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ABSTRACT The accurate identification of rail surface states, especially the third media state, is crucial
for enhancing traction and braking capabilities of heavy haul trains, ensuring their safe operation, and
maintaining heavy haul railways. Few-shot learning is commonly used to recognize rail surface states,
effectively addressing the overfitting issue caused by limited sample data. However, in practical rail surface
state data situations, few-shot learning faces challenges such as insufficient extraction of crucial feature
information and a tendency to lose distinguishing degree information. To address these challenges, this
paper proposes a rail surface state recognition model based on improved metric learning. The proposed
method incorporates a pyramid-splitting attention mechanism in the feature extraction network. This allows
for the extraction of multi-scale spatial information from the feature map, facilitating cross-dimensional
channel attention and interaction between spatial attention features. This addresses the issue of inadequate
key feature information extraction caused by a limited number of orbital surface state samples. Additionally,
a deep local description concatenator splices the local features of the query set and various support set
feature maps in pairs, replacing the global feature splicing in traditional metric learning. This enables the
filtering of interference information, such as background, while retaining feature informationwith significant
differentiation to a larger extent. The proposed method was evaluated using a small-sample rail surface state
dataset that we constructed. According to the experimental results, the proposedmethod outperforms existing
methods in terms of recognition accuracy, precision, and recall.

INDEX TERMS Rail surface state, metric learning, pyramid-splitting attention, local description
concatenator.

I. INTRODUCTION
The performance of traction/braking controls in rail transit
trains depends on the behavior of the wheel–rail contact,
which is affected by the state of the rail surface [1], [2],
[3]. Accurately identifying the rail surface state is crucial
in order to ensure high-performance train control [4], [5].
Most of the current rail surface state recognition methods
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are judged using human experience, but these face problems
such as low recognition efficiency and poor real-time per-
formance. The introduction of deep learning methods based
on big data is expected to improve the accuracy of rail
surface state identification. However, due to the limitations
imposed by the collection line, the collected samples exhibit
minimal variation, and a significant portion of the samples
are repetitive, resulting in a reduced number of available
samples. Moreover, certain rare states, such as oily, occur
infrequently during the collection process, further limiting
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the number of samples representing these states. Additionally,
weather conditions significantly impact the duration of data
collection. In sunny weather, the number of wet samples is
relatively small, whereas during rainy days, the number of dry
samples is inadequately represented. Obtaining railway col-
lection data is subject to the approval from relevant authorities
and railway operators, along with the consideration of limited
railway operation hours.

Consequently, limited time for data collection poses chal-
lenges in obtaining a sufficient amount of data. Furthermore,
environmental factors such as lighting, climate, and the
constraints of the collection equipment contribute to
the acquisition of low-quality images, which further restrict
the available sample size. In summary, these factors collec-
tively result in an insufficient number of available rail surface
samples, presenting challenges in achieving accurate deep
learning-based recognition of rail surface states. Therefore,
addressing the issue of accurate image recognition of rail
surface states with small sample data is a difficult problem
that requires immediate attention.

When dealing with the image recognition problem in
the context of small sample data, there are typically two
potential solutions: data augmentation and small-sample
learning. Data augmentation achieves the expansion of the
sample size by transforming and expanding the existing
rail surface state image to generate new rail surface state
data [6], [7]. However, this method is not only expensive
but also generates some unreal data, which has a serious
impact on the model recognition performance [8]. Few-shot
learning primarily encompasses methodologies such as meta-
learning, transfer learning, contrastive learning, and metric
learning [9], [10], [11]. Meta-learning is a method by which
to quickly adapt to new tasks using learned information,
but it relies too much on prior knowledge and has limited
adaptability to new tasks [12], [13], [14]. Transfer learning
uses a pre-trained model and fine-tunes model parameters
to achieve small-sample recognition tasks. However, its per-
formance is limited by the source domain dataset, and the
recognition of unknown tasks cannot be achieved [15], [16].
Contrastive learning, a self-supervised learning method, aims
to bring similar samples closer and separate dissimilar sam-
ples for effective classification. However, it exhibits high
sensitivity to noise and abnormal samples, and incurs con-
siderable computational costs [17], [18]. Metric learning
measures the distance between the support set and query set
samples to obtain the similarity score between the two, and
compares the similarity scores to complete the recognition
of small samples [19], [20], [21], [22]. Compared to meta-
learning, transfer learning, and comparative learning, metric
learning demonstrates superior data modeling ability. It effec-
tively captures the internal relationships and structures among
samples, enabling more accurate expression and compari-
son. Furthermore, metric learning exhibits strong adaptability
and scalability, allowing for flexible adjustments and expan-
sions tailored to specific tasks and problems. This enhances

the model’s generalization performance. Additionally, metric
learning showcases excellent reasoning ability, enabling com-
parison and classification of new sampleswithout the need for
global re-training. This ensures real-time performance while
maintaining accuracy [23]. Based on the advantages of the
metric learning frameworkmentioned above, and considering
the characteristics of the rail surface sample dataset, it can
be concluded that metric learning is a more suitable learning
framework for small-sample rail surface state recognition
tasks.

With the rapid development of few-shot learning, research
on metric learning has received extensive attention from
scholars at home and abroad. Koch et al. [24] proposed a
Siamese network that utilizes an embedding function to map
inputs to the target space and employs the Euclidean distance
function for similarity calculation. However, this method is
primarily applicable in scenarios involving numerous cat-
egories and limited samples per category. Its performance
is not satisfactory in cases where the number of categories
is smaller. Hao et al. [25] introduced a semantic alignment
metric learning method, which utilizes a relationship matrix
to capture the distances between the query set and the sup-
port set. Subsequently, a multi-layer perceptron (MLP) is
employed for similarity calculations to enable classification.
However, the utilization of a significant number of MLP
parameters increases the risk of overfitting and leads to model
instability. Li and Ralescu [26] proposed a supervised metric
learningmethod that concurrently learns distances in geomet-
ric and probabilistic spaces. However, the approach heavily
relies on a substantial amount of annotated training data,
leading to high acquisition costs. Consequently, its perfor-
mancemay be limited when applied to specific scenarios with
small sample sizes. Snell et al. [27] proposed a prototype
network that uses the mean value of each category mapped
to the feature space to represent the prototype of the cat-
egory and uses the Euclidean distance formula to measure
the distance between the query sample and the prototype
to achieve sample category prediction. Sung et al. [28] pro-
posed a relational network based on the prototype network,
using a CNN instead of the fixed distance function to obtain
the best distance metric method for category judgment. The
network reduces the computational complexity of the model
and improves the general performance. Li et al. [29] pro-
posed an end-to-end covaryance metric network that realizes
small-sample recognition through covaryance representation
and covaryance metric based on distribution consistency.
The approach reduces computational requirements without
sacrificing accuracy. However, these three methods have
two main issues. Firstly, the high dimensionality of the fea-
ture extraction network in the initial stage hinders effective
extraction of available feature information. Secondly, during
feature splicing, the abstract feature maps are transformed
into position-insensitive vectors, resulting in a significant
loss of distinguishing information. When employing the
aforementioned methods for small-sample rail surface state
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identification, it is common for existing defects to undergo
amplification, leading to a notable decline in the performance
of identification.

To overcome these limitations and enhance model recog-
nition performance, this paper presents an rail surface state
recognition method based on improved metric learning tai-
lored for small sample scenarios. Traditional metric learning
methods typically comprise three components: feature extrac-
tion (embedding module), feature concatenation, and metric
module. The feature extraction component commonly uti-
lizes convolutional neural networks to extract features, while
feature concatenation involves directly adding global fea-
tures for splicing. The metric module selects a suitable fixed
distance formula for metric based on different scenarios.
This article aims to improve all three components. In the
feature extraction network part, the pyramid-splitting atten-
tion mechanism [30] is introduced to enrich the feature
space by capturing the spatial information of different scales,
and establishing long-distance channel dependence on local
area information, so that richer multi-scale features can be
extracted. In the feature splicing part, the local description
concatenator (LDC) [31] is used to splice the local features of
the sample set and the query set in pairs. Thismethod removes
background and interference information from feature maps
while retaining their significant distinguishing information to
a large extent. In the metric part, the convolutional neural
net-work is used to replace the fixed metric formula to realize
the fitting metric of the combined feature map. Finally, the
proposed method is applied to the self-built small sample rail
surface state data set, and experiments are conducted to verify
and analyze the results.

II. RELATED WORK
A. RAIL SURFACE STATUS IDENTIFICATION
With the rapid development of heavy-haul railways, concerns
regarding the reliability, safety, and stability of railway rail
systems have escalated. Accurate monitoring of rail surface
states is a crucial factor in ensuring train safety, braking
efficiency, and operational effectiveness within the rail transit
system. Particularly in complex meteorological and envi-
ronmental conditions, the state of the rail surface becomes
pivotal as it directly influences the adhesion characteristics
of the wheel-rail contact area, significantly affecting train
traction and braking performance. The presence of third-party
media, such as water or oil, on the rail surface is closely
linked to the adhesion of the wheel-rail contact area. These
extraneous substances substantially reduce adhesion, leading
to safety risks like sliding and derailment. Consequently,
real-time and accurate identification of rail surface states
becomes paramount in maintaining the safe operation of
trains [2], [3], [4], [5].

Both domestic and foreign scholars have conducted
research on rail surface identification, particularly in the
detection and recognition of rail surface defects, resulting in
significant achievements. Dubey and Jaffery [35] proposed a

visual inspectionmethod using theMaximumStable Extreme
Region (MSER) technology. This approach effectively rails
changes in railway rail images, identifies geometric features
of defective areas, and visualizes them. Ni et al. [36] devel-
oped an algorithm that detects rail surface defects using
Partitioned Edge Features (PEF), which effectively miti-
gates the impact of uneven lighting. He et al. [37] proposed
an improved feature pyramid network and metric learning
method, employing deformable convolution and convolu-
tional block attention modules to enhance the transformation
of FPN and improve the accuracy of detecting defects at
various levels. Additionally, Yu et al. [38] adopted a coarse-
to-fine strategy for rail surface defect detection. Their method
involves using a coarse extractor to approximate the loca-
tion of defects in rail surface images and a fine extractor
to finely classify and identify these potential outliers. How-
ever, the aforementioned research methods primarily focus
on rail surface defect detection and are not applicable to
identifying the state of third-party media on the rail surface.
Zhang et al. [39] proposed a rail surface state identification
method based on the BP-Adaboost algorithm using real-time
adhesion state data. Nevertheless, this method relies heavily
on large amounts of data for support. In comparison, the
method we propose does not necessitate extensive data sup-
port and offers a better solution for identifying the state of
third-party media on the rail surface within a small-sample
data scenario.

B. METRIC LEARNING
In recent years, researchers have conducted many studies
on small-sample image recognition tasks based on metric
learning and achieved abundant results [19], [20], [21], [22],
[24], [25], [26], [27], [28], [29]. The goal of metric learning
is to map similar samples to close distances and dissimilar
samples to farther distances by learning an appropriate metric
or similarity function. In small-sample image recognition, the
number of samples in the data set is limited, and there are
often problems of small differences within classes and large
differences between classes, which can easily lead to poor
final recognition results. Metric learning can better solve this
problem by clustering similar samples together.

Metric learning methods can generally be categorized into
two types: prototype-based and distance-based metric learn-
ing. The former involves learning prototypes or representative
samples within a dataset, and employs the nearest neigh-
bor principle for classification or regression tasks to cope
with limited-sample scenarios. The latter, on the other hand,
focuses on learning an optimal distance metric by assess-
ing the distance or similarity between pairs of samples for
similar small-sample challenges. In metric learning-based
small-sample image recognition, researchers strive to refine
the metric learning algorithms to effectively elevate the per-
formance of small-sample recognition models. For instance,
Gao et al. [19] introduced a multi-distance metric net-
work (MDM-Net), which accounts for shallow features and
employs a multi-output embedding network to map samples
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FIGURE 1. Block diagram of improved metric-learning-based rail surface condition recognition model with small-sample data.

across various feature spaces. Huang et al. [40] developed
a local multi-prototype network (LMPNet) utilizing local
descriptors to characterize images and mitigate the influence
of sample variations on prototypes through channel squeeze
and spatial excitation (SSE) attention modules to address the
issues of uncertainty. Meanwhile, Wu et al. [41] presented
Position-Aware Relation Networks (PARN), which incorpo-
rate the attentionmechanism not only to assess the correlation
matrix between the class representation and the query sample
but also to consider the autocorrelation matrix. They con-
catenate all correlation matrices for input into a network that
learns the ultimate similarity measurements.

In addition, Nguyen et al. [42] proposed the use of the
Euclidean distance and the square root of the sum of normed
distances as the distance measurement function for calculat-
ing the distance between the query set sample features and
the class prototype for classification prediction. Li et al. [31]
introduced the DN4 model, which employs the original local
descriptor set to represent the query image and support
classes, and then employs cosine similarity to measure the
similarity between the images. Zhang et al. [43] proposed an
Earth Mover’s Distance (EMD) metric function that applies
different weights to different positions of the image and cal-
culates the best matching method between each patch in the
support set and query set to represent the similarity between
the two. However, specific challenges are encountered when
applying the aforementioned methods to the task of iden-
tifying small-sample rail surface state images. Firstly, the
intra-class differences in rail surface state images are mini-
mal, whereas the inter-class differences are significant, which
leads to the extracted features being less distinguishable and
subsequently affects the recognition accuracy. Secondly, the

cited methods predominantly employ fixed techniques for
distancemeasurement that lack adaptability for this particular
task, further diminishing the model’s recognition capabilities.
In contrast, our study enhances the model’s performance by
integrating the pyramid-splitting attention (PSA) mecha-
nism into a convolutional neural network (CNN), thereby
achieving efficient extraction of multi-scale features from rail
surface images. Regarding the distance metric, our approach
utilizes a CNN model for adaptive fitting rather than the
fixed distancemetric formula, significantly improving the rail
surface state recognition model’s performance.

III. RAIL SURFACE STATE RECOGNITION FRAMEWORK
Considering the influence of weather conditions and train
operating environment, as well as the specific conditions of a
particular section of the railway, we categorize the condition
of the rail surface into three states: dry, wet, and oily. In this
paper, we focus on small-sample rail surface state image data,
and we construct a rail surface state recognition model based
on improved metric learning, as shown in Fig. 1.

Fig.1 shows a model framework consisting of
modules A to E. Module A represents the rail surface state
dataset, which is used for model training and testing. Mod-
ule B is a multi-scale feature extraction network based on the
fusion of convolutional network and pyramid split attention
mechanism. By introducing the pyramid splitting atten-
tion mechanism, module B can effectively learn multi-scale
features, and realize multi-scale high-dimensional feature
information extraction of query set and support set input
images. Module C is a feature splicing module, which regards
the feature map generated by the feature extraction network
as a combination of multiple local descriptors. Then, by using
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FIGURE 2. PSA module network structure.

the deep local feature concatenator LDC, the local descriptors
of the corresponding positions in the query set and the
C-type support set feature map are spliced, and the combined
feature map of the query set and the support set is obtained.
Module D is a metric module, which obtains the similarity
score between the query set and the class C support set by
inputting the combined feature map into the convolutional
neural network for fitting metric. Finally, module E is a result
display module, which realizes the output of rail surface
status recognition results by one-hot encoding of similarity
scores.

A. MULTI-SCALE FEATURE EXTRACTION NETWORK
The rail surface state dataset has the characteristics of a
small number of samples and high similarity of samples
of some categories. Using the traditional metric-learning
4-layer convolution block for feature extraction may result
in limited effective feature information extraction, leading to
reduced model recognition performance. In this paper, based
on the traditional metric learning feature extraction network,
a pyramid-splitting attention (PSA) network mechanism is
introduced. This enables the feature extraction network to
learn richer multi-scale features and perform adaptive feature
recalibration onmulti-dimensional channel attentionweights,
improving the model performance and training speed. The
last three layers of convolutional blocks in the traditional
metric learning feature extraction network are replaced by
PSA modules. Namely, the multi-scale feature extraction
network consists of one layer of convolutional blocks, three
layers of PSA modules, and two layers of maximum pooling
layers. Among them, the PSA module learns the correlation
between different regions in the feature map and captures
the spatial information of different scales. This enriches the
feature space and results in a multi-scale feature map with
richer feature information. The network structure of the PSA
module is shown in Fig. 2.

The PSA module network structure shown in Fig. 2
includes three parts: split and concatenate (SPC) module,

SE weight module, and softmax module. The segmentation
operation of the SPC module divides the rail plane state
feature graph X (size of C×H×W) into four parts.C is the
number of channels, H is the height, and W is the width.
Therefore, the subfeature diagram Xi of four orbital plane
states is obtained, Xi∈RC′

×H×W, i = 0, 1, 2, 3, and the num-
ber of channels is C′, C′

= C
/
4. The grouping convolution of

the multi-scale convolution kernel is used to extract the multi-
scale spatial feature information of the sub-feature map Xi,
and the extraction formula is as follows:

Fi = Conv (Ki × Ki,Gi) (Xi) , i = 0, 1, 2, 3 (1)

where Ki is the size of the convolution kernel, Ki =

2 × (i + 1), Gi is the size of the grouping, Gi = 2(Ki−1)/2,
and Fi is the feature map of different scales obtained after
multi-scale convolution kernel extraction, Fi∈RC′

×H×W .
After the splicing operation of the SPCmodule, the feature

map Fi is multi-scale fused to obtain the multi-scale fusion
feature map F in the channel direction:

F = Cat ([F0,F1,F2,F3]) ∈ RC
′
×H×W (2)

The channel attention weights of different scale feature maps
Fi are extracted through the SE weight module, and the
attention weights Zi in each channel direction are obtained:

Zi = SEWeight (Fi) ∈ RC
′
×1×1, i = 0, 1, 2, 3 (3)

Cascading operations are performed on Zi in each channel
direction to obtain the multi-scale channel attention weight
vector Z:

Z = Z0 ⊕ Z1 ⊕ Z2 ⊕ Z3 (4)

Then, the softmax module recalibrates the attention
weight Zi in each channel direction and establishes the
long-distance channel attention dependence relationship.
This realizes the information interaction between chan-
nel multi-scale attention and obtains the recalibration
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attention weight atti:

atti = Soft max (Zi) =
exp (Zi)
3∑
i=0

exp (Zi)

(5)

A dot-product operation is performed on channels between
the different-scale feature maps Fi obtained from the SPC
and atti to obtain the multi-scale channel attention-weighted
feature maps Yi:

Yi = Fi ⊙ atti, i = 0, 1, 2, 3 (6)

Finally, the stitching of the multi-scale channel attention-
weighted feature map Yi is obtained via the dimension
splicing operation, resulting in a multi-scale refined feature
map Y with richer information:

Y = Cat ([Y0,Y1,Y2,Y3]) (7)

B. FEATURE SPLICING MODULE
Due to the different sampling positions of the same category
of rail surface state images, the local area features of the
images are quite different. Using the global feature vector
stitchingmethod in traditional metric learning not only results
in a loss of discriminative information but also leads to the
problem of intra-class differences and background confu-
sion. To address these issues, we employ local descriptors,
also known as local features, instead of global feature vec-
tors. A deep local description concatenator is introduced to
perform deep local splicing on the local descriptors of the
support set and query set feature maps. This approach helps
to retain characteristic information with a significant degree
of distinction to a large extent.

