviors, thereby enhancing
the efficiency and quality of test case generation. More-
over, machine learning has made many experiments and
improvements in the preprocessing, input selection and result
analysis and evaluation stages of fuzzing, effectively improv-
ing the efficiency and vulnerability detection capabilities of
fuzzing. As an important approach in the field of fuzzing,
machine learning provides new ideas and technical means for
improving fuzzing techniques. Future research should further
explore how to integrate different machine learning methods,
harnessing their strengths to address the challenges faced in
fuzzing, thus promoting the development and application of
fuzzing technology.

Fuzz testing will continue to play a crucial role in future
project vulnerability assessments. With the advancement of
research in this field, we hope to witness the continuous
application of machine learning to address bottlenecks in the
fuzzing process. This article provides a detailed introduction
to the development of machine learning-based fuzzing tech-
niques and related research, aiming to serve as a valuable
reference for researchers in this field.
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