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ABSTRACT Stock selection is essential for portfolio diversification to reduce risks and maximize profits.
However, stock selection is challenging owing to the non-stationary nature of stock markets. In fact, stock
markets experience abrupt or gradual concept drift because of their inherent volatility. Concept drift is a
phenomenon in which the statistical characteristics of data change over time. Recent stock selection methods
have adopted graph neural networks to capture the relational dependencies between stocks. These methods
perform non-continual learning that uses a fixed set of stocks without knowledge retention. Non-continual
graph learning-based methods can adapt to abrupt concept drift, while continual graph learning-based
methods can adapt to gradual concept drift because they involve knowledge retention. To adapt to both
abrupt and gradual concept drifts, we propose a stock selection framework called DASS, which combines
non-continual and continual models for diversified adaptation. For the both models, we employ graph
learning to extract both temporal and relational dependencies. Our graph learningmethod relies on threemain
components: 1) low-level temporal modeling, which extracts temporal dependencies of individual stocks;
2) relational modeling, which extracts relational dependencies between stocks; and 3) high-level temporal
modeling, which extracts temporal dependencies from the learned relational dependencies. Furthermore,
DASS leverages both simple graphs and hypergraphs because they complement each other. The performance
of DASS is compared with that of state-of-the-art stock selection methods. Experimental results for stocks
included in the Standard & Poor’s 500 index reveal that DASS achieves a compounded annual growth rate
of 83.2%, outperforming the second-best method by 23.0%P.

INDEX TERMS Stock selection, non-continual learning, continual learning, graph learning, simple graph,
hypergraph.

I. INTRODUCTION
A stock portfolio is a combination of different stocks [1],
and portfolio diversification is necessary for investors to
mitigate risks and improve profits [2]. Stock selection is
essential for portfolio diversification, but it is challenging
because of the non-stationary nature of stock markets [3].
In fact, stock markets show diverse volatilities, as illustrated
in Fig. 1. For instance, phase 4 shows high volatility owing to
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the COVID-19 (coronavirus disease) pandemic, while phase
3 shows low volatility. Such volatilities may lead to abrupt
or gradual concept drift [4], which reflects changes in the
statistical properties of data. To consider both abrupt and
gradual concept drifts, a diversified approach is necessary
rather than relying on an approach to handle either abrupt or
gradual concept drift.

Recent studies have shown that deep learning methods
can outperform traditional and statistical machine learning
methods [5], [6], [7] in the investment field. In particular,
recent stock selection methods [8], [9], [10], [11], [12],
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FIGURE 1. Non-continual and continual learning methods in diverse market volatility.

[13], [14], [15], [16], [17], [18], [19] adopt non-continual
graph learning, which integrates graph neural networks
(GNNs) and non-continual learning on a fixed set of
stocks. GNNs are used to capture dependencies between
stocks in a graph consisting of a set of nodes (stocks)
and edges (relationships). Stock relationships can be con-
structed using sector-industry, corporate, and price similarity
relations.

Among non-continual graph learning-based stock selec-
tion methods, those in [8], [12], and [17] employ the
walk-forward testing method [20] to account for diverse
market volatilities, as illustrated in Fig. 1. This method
divides the test data into partitions corresponding to distinct
phases. Subsequently, it trains model M t using a predefined
set of stocks and tests the data of phase t . However,
the set of stocks can change owing to the non-stationary
characteristics of stock markets, including the listing and
delisting of stocks. Because non-continual graph learning-
based stock selection methods do not consider these changes,
an individual model is generated for each phase without
reusing models trained in previous phases. Consequently,
non-continual graph learning-based stock selection methods
may suffer from catastrophic forgetting given the lack of
knowledge retention [21] of previously acquired information.
The absence of knowledge retention enables adaptation to
abrupt concept drift [22], but this adaptation may not be
advantageous in markets with low volatility (e.g., phase 3 in
Fig. 1).

To mitigate catastrophic forgetting, continual graph learn-
ing has been actively investigated in various fields, but it has
not yet been widely used in stock selection. Most current
continual graph learning-based methods [21], [22], [23],
[24], [25], [26] consider knowledge retention by leveraging
preceding models. These methods can also be applied to
stock selection, as illustrated in Fig. 1. Initially, continual
graph learning trains model M1→1 and then tests the data of
phase 1. Subsequently, model M1→t is trained using model
M1→(t−1) and then tested on the data of phase t . Knowledge

FIGURE 2. Our framework.

FIGURE 3. An example of relationships [12].

retention enables adaptation to gradual concept drift [22], but
this adaptation may not be advantageous in markets with high
volatility (e.g., phase 4 in Fig. 1).

In this study, we found that non-continual and continual
models are complementary because they adapt to abrupt
and gradual concept drifts, respectively. