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ABSTRACT In recent years, hate speech spread on the Internet has seriously affected society’s harmony,
stability, and development. A way to quickly identify hate speech from the vast amount of data on the
Internet is urgent. In this paper, different from previous traditional methods, we explore a novel scenario of
constructing a syntax dependency graph for each instance based on the syntactical information retrieved from
an external tool.We propose a model called the Dependency Graph Convolutional and Sentiment Knowledge
Transfer (DGCSKT) network. DGCSKT utilizes syntactic dependency graphs and dependency graph
convolutional operations to enhance the model’s ability to perceive contextual information. Additionally,
we introduce sentiment resources that are data-homogeneous as an auxiliary task at the bottom level of
the model to share effective sentiment features and improve recognition performance. Then, we propose
the Dynamic Normalized Weighting (DNW) method to weight the training information of different tasks
and thus improve the model’s generalization ability. Compared to the current state-of-the-art methods, our
proposed approach improves the Macro-F1 by 3.88% and 0.54% in OLID and HateEval respectively.

INDEX TERMS Hate speech detection, multi-task optimization, dependency graph convolution, dynamic
normalized weighting.

I. INTRODUCTION
With the prevalence of mobile Internet and social media,
bullying has gradually spread from the real world to the
Internet, and the malicious spread of hate speech has caused
great harm to society and families. Therefore, preventing the
abuse of hate speech is of great importance to maintaining
social harmony. How to quickly and accurately automatically
detect hate speech and then better intervene to prevent it has
become one of the hot research issues in the field of natural
language processing.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

However, hate speech is speech that attacks individuals
or groups based on attributes, such as gender, ethnicity,
disability, etc. [1] The semantic features of different types of
hate speech vary greatly, and it is difficult to identify all types
of hate speech with a unified model. In addition, due to the
diversity of social media culture and the openness of words,
many spans or words are abbreviated or rewritten when users
make comments, such as ‘‘wtf’’ - ‘‘what the fuck’’; ‘‘fuck’’ -
‘‘fffffuck’’. Therefore, the task is quite challenging.

Some early studies attempted to identify hate speech
around linguistic rules or manual feature extraction [2],
[3], [4], [5], [6]. Chen et al. [2] find that syntactical
structures are beneficial for identifying hate speech, for
example, when a second person pronoun and a derogatory
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word appear together in a sentence, it was considered hate
speech. But the rules required domain experts and had weak
generalization ability. Davidson et al. [3] constructed part-
of-speech(pos) features, sentiment score features, etc., The
experimental results show that adding part-of-speech and
sentiment features further improves the detection effect of
the classifier. However, traditional machine learning methods
ignore the sequence relationships between words, and these
artificial features only reflect the shallow features of the text
and are powerless in the face of hate speech text.

With word vector technology as the basis, numerous
results have emerged based on deep learning methods.
Badjatiya et al. [7] used convolutional neural network
(CNN) and long-short term memory (LSTM) for hate speech
detection on Twitter. The experimental results showed that
the use of CNN for extracting window-level context or
LSTM to extract sentence sequence information significantly
improved the model’s performance compared to traditional
machine learning methods. In recent times, some researchers
have fine-tuned large-scale pre-trained Transformer based
models, such as BERT [11], GPT [12], and XLNet [13], using
attention mechanisms to capture contextual information in
hate speech, which has further improved the performance
of the models [14], [15], [16]. Kennedy et al. discovered
that in detecting hate speech, existing deep learning mod-
els exhibit strong biases towards certain words, such as
’’nigger’’, ’’blamed’’, and ’’homosexuality’’, among others.
These words possess strong negative sentiment connotations,
suggesting that their presence in a sentence is likely to
indicate hate speech [17]. Zhou et al. also recognized that
sentiment features may be a strong predictor of hate speech
detection and designed a multi-task model consisting of
both a hate speech detection task and a sentiment analysis
task. By introducing sentiment information through shared
layers, they achieved good results [19]. Previous research
has demonstrated that contextual, sequential, and sentiment
features of hate speech, such as the context in which it occurs,
the sequence of statements, and the associated sentiment, can
significantly enhance the ability to detect hate speech.

The recurrence of certain words in texts pertaining to
specific topics may result in the presence of strong biases
towards them in hate speech detection models. A model that
exhibits strong biases towards certain core keywords is not
a desirable phenomenon. The presence of these words in a
sentence does not necessarily indicate hate speech and must
be contextualized in the sentence to confirm. In this work,
we depart from traditional methods by basing our approach
on the idea that a sentence’s meaning is conveyed through
its core keyword and other words that are syntax connected
to it. Our goal is to have the model reduce its attention to
irrelevant words and increase its focus on semantically related
words to enhance the detection of hate speech. Lou et al.
utilized syntactic analysis tools to identify the occurrence of
long-range incongruity patterns and inconsistent expressions
in irony [18]. Inspired by Lou et al. and Zhou et al., we explore
a novel scenario of constructing a dependency graph for

each instance based on the syntactical information retrieved
from an external tool(spacy1). Furthermore, we introduce
homologous short-text sentiment data as auxiliary task to
provide effective underlying sentiment features as hate
speech always manifests negative sentiment. Based on it,
we propose Dependency Graph Convolution and Sentiment
Knowledge Transfer (DGCSKT) model.

DGCSKT is a multitask learning model that utilizes
syntactic dependency graph and dependency graph con-
volution to enhance the model’s contextual perception
ability. Additionally, both sentiment analysis and hate speech
recognition tasks obtain data from the same domain, and
both tasks require classification of words or phrases with
strong sentiment while considering the semantic similarity
of these words or phrases. Therefore, effective sentiment
features can be shared at the bottom layer to enhance the
model’s generalization ability.

Finally, we propose the Dynamic Normalized Weighting
(DNW)method toweight the training information of different
tasks so the auxiliary task can assist the primary task learning.
The main contributions of our work can be summarized as
follows:
• We are the first to exploit the Dependency Graph
Convolution Network(DGCN), variants of Graph Con-
volutional Networks (GCN) [21], to extract syntactic
information in hate speech detection.

• We propose a DNW method to weight the training
information of different tasks so that they can share
information and complement each other.

• We propose a new multi-task framework (DGCSKT) to
capture contextual sentiment dependencies in sentences
so as to improve hate speech detection performance.
Experimental results on the SemEval-2019 task-5 and
SemEval-2019 task-6 demonstrate that our method
achieves state-of-the-art performance in hate speech
detection.

II. RELATED WORK
Hate speech is usually offensive, discriminatory, and inflam-
matory. For minors with weak information screening ability,
it may harm the formation of their three views. Attacked
individuals and groups may develop negative sentiments and
a counterattack psychology which is not conducive to the
harmonious development of society. In addition, due to its
limited textual information, insufficient data samples, and
the significant differences in semantic features of different
categories, researchers have conducted extensive research in
recent years. In this section, we review related works on
multi-task learning-based methods of hate speech detection,
applications of graph convolutional networks on text, and
optimization methods for multi-task learning.

Multi-task learning (MTL) can improve specific task
performance by simultaneously training on multiple related
tasks. In recent years, there have been some achievements

1We employ spaCy toolkit to derive dependency tree of the sentence:
https://spacy.io
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FIGURE 1. The overall framework of our proposed Hate Speech Detection based on Dependency Graph
Convolution and Sentiment Knowledge Transfer Network(DGCSKT).

in the field of hate speech detection. Farha and Magdy [22]
tested a simple CNN-BiLSTM MTL model based on the
intuition that hate speech always expresses negative emotions
toward the target, adding sentiment information to perform
the task of hate speech identification in Arabic tweets. Their
results showed that sentiment information is correlated with
hate speech identification. Rajamanickam et al. [23] were
the first to introduce emotional features into MTL models
to gain auxiliary knowledge to detect abuse in English
tweets. They proposed different MTL models, and the best
model was the Gated Double Encoder model based on
BiLSTM encoders. Their experiments showed that emotion
detection is beneficial for abusive language detection. Plaza-
Del-Arco et al. [24] and Zhou et al. [19] utilized sentiment
analysis tasks to introduce sentiment knowledge into the
model, and the results showed that it helped improve the
accuracy of hate speech detection.

Previous studies have demonstrated that auxiliary tasks
related to the target task can effectively improve the
performance of the target task. However, they all ignore the
syntax dependence information of words and sentences.What
makes a comment hate speech is not determined by individual
words alone, but by the keywords in conjunction with their
context.

To the best of our knowledge, there has been no research
related to the application of GCN to hate speech detection
tasks so far, but there has been some research applying
GCN to tasks related to natural language processing.
Yao et al. [25] constructed an entire corpus as a giant
graph in which both words and documents were nodes.
They utilized GCN to model the graph and transform
the text classification problem into a node classification

problem. Experimental results showed that this approach
requires only a small fraction of labeled documents to
achieve robust classification performance. In an emotion-
cause pair extraction task, Chen et al. [26] designed a
PairGCN network to model dependency relations among
local neighborhood candidate pairs so as to facilitate the
extraction of pair-level contextual information. Liu et al. [28]
proposed the Affective Dependency Graph Convolutional
Network (ADGCN) framework to address the phenomenon
of incongruous expression in ironic texts. They used external
tools to construct affective and dependency graphs for each
instance, replacing the degree matrix of the input matrix in
GCN so as to leverage the contextual affective dependencies
of incongruous expressions in sarcasm detection.

Previous research has demonstrated that GCN has a
powerful feature extraction capability in text as well, and
making appropriate adjustments can significantly improve
the performance of the target task. In the above work,
Lou et al. are closest to our idea in GCN, but their
approach relies too much on two external tools and has
a low synchronization rate. This means that the affective
and dependency graphs probably cannot be successfully
constructed together.

Although multi-task learning will have advantages over
single-task learning, it is not easy to learn successfully. One
of the critical factors is the multi-task loss optimization
problem. It is intuitive to dynamically weight losses for
different tasks as opposed to fixed weights or simple
summation of losses, and a lot of related work has sprung
up in recent years. Chen et al. [27] and Liu et al. [28]
wanted different tasks to be learned at similar speeds, and
proposed the GradNorm algorithm and the Dynamic Weight
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Average (DWA) algorithm, respectively. In comparison to
GradNorm, DWA does not take into account the magnitude
of loss for different tasks. Guo et al. [29] wanted to give
higher weights to more difficult learning tasks and proposed
the Dynamic Task Prioritization (DTP) algorithm. These
dynamic weighting methods have different starting points but
share the common goal of the best learning for each task.
However, the relevance of each task is finite, and under tough
competition, gains on one side necessarily entail losses on the
other. The dynamic adjustment of weights while allowing for
prioritization of tasks is what we want, and none of the above
methods can do this.

FIGURE 2. Input to the RoBERTa model.

III. METHODOLOGY
In this section, we introduce our model (DGCSKT) and the
Dynamic Normalized Weights (DNW) method in detail.

The overall architecture of DGCSKT is shown in Figure 1.
DGCSKT consists of three main layers: 1) Input layer.
To obtain a contextual representation that more closely
matches the sentence’s meaning, we use the large-scale pre-
trained model RoBERTa [30]. The input is to be tokenized
accordingly. On the other hand, we use the external parsing
tool spaCy to obtain a syntax dependency graph for each
sentence; 2) Sentiment knowledge sharing layer. We use an
MTL framework to model task relationships and learn task-
specific features to leverage shared sentiment knowledge
based on an intuition that sentiment analysis and hate
speech detection are highly correlated. Learning context
representation, which learns the vector representations of the
context with RoBERTa and bidirectional LSTMs(Bi-LSTM);
3) Private task layer. In DGCSKT, the entire private layer
is divided into the primary task private and auxiliary task
private layers. We added a private feature extraction layer Bi-
LSTM to the auxiliary task. On the other hand, the primary
task private layer consists of multiple layers of DGCNs and a
retrieval attention layer.

A. INPUT LAYER
Regardless of the specific task associated with the text
data, tokenization is the initial step. We use the open-
source RoBERTa model tool from HuggingFace [31], given
a sentence s consisting of n words, s = {w1,w2, . . . ,wn}.
As shown in Figure 2, the input text sequence starts with the
special symbol ’’< s >’’ and uses the special symbol ’’< /s >’’
to indicate the end of the sentence. Then it transforms into a
word embedding representation [e1, e2, . . . , en].

The word representation is derived through the summation
of three components: Token Embeddings, Token Type
Embeddings, and Position Embeddings. Among them, Token
Embeddings is the word embedding vector independent
of context representation; Token Type Embeddings dis-
tinguishes the sentence part and the padding part in the
input sequence; Position Embeddings represent the position
information of the corresponding word in the word sequence.

In addition, intuitively, the expression of the meaning
of a sentence usually depends on a specific syntactic
structure. Therefore, intuitively, if themodel can obtain word-
word syntactic dependency information, it can significantly
enhance the classification effect. In this work, to leverage
the dependencies of the context, we explore a novel scenario
of constructing a dependency graph for each sentence. This
aims to remove redundant information and retain the overall
structural information of the sentence in hate speech detection
at the same time.We constructed a dependency graph for each
sentence based on the dependency tree parsed by the external
tool, spaCy:

Adi,j = 1 if τ (wi,wj) = true (1)

where Ad ∈ R(n×n) whose remaining elements are 0.
τ (wi,wj) = true represents that there is a relation between wi
and wj in the dependency tree of the sentence. It is noted that
this syntactic dependency is bidirectional,so A(i,j) = A(j,i),
and we set a self-loop for each word: A(i,i) = 1.

B. SENTIMENT KNOWLEDGE SHARING LAYER
This layer includes a shared word embedding model
(RoBERTa) and a shared feature extraction model (Bi-
LSTMs). RoBERTa is used to train and generate word
embeddings adapted to all task data, and Bi-LSTM is used
to extract standard and fixed features among all tasks.

There is a considerable similarity between the hate speech
detection task and the sentiment analysis task. Also, the
sources of the datasets are similar, so there is no problem of
training failure due to too much difference in data domains
in the shared word embedding layer joint training data
representation. Moreover, sharing word embedding training
for different tasks enables the final contextual representations
to contain representation information adapted to multi-task
learning. RoBERTa is trained from a sizeable unsupervised
corpus, which provides more complementary information to
the data and makes the final contextual representation richer.
Fine-tune the parameters of RoBERTa to make the model
more suitable for multiple tasks. The output of the last hidden
layer is selected as the word embedding vector, denoted as E ,
E ∈ R(n×h), where n is the input sequence length, and h is the
word vector dimension.

With the contextual representation, feature extraction and
subsequent training are required. This is where the shared
feature extraction model comes into play, and the Bi-LSTM
is used here. Hate speech detection tasks focus on sequence
information and extraction of information from a limited
context, and Bi-LSTM’s most significant advantage is that
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it can simultaneously learn sequence features from context
information. Its output consists of two parts, the forward
output vector, and the reverse output vector. The calculation
formula is as follows:

ht = ot ∗ tan h(ft ∗ Ct−1 + it ∗ C̆t ) (2)
→

ht = LSTM (xt ,
−−→
ht−1),

←

ht = LSTM (xt ,
←−−
ht−1) (3)

where ht ∈ Rdh is the output of the LSTM and denotes
the hidden representation of input in time step t . dh is the
word embedding dimension. ot , ft , it are the output gate
weight, forget gate weight and input gate weight, respectively.
In addition, Ct−1 is the output of the previous unit, and C̆t is
the content that needs to be updated in the current unit. Since
it is a bidirectional model, it includes forward and reverse
outputs. The final output of each time step t is obtained by
directly contacting these two parts, which is represented by
Ht :

Ht =
→

ht ⊕
←

ht (4)

The contextual representations obtained in this layer will
respectively be used as part of the input of the two private
layers. All tasks share the parameters of the trained model.

C. PRIVATE TASK LAYER
The private task layer is layer-specific to each task. It contains
the task-specific feature extractor and the task output layer.
Different from traditional hate speech detection methods,
which treats a sentence as a sequence of words and extracts
hate information purely from textual or semantic content,
we explore a novel dependency graph convolutional network
framework to feed sentence syntax dependency into a
multi-layer DGCN architecture to leverage the syntactic
dependency information. Each node in the l-th DGCN layer
is updated according to the hidden representations of its
neighborhoods in the adjacency matrices of the dependency
graphs. The process is defined as:

gl = ReLU (Ãdgl−1W l
+ bl) (5)

where gl−1 ∈ Rn×2dh is the hidden graph representation
evolved from the preceding DGCN layer, and the first
DGCN’s input is the output of the shared layer’s Bi-LSTMs:
g0 = (h0, h1, . . . , hn), hi ∈ R1×2dh . Normalization of Ad

to get Ãd : Ãi =
Ai

Ei+1
. Ei =

∑n
j−1Ai,j is the degree Ai.

W l
∈ R2dh×2dh , bl ∈ R2dh are the trainable parameters of

the l-th DGCN layer.
In addition, instead of the conventional attention mech-

anism, we employ a retrieval-based attention mechanism
to capture sentiment dependency-oriented features from
contextual sentiment representations in hate speech detection:

βt =

n∑
i=1

HT
t g

L
i (6)

δt =
exp(βt )∑n
i=1 exp(βi)

(7)

rn =
n∑
t=1

δtHt (8)

where T represents matrix transposition, and gL is the output
of the final DGCN layer. rh is the output of attention mech-
anism. Here, intuitively, the difference between retrieval-
based and public attention is that Q and V are the same
matrices. However, from another perspective, the Ht and gL

dot product in Eq. (6) is used to measure the sentiment-
dependency relatedness between word and sentence. Eq. (7)
then converts this connection into an attention score, based on
which it is possible to make Eq. (8)’s rh focus on each word’s
syntactic dependency information.

In the sentiment analysis task, we used Bi-LSTMs as
its task-specific feature extractor and employed the pooling
mechanism to get the final representation:

rs = MaxPooling(H s
t )⊕MaxPooling(Ht ) (9)

where H s
t it the output of the private Bi-LSTMs and Ht is

the output of the knowledge sharing layer. Afterward, rs in
Eq. (9) and rh in Eq. (8) are fed to a fully-connected layer with
a SoftMax normalization activation function, respectively to
capture a probability distribution y of sentiment analysis and
hate decision space:

y = softmax(Wor + bo) (10)

where y ∈ Rdp is the predicted probability for the input
sentence, dp is the dimensionality of hate labels or sentiment
labels.Wo and bo are trainable parameters.

D. DYNAMIC NORMALIZED WEIGHTING
The simplest way to obtain the overall loss for a multi-
task is to directly sum the losses between tasks to get the
overall loss. However, the unreasonableness is obvious. The
magnitude of the loss is likely to be different for different
tasks, and the direct summation may lead to multi-task
learning dominated by one task. An alternative approach is
to configure a fixed weight parameter for each task’s loss
which allows us to manually adjust the importance level
compared with the direct summation approach; however, the
fixed weights will remain throughout the training cycle. The
difficulty of learning varies from task to task, and such fixed
weights can limit the task learning at some stage. In summary,
a better weighting approach in multi-task learning would be
dynamic, adjusting for the stage of learning, the difficulty of
learning, and even the effectiveness of learning for different
tasks.

Due to the diversification of text sentence patterns and
the significant differences in semantic features, multi-task
text training has always been difficult. Whether GradNorm,
Dynamic Weight Average, or Dynamic Task Prioritization
Algorithm are proposed based on image tasks, because of
the complexity of the text, the training loss fluctuates wildly,
which is not suitable for this work. Therefore, inspired by
Guo et al., we propose the Dynamic Normalized Weighting
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method:

Wi(t ′) =
−λi(1− ki(t ′)) log ki(t ′)∑m
j=1 − λj(1− kj(t ′)) log kj(t ′)

(11)

where Wi(t ′) is the loss weight of each task i and t ′ denotes
the training step. ki(t ′) represents the metric for the task i, and
m denotes the total number of tasks. Intuitively, the DNW
method will increase the weight of hard-to-learn tasks and
vice versa. In addition, a normalized strategy ensures that
losses do not get out of hand.

E. LEARNING OBJECTIVE
We minimize the cross-entropy loss by the Adam algorithm
to train the model:

min
2
Loss = −

∑
i

∑
j

yji log ŷ
j
i + λ ||2||2 (12)

where i is the index of sentences and j is the index of class. yi
and ŷi respectively represent the ground-truth and estimated
label distribution of instance i. λ is the L2 regularization
parameter. 2 denotes all trainable parameters.

IV. EXPERIMENTS
A. EXPERIMENTAL DATA AND SETTINGS
Next, to evaluate our proposed model, we experiment with
two public datasets from a well-known competition, Semeval
and one benchmark sentiment dataset:
• Offensive Language Identification Dataset (OLID) [32]:
OLID comes from SemEval 2019 task 6, which has
three subtasks.We only focused on subtask A: Offensive
Language Detection. The test set had 820 sentences, and
the training set had 13420 sentences.

• HateEval Dataset [33]: HateEval from SemEval
2019 task 5 is a multilingual dataset on hate speech
against immigrants and women. It contains English and
Spanish, and we take only 13,000 English data points
from it. Among them, there were 10,000 sentences in
the training set, and 3000 sentences in the test set.

• Sentiment140 Dataset (S140D): The S140D dataset,
which contains 1.6 million English tweets labeled as
either positive or negative, was publicly released by the
Kaggle community for sentiment analysis.

The statistics of the experimental data are reported in
Table 1. The datasets OLID, HatEval, and S140D were
sourced from Twitter. OLID and HateEval are both imbal-
anced datasets. Data imbalance is fairly common in ecology,
and it usually reflects an unequal distribution of classes
within a dataset. Models built on imbalanced datasets will be
constrained by its ability to predict rare and minority points.
On the other hand, the predictive capabilities of the model
are better by balancing the data compared with imbalanced
data. Therefore, whether to train on a balanced dataset does
not affect the experimental results. To facilitate comparison
with the baseline method, we used standard Accuracy (ACC)
and F-measure (F1) as evaluation metrics in our hate speech
detection.

In our experiments, the random seed was set to 1998; For
the input layer, all non-Roberta models, we used the static
pre-trained word vector Glove [35] as the embedding layer
with each word as a 300-dimensional embedding. For the
RoBERTa-based models, we used RoBERTabase with 768-
dimensional embedding. In addition, the number of layers of
the DGCN was set to 3, and the Bi-LSTM was only set to
1 layer. The maximum sentence sequence length was 128 for
the hate speech task and sentiment analysis task. Using Adam
as our optimizer, the learning rate and the coefficient λ of
L2 regularization were 10−3 and 10−5, respectively, to train
the model. The mini-batch size was 16 for the hate speech
task, and the sentiment analysis task’s mini-batch size varied
with the proportion of the two data volumes. For example,
at this time, the latter’s training set size was double that of
the former, so the latter’s mini-batch size was 32. To prevent
overfitting, we used the learning rate decay and early stop in
the training process.

TABLE 1. Statistics of datasets used in the experiment.

B. COMPARISON MODELS
We designed model comparison experiments. All models
were trained and tested on the same dataset, and the best
results were selected to evaluate model performance.

SVM. Zhang et al. [36] used a linear support vector
machine as a classifier, introduced ngram, derogatory word
features to the model, and trained on OLID.We used the same
model and trained it again on HateEval.

Bi-LSTM. Glove is used as a word embedding input to
the bidirectional long-short-term memory network to extract
semantic information and detect hate speech [37].
Bi-LSTM_Att. In addition to Bi-LSTM and Glove, this

method adds an attention mechanism to focus keywords and
detect hate speech [38].
Bi-GRU_Stacked. This method uses stacked Bidirectional

Gated Recurrent to encode sentence information [39].
BERT. This method uses a fine-tuning BERT for hate

speech detection [40], [41].
UE_SVM. This method pretrained Universal Encoder

sentence embeddings to transform the input and SVM (with
RBF kernel) for classification, scoring the first position on
the leaderboard on the test set [42].

MTL_GE. MTL GE was proposed by Rajaman-
ickam et al. [23] and used sentiment analysis as an auxiliary
task, multilayer Bi-LSTM as a shared word embedding
layer, and the final sentence representation was obtained by
combining weighted shared representation and task private
representation.
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SKS. This was proposed by Zhou et al. [19] They used
multiple feature extraction units to extract semantic features
and then combine them with a gated attention mechanism to
feed both hate speech detection and sentiment analysis tasks.

DGCSKT. DGCSKT is our proposed model, which
detects hate speech based on the combination of sentiment
knowledge sharing and syntax dependency.

The results of the comparisons are listed in Table 2
and Table 3. Table 2 shows the comparison of DGCSKT
with existing methods. All data are from the literature.
Furthermore, to further demonstrate the superiority of our
method, in Table 3, we reproduce some strong baseline
methods and our method trained in the same environment
to remove the effects of other factors such as hardware
devices and hyperparameters, etc., and select the best results
to evaluate model performance.

TABLE 2. Comparison with existing methods. The results with underlined
‘_’ are imported from the literature.

From Table 2, we can see that:
as follow:
1. The performance of traditional machine-learning meth-

ods based on the bag-of-words model was not satisfac-
tory. Even incorporating n-grams and shallow sentiment
features does not represent hate speech well. The
experimental results show that the performance of SVM
is very different from the mainstream deep learning
methods, and its generalization ability is weak.

2. Deep learning has more advantages than traditional
machine learning methods, but it is not absolute. Adding
appropriate strategies or mechanisms, machine learning
methods can also have outstanding classification perfor-
mance, such as UE SVM. The hybrid neural network is
better than the single neural network. For example, Bi-
LSTM Att and BiGRU Stacked improved by about 3%
compared with the single Bi-LSTM.

3. The performance of BERT is quite different on the two
datasets. This may be because compared with OLID,
which has more simple sentences with insulting words,
HateEval has more language that hides the real meaning
between the lines. If there is no suitable strategy for these
sentences, the deep network structure will not achieve
good results. In HateEval, the BERT performance is
lower than that of the traditional deep learning method
Bi-LSTM.

4. We observe that our proposed DGCSKT consistently
outperforms all models on both datasets. To be specific,

the best-improved results of Acc. and F1 respectively are
3.38% and 3.88% compared with the previous state-of-
the-art performance.

TABLE 3. Comparison with strong baseline methods. G and R denote
Glove and RoBERTa, respectively.

From Table 3, we can see that: as follow:
1. Multi-task models generally have more advantages than

single-task models. SKS and DGCSKT perform better
than the single-task model Bi-LSTM and Bi-LSTM Att
on both datasets. MTL GE is slightly lower than Bi-
LSTM on HateEval, higher than Bi-LSTM Att, and
higher than both on OLID. is weak.

2. In the model with RoBERTa as embedding, all models’
performance improved significantly compared with
Glove embedding under the same conditions. Bi-LSTM
and BiLSTM Att improve macro-F1 by 0.53% and
1.37% in OLID, respectively, and by 1.55% and 4.26%
in HateEval. In addition, DGCSKT improves F1 by
1.57% and 2.18%, and Acc improves by 1.93% and
3.09% more than DGCSKT+G on both datasets. These
show that the large-scale pre-trained model RoBERTa
can better represent sentence semantics compared with
the pre-trained static word vector Glove.

3. Under the same conditions, our proposed multi-task
framework DGCSKT is more competitive thanMTLGE
and SKS. DGCSKT+G improves macro F1 by 1.% and
5.19% over MTL GE on both datasets. Compared with
SKS, it has increased by 0.17% and 0.36%.

Based on the above analysis, our proposed DGCSKT
model has demonstrated significant superiority over other
strong baseline models. The effectiveness of our approach
can be attributed to two main factors. First, our model
leverages the sharing of effective features at a lower level
between the two tasks. Second, the utilization of Dependency
Graph Convolution and syntactic dependency graph enhance
the model’s ability to capture the contextual information of
sentences.

C. ABLATION STUDY
To analyze the impact of different components of DGCSKT
on performance, we conducted an ablation study and report
the results in Table 4. Where ’-degcn’ denotes ablation
of dependency graph construction and convolution, ’-sa’
denotes ablation of sentiment analysis task and ’-dnw’
denotes ablation of DNW methods. Based on the results in
Table 4, we observe that: as follow:
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FIGURE 3. The influence of the scale of sentiment dataset.

TABLE 4. The results of ablation experiment.

1. Removing dependency graph convolution sharply
degrades the performance, which indicates that whether
the model can capture the syntax dependency of words is
an important factor in improving hate speech detection.
Macro-F1 on both datasets is reduced by 2.11% and
5.16%, respectively. It is not surprising that the decrease
inHateEval is more pronounced because it hasmore hate
speech sentences without prominent insulting words.
The recognition of such instances depends more on
syntax knowledge. is weak.

2. As an auxiliary task, the sentiment analysis task
substantially improved the model’s generalization abil-
ity. Experiments showed that removing the sentiment
analysis task reduced the Marcro-F1 by approximately
4% on both datasets.

3. Our proposed DNW method can slightly improve the
model performance by about 1.2%. This is because
DNW does not focus on the loss of the training process,
but only on the Key Performance Indicator, i.e., Macro-
F1. The lower the F1 value, the more weight the loss
accounts for, so the model does not dynamically adjust
the weight balance of the two tasks while biasing the
focus on the sentiment analysis task in the training
process.

D. IMPACT OF THE SCALE OF SENTIMENT DATASET
Hate speech detection and sentiment analysis are highly
correlated, so sentiment knowledge transfer can improve hate
speech detection performance. But there is one issue that is
overlooked here: the impact of sentiment analysis dataset size
on hate speech detection.

As shown in Figure 3, the point with 0 on the horizontal
axis means that the sentiment analysis task is eliminated. The
performance is worst when the size of S140D is only half of
OLID andHateEval. The performance peakswhen the S140D
is twice the size of OLID and HateEval. In addition, when
the S140D data size is too small, for the complex dataset
HateEval, not only does it not achieve the effect of helping
hate speech detection task, but it also increases the noise,
leading to performance degradation. However, as the size
of S140D keeps increasing, the performance will gradually
improve. After reaching a peak, if the data size of IMBD
continues to expand, the performance also shows different
procedures of degradation.

E. THE EFFECT OF DYNAMIC NORMALIZED WEIGHTING
The DNW method can guarantee that the model is learning
properly even when dynamically adjusting the weight
relationship between multiple tasks. We recorded the two
task’s loss changes and weight changes separately during the
training process.

As shown in Figure 4. We average the loss and weights for
each epoch. In a complete training, nine epochs were trained
on theOLID, and four were trained onHateEval.Whether it is
the OLID or HateEval dataset, the weight changes of the hate
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FIGURE 4. Loss change and weight change for hate speech and sentiment analysis tasks on OLID and HateEval
datasets.

FIGURE 5. Syntax dependency parsing.

speech detection task and the sentiment analysis task always
keep the hate speech detection task occupying the main body.
The model is not biased towards the sentiment analysis task
in the middle of training. On the other hand, the loss of the
two tasks gradually decreases in the iteration, indicating that
the model is learning typically. The addition of the sentiment
analysis does not bring much noise to the model but adds
compelling features to promote hate speech learning.

F. ATTENTION VISUALIZATION AND COMPARISON
To qualitatively demonstrate how dependency graph con-
volution and retrieval attention mechanisms can improve
the performance of hate speech detection, we performed
a visual analysis, as shown in Figure 5 and Figure 6.
We first visualize the syntactic dependency graph of a
typical hate speech example in Figure 5 to visualize the
composition of our dependency graph. In this, the textual

information in each arc indicates the syntax relations. Second,
we visualize the dependency attention and the retrieved
attention learned by our proposed DGCSKT in Figure 6
to analyze how the proposed DGCSKT draws sentiment
dependencies in hate speech expressions learning by the
retrieved attention mechanism. The dependency attention is
calculated by Equation (7), while the retrieval attention is
obtained by normalizing the output of the retrieval attention
layer.

The effect is intuitive. In Figure 6, the dependency attention
pays more attention to the syntax body: ‘‘he make guy
dumb’’, rather than paying too much attention to the strong
negative sentiment words: ‘‘dumb’’ and ‘‘shit’’. On the
other hand, the retrieval attention was focused on negative
sentiment words and related words syntax associated with
the keywords: ‘‘guy’’ and ‘‘make’’. Such a result is not
unexpected. After the dependency graph of sentences is
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FIGURE 6. Attention visualization.

FIGURE 7. Attention comparison.

computed by graph convolution, the model ignores the
part of the contextual representation obtained from the
sentiment knowledge sharing layer that does not have
syntax dependency information. Only the syntax dependency
information of Figure 5 is retained, which is then passed
to the retrieval attention layer. In addition, dependency
attention passes attention on to the syntax body to contextual
representations by Equation (8), enhancing attention on
words with syntax linkages. This is why the attention scores
obtained after the normalization of the output of retrieval
attention focus not only on key negative sentiment words but
also on related syntax dependent words.

We modified the attention mechanism in the -degcn
model to a standard attention mechanism and retrained
the model in order to observe the effect of the syntax
dependency convolution and retrieval attention mechanism
on the model. As demonstrated in the example presented in
Figure 7, the output of the attention layers for -degcn and
DGCSKT are normalized to obtain Conventional Attention
and Retrieve Attention. -degcn exhibits a strong concen-
tration of attention on the tokens ’nigger’ and ’Africans’,
while the weights of the remaining tokens are significantly
diminished. This disproportionate distribution of attention
results in the misclassification of the non-hateful statement
as hateful speech. Our DGCSKT method, which utilizes a

syntax-based dependency graph, graph convolution, and a
retrieval attention mechanism, effectively allocates attention
to the tokens ’don’t’ and ’call’, thereby reducing the reliance
on ’nigger’ and ’Africans’. This leads to the successful
identification of the non-hateful nature of the statement in
question.

In summary, our proposed DGCSKT promotes contextual
awareness in the model, reduces dependence on key terms,
and enhances the performance of hateful speech detection.

V. DISCUSSION
Our proposed method exhibited a high level of performance
in our experimental analysis. In comparison to conventional
deep learning approaches, our model effectively attenuates
the focus on primary keywords while concurrently allocating
attention to both primary keywords and syntactically related
words. The most ingenious aspect of our work is the use
of existing syntax analysis tools to construct dependency
graphs, which are then incorporated as a part of the graph
convolutional formula and allow the model to successfully
perceive contextual information within the sentence through
a retrieval attention mechanism. This work provides a
new approach and means for future hate speech detection
research. Additionally, we introduce external sentiment data
from a homologous source and leverage multi-task learning
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to facilitate the sharing of effective sentiment features at
the bottom layer of our model, thereby enhancing the
generalization capability of the model.

However, our method has the following limitations: 1. The
general syntax parsing tool used has general effectiveness.
If the adaptation rate of your corpus to the tool is particularly
low, the construction of your syntax dependency graph will
be unsuccessful. 2. The training data for sentiment analysis
tasks should exhibit homology or share a common topic with
hate speech recognition tasks, and ideally, have a similar text
structure. In cases where the dissimilarity between the two
datasets is significant, the positive impact may be limited or,
in some cases, lead to adverse effects. 3. Our proposed DNW
method will slightly decrease the training speed, resulting in
a longer time needed for complete training.

Future work can address these limitations, such as focusing
on training a domain-specific syntax analysis tool to further
improve the performance of the model. Additionally, finding
an appropriate sentiment analysis dataset from existing
sources is very difficult. Therefore, incorporating sentiment
features into the work is still a precious research direction.

VI. CONCLUSION
In this paper, we develop an efficient multi-task learning
framework DGCSKT in a hate speech detection task.
DGCSKT utilizes syntactic dependency graph and depen-
dency graph convolution to enhance the model’s contextual
perception ability. More concretely, we explore a novel
scenario of constructing a dependency graph for each instance
to enhance the model’s attention to syntactic dependencies by
DGCNs. In addition, we construct the sentiment analysis task
as an auxiliary task to bring more valid sentiment features to
hate speech detection by exploiting the correlation between
the two tasks. Experimental results on two benchmark
datasets show that our proposed approach outperforms the
current state-of-the-art methods in hate speech detection.
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