The rail surface state samples of the support set and the
query set pass through the feature extraction network to
obtain feature maps Ci and q of size h×w×c (where h is
height, w is width, and c is the number of channels). The
two feature maps can be viewed as a collection of n local
descriptors, where n is equal to the product of the height (h)
and width (w) of the maps. Each local descriptor corresponds
to a local feature and has feature dimension c. Its form is as
follows:

D = [d1, d2, . . . , dn] ∈ Rc×n (8)

where di represents the i-th local descriptor, and D represents
the deep local feature representation space. The rail surface
state samples in the support set or query set are subjected
to the feature extraction network to obtain a feature map
with a size of 64 × 11×11. After the above operations,
121 local descriptors with a dimension of 64 are obtained.
The deep local description concatenator ψ(·) is used to splice
the local descriptors of the query set samples and the support
set samples in pairs, resulting in the creation of a deep local
descriptor connection space Li. This space essentially repre-
sents a combined feature map. The splicing relationship can
be seen as follows:

Li = ψ
(
DCi ,Dq

)
= DTCi ⊗ Dq, i ∈ [1, 2, 3] (9)

where DCi and Dq represent the deep local feature representa-
tion space of the support set and query set, respectively. The
size of the connection space Li is n×n×1, and each element
in Li is the outer product of the transposed matrix of the local
descriptor of the rail surface state sample in the support set
and the correspondingmatrix of the local descriptor of the rail
surface state sample in the query set. The connection space
L contains the splicing results of every two local descriptors
of the query set sample and the support set sample, and it
shows the relationship between the query set and the support
set sample in units of local features.

C. METRICS MODULE
The metrics module utilizes a CNN to achieve adaptive fiting
metrics for the combined feature map of the rail surface state,
rather than relying on traditional fixed distance metrics func-
tions. This approach not only eliminates the need for selecting
fixed functions but also allows the rail surface state recog-
nition model to obtain a more appropriate metrics function.
Ultimately, the approach improves the model’s generalization
ability to some extent. Themodule consists of 6 convolutional
blocks, 3 pooling layers, and 2 fully connected layers. Each
convolutional block includes a convolutional layer, a batch
normalization layer, and a ReLU linear activetion layer. The
convolutional layer includes a 64-channel 3∗3 convolution
kernel with a step size of 1 and zero padding of 0. The
pooling layer is implemented using the maximum pooling
method, the pooling window size is 2∗2, the step size is 2,
and the zero padding is 0. The two fully connected layers are
8-dimensional and 1-dimensional; the 8-dimensional fully
connected layer contains The ReLU activation function and
the 1-dimensional fully connected layer contains the sigmoid
activation function. After undergoing convolution pooling,
the combination feature map of the rail surface state produces
a similarity score that ranges from 0 to 1 through the fully
connected layer. By comparing these similarity scores, the
recognition result can be determined.

D. LOSS FUNCTION
After the connection space is processed by themetric module,
a similarity score ranging from 0 to 1 is obtained. This score
can be considered as a training objective similar to regression
problems. To train the model, we choose SmoothL1 as the
loss function. The SmoothL1 loss function is effective in
avoiding the gradient explosion phenomenon and improving
the stability of the rail surface state model. The expression for
SmoothL1 is as follows:

SmoothL1 =
1
n

n∑
i=1

gi (10)

gi =

{
0.5 (f (xi)− yi)2 , |f (xi)− yi| < 1
|f (xi)− yi| − 0.5, otherwise

(11)

Among them, yi represents the real value of the input sample,
while f(xi) represents the predicted value.
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IV. EXPERIMENTS
In this we evaluate the feasibility of the proposed model
in recognizing the small-sample rail surface state. The
section consists of three main parts: experimental condi-
tions (includeing the dataset used, experimental environment,
and evaluation indicators), model training, and experimental
analysis.

A. EXPERIMENTAL CONDITIONS
1) RAIL SURFACE STATE DATASET
The rail surface state dataset used in this experiment comes
from a certain railway section, including 141 images of three
kinds of rail surface state images under different working
conditions: dry, wet, and oil. Among these images, 52 were
dry samples, 46 were wet samples, and 43 were oil samples.
Due to the interference of man-made noise and environmental
factors during the acquisition of rail surface state images, it is
difficult to guarantee image quality. To eliminate the influ-
ence of these disturbances, preprocessing operations such as
cropping, denoising, geometric correction, and morphologi-
cal processing were performed on the images. This was done
to obtain rail surface state data with better image quality.
To ensure consistency in the dataset, the image size was
adjusted to 84×84, resulting in the final self-built rail surface
state dataset. Some typical samples in the rail surface status
dataset are illustrated in Fig. 3.

FIGURE 3. Samples of rail images in the rail surface status dataset.

To evaluate the effectiveness of the proposed model,
we divided the dataset into training and test sets at a ratio
of 3:2. This resulted in 85 training set samples and 56 test
set samples. The training and test sets were further divided
into 3 categories: dry, wet, and oil. The dry category had
30 training set samples and 19 test set samples, the wet
category had 27 training set samples and 18 test set samples,
and the oil category had 26 training set samples and 17 test
set samples.

2) EXPERIMENTAL ENVIRONMENT
Experiments were conducted using the Windows 10 oper-
ating system. The CPU was configured with an Intel(R)-
Core(TM) i5-12490F 3GHz, while the GPU was configured

with an NVIDIA GeForce RTX-2080Ti. The code-running
environment was Python 3.6 with CUDA = 10.0 and
cuDNN = 7.6.0.64. The code-running framework used was
PyTorch 1.5.0. To address the limited data samples available
for the rail surface state, we utilized pre-training models
in all modules of the training process. The initial learning
rate was set at 10-3, with cosine attenuation used for learn-
ing rate attenuation. The optimizer of choice was Adam,
and the model was iteratively trained 200,000 times across
1000 epochs. Additionally, the model was tested 600 times,
with input images sized at 84 × 84.

3) EVALUATION INDICATORS
To evaluate the recognition performance of the proposed
model, we utilized several evaluation indicators, including
accuracy rate (Acc), precision (P), recall rate (R), and F1
value. The accuracy rate (Acc) provides an overall measure
of how well the model performs. Precision (P) measures the
accuracy of the model’s recognition, while recall rate (R)
measures the model’s ability to correctly identify all relevant
instances. The F1 value is a combined metric that takes both
precisions and recalls into account, providing an overall mea-
sure of themodel’s performance. Thesemetrics are calculated
as follows:

Acc =
TP+ TN

TP+ TN + FP+ FN
(12)

P =
TP

TP+ FP
(13)

R =
TP

TP+ FN
(14)

F1 =
2 ∗ P ∗ R
P+ R

(15)

where TP refers to true positive, FP refers to false positive,
TN refers to true negative, and FN refers to false nega-
tive. TP+TN indicates the number of correctly predicted
instances, while TP+TN+FP+FN indicates the total num-
ber of instances. TP+FP represents the number of predicted
positive instances, while TP+FN represents the total number
of actual positive instances.

B. MODEL TRAINING
We utilized the metric learning framework and trained the
model using the N-way K-shot scenario task training strategy.
Here, N represents the number of sample categories in the
support set and K represents the number of samples of each
type in the support set. The training set for the rail surface
state was split into a support set, S, and a query set, Q. Both S
and Q contained three sample categories. Namely, K images
of the rail surface state were selected at random to form the
support set, while Q images were randomly chosen from
the remaining samples to create the query set. According to
the sample category and the number of samples in S, we used
a 3-way K-shot to train the model.

The model uses the support set S and query set Q as inputs.
Then, the feature extraction network is used to obtain the
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TABLE 1. Effect of pre-training on model performance.

feature map Ci (where i=1,2,3 for this study) and q. In the
3-way 1-shot scenario, the local descriptors of Ci and q are
concatenated using the deep local description concatenator
ψ(·) to obtain the deep local descriptor connection space Li.
Specifically, Li = ψ(Ci, q). To obtain the similarity score θiq
of the feature space Li, the connection space Li is input into
the metrics module mφ(·), which results in θiq = mφ(Li).
Finally, one-hot vector encoding is performed on the simi-
larity score θiq to obtain the recognition result of the query
set image. In the case of a 3-way K-shot (where K is not
equal to 1), the feature maps obtained after all samples of
different categories in the support set (S) pass through the
feature extraction network are summed by class to obtain the
superimposed feature maps (C1 to C3) of the three classes.
The remaining steps are consistent with a 3-way 1-shot.

C. EXPERIMENTAL ANALYSIS
1) EFFECT OF PRE-TRAINING ON MODEL PERFORMANCE
To assess the influence of pre-trained model parameters on
the performance of small-sample rail surface state recogni-
tion models, we carried out comparative experiments using
a self-constructed rail image dataset. The experimental sub-
jects comprised the proposedmodel and commonly employed
small-sample learning models, including the Prototype net-
work [27], MAML model [32], Relationship network [28],
PHR model [33], LLSTN model [34], MSML model [20],
and DN4 network [31]. The models were trained separately
using pre-trained parameters and random parameters (non-
pretrained parameters), and the experimental results were
recorded, as detailed in Table 1. The pre-trained parameters
were acquired through training on the miniImageNet dataset,
under the experimental condition of 3way-1shot.

Table 1 illustrates a notable enhancement in recognition
accuracy, precision, recall rate, and F1 value among all
models utilizing pre-training weights, when compared to the
non-pre-training model. This suggests that the pre-training
model outperforms the non-pre-training model in recogniz-
ing the rail surface state. Our model has shownsignificant

improvements in recognition accuracy, precision, recall rate,
and F1 value when pre-training weights are utilized. Specifi-
cally, the pre-training weights resulted in a 9.48% increase in
recognition accuracy, a 9.03% increase in precision, a 9.64%
increase in recall rate, and a 9.34% increase in F1 value com-
pared to models without pre-training. In the case of a small
sample size for rail surface state data, the limited amount
of data used in the learning process can lead to over-fitting
and a subsequent local optimal problem. The aforementioned
results demonstrate that utilizing pre-training weights can
mitigate this issue and enhance the model’s efficacy.

2) COMPARISON EXPERIMENTS FOR DIFFERENT ATTENTION
MECHANISMS
In order to validate the effectiveness and superiority of the
pyramid split attention (PSA) module in the rail surface state
recognition model, the convolutional neural network (CNN)
of the feature extraction module was enhanced by incor-
porating the PSA mechanism. A comparative experiment
was conducted with a CNN network lacking the attention
mechanism to ascertain the effectiveness of the PSA mod-
ule. Furthermore, various attention mechanisms, including
SE [44], CBAM [45], SA [46], NL [47], and ECA [48], were
introduced into the CNN network of the feature extraction
module. The impact of these attention mechanisms on model
performance was evaluated to determine the superiority of
the PSA module. The experimental results are presented in
Table 2. Among them, all the datasets utilized in the experi-
ments are selfconstructed rail surface state datasets, while the
experimental conditions were set as 3way-5shot.

Based on the findings presented in Table 2, the inclusion
of the PSA module has been observed to yield a substan-
tial enhancement in model performance, in comparison to
the scenario where no attention module is incorporated.
This outcome serves as empirical evidence to validate the
effectiveness of the PSA attention module. Moreover, when
compared to other attention modules, the introduction of
the PSA module yields improved performance across all
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TABLE 2. Comparison experiment of attention module.

indicators in the model. This clearly demonstrates the supe-
riority of the PSA attention module. The rail surface state
recognition model utilizes the PSA module, resulting in
increases in recognition accuracy, precision, recall rate, and
F1 value indicators by 2.29%, 2.74%, 2.58%, and 2.66%
respectively, when compared to the CBAM module. Addi-
tionally, these indicators are 6.02%, 5.18%, 5.77%, and
5.48% higher than those of the SA module; 4.72%, 4.61%,
4.25%, and 4.57% higher than those of the NL module; and
3.33%, 3.46%, 3.29%, and 3.38% higher than those of the
ECA module. Furthermore, the indicators are 5.01%, 4.92%,
6.69%, and 5.44% higher than those of the SE module. After
comparing the results between the spatial-channel hybrid
attention module (CBAM, PSA) and the non-hybrid atten-
tion module (SE, SA, NL, ECA), we found that the hybrid
performance indicators were generally higher than those of
the non-hybrid module. This suggests that the spatial-channel
hybrid attention mechanism has a better recognition effect on
the model than a single attention mechanism.

3) COMPARATIVE EXPERIMENTS FOR DIFFERENT FEATURE
SPLICING METHODS
To validate the superiority of the proposed deep local splicing
method, we conducted comparative experiments with add1,
add2, and add3. Add1 involves the direct addition of the
global feature vector of the query set and the global feature
vector of the support set. Add2 combines the global feature
vector of the query set and the global feature vector of the sup-
port set to form a complex feature vector. Add3 adds the local
feature vector of the query set and the local feature vector
of the support set directly. Table 3 presents the experimental
results under the 3-way 5-shot condition.

TABLE 3. Comparative experiments for different feature splicing
methods.

Table 3 clearly demonstrates that the deep local splicing
method proposed in this paper outperforms other feature
splicing methods in terms of the rail surface state recog-
nition model. The model’s indicators are superior to those

of the compared methods, thus confirming the superiority
of the deep local splicing method. The model’s recogni-
tion accuracy, precision, recall rate, and F1 value have all
shown improvement when compared to add1, add2, and add3.
Specifically, there was a 12.73% increase in recognition accu-
racy, a 12.67% increase in precision, an 11.99% increase in
recall rate, and a 12.33% increase in F1 value when com-
pared to add1. When compared to add2, there was a 17.04%
increase in recognition accuracy, a 17.39% increase in preci-
sion, a 17.50% increase in recall rate, and a 17.45% increase
in F1 value. Finally, when compared to add3, there was a
7.08% increase in recognition accuracy, a 7.27% increase
in precision, a 7.08% increase in recall rate, and a 7.18%
increase in F1 value.

4) COMPARISON EXPERIMENTS FOR METRIC METHODS
To test the superiority of the proposed convolutional neural
network fitting metrics method, we conducted compara-
tive experiments using six commonly used metric methods:
EBD [49], Euclidean distance [50], Mahalanobis distance
[51], cosine similarity [52], Manhattan distance [53] and
UDML [54]. The experimental results under the 3-way 5-shot
condition are presented in Table 4.

TABLE 4. Comparison experiments for metric methods.

Table 4 demonstrates that the convolutional neural net-
work fitting metrics method outperforms other methods
when applied to the rail surface state recognition model.
The model’s indicators are superior to those of the com-
parison metric methods, thereby confirming the superi-
ority of the convolutional neural network fitting metrics
method in our model. Compared to the Euclidean dis-
tance, the model exhibited improvements in recognition
accuracy, precision, recall rate, and F1 value indicators by
2.94%, 3.43%, 3.11%, and 3.11%, respectively. Further,
when compared to the Mahalanobis distance, the indicators
demonstrated increases of 3.27%, 11.63%, 12.09%, 11.51%,
and 11.8%, respectively. Similarly, compared to the cosine
similarity, the indicators showed improvements of 16.01%,
15.63%, 15.26%, and 15.45%, respectively. Additionally,
in comparison to the Manhattan distance, the indicators
saw enhancements of 4.38%, 4.86%, 4.43%, and 4.64%,
respectively. In contrast to the UDML, the indicators dis-
played improvements of 4.30%, 4.89%, 4.24%, and 4.57%,
respectively. Lastly, when compared to the EBD, the indi-
cators exhibited improvements of 2.30%, 2.89%, 2.26%,
and 2.58%.
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5) COMPARISON EXPERIMENTS
To validate the effectiveness and superiority of the model
proposed in this paper for detecting the rail surface state,
we conducted comparative experiments with some popular
small-sample learningmethods (MAML, Prototype Network,
Relational Network, PHR, DN4 network,MSML,LLSTN) on
a self-built rail surface state dataset. The experiments were
conducted under the 3-way 5-shot condition, and the results
are presented in Table 5 and Fig. 4.

TABLE 5. Comparison experiments of mainstream methods.

FIGURE 4. Loss value of each model training process.

Table 5 shows that the proposed model achieved bet-
ter performance on the self-built rail surface state dataset
under the 3-way 5-shot condition compared to other small-
sample learning methods. The model has the best rail surface
state recognition effect, with recognition accuracy, precision,
recall rate, and F1 value indicators of 97.96%, 98.61%,
98.07%, and 98.34%, respectively. Compared to the LLSTN
model, which exhibits higher performance, themodel demon-
strates an increase of 2.69%, 2.92%, 2.72%, and 2.83% across
various indicators. Additionally, when compared to the PHR
model, themodel shows an increase of 4.64%, 5.01%, 4.32%,
and 4.66% across the same indicators. Similarly, compared to
the DN4 network, the model presents an increase of 5.75%,
5.83%, 5.95%, and 5.89%. Furthermore, when compared
to the MSML model, the model demonstrates a consistent
increase of 7.22%, 7.80%, 7.54%, and 7.67% across the
indicators. Moreover, in comparison to the RN network, the
model exhibits an increase of 7.98%, 8.27%, 8.22%, and
8.25%. Additionally, compared to the PN network, the model
shows an increase of 9.77%, 10.44%, 10.46%, and 10.45%
across the indicators. Lastly, for theMAMLmodel, the model

demonstrates an increase of 16.03%, 15.12%, 15.29%, and
15.21% acrossvarious indicators. The results presented in
Fig. 4 demonstrate that our model outperforms other small-
sample learning methods in terms of training speed, initial
loss value, fluctuation, and the final convergence value.
Additionally, the model’s loss values are consistently lower
than those of other models across different iteration cycles.
The above experimental results verify the effectiveness and
superiority of the model proposed in this paper in the small-
sample rail surface state identification task. This means that
by introducing the pyramid splitting attention mechanism for
feature extraction, using deep local splicing symbols for fea-
ture splicing, and designing convolutional network metrics,
the representation ability of the model in rail surface state
recognition can be significantly improved, thereby stably
improving the model’s performance aspects such as accuracy
and recognition speed.

V. CONCLUSION
In this paper, we proposed a rail surface state recognition
model based on the metric learning framework. The model
addresses the issue of poor recognition accuracy in actual
rail surface state recognition tasks with limited samples and
also improves efficiency. To address the issue of inadequate
feature extraction, we proposed the use of a pyramid-splitting
attention mechanism in the feature extraction network. This
mechanism can effectively extract detailed spatial informa-
tion at multiple scales from rail surface state data samples and
establish long-distance channel dependencies. As a result,
the feature extraction network can learn more comprehensive
multi-scale features, thereby enhancing the model recogni-
tion accuracy and improving the training speed. To address
the issue of losing key features during the feature splicing
process, we proposed the use of a deep local description
concatenator. This concatenator splices the local descriptors
of the query set feature map and the support set feature
map, reducing the influence of irrelevant information such
as background, while retaining local features that have obvi-
ous distinctions. This approach leads to improved accuracy
in model recognition and overall performance. Finally, the
proposed model was compared with the current mainstream
small-sample learning methods, and the results confirm its
effectiveness.
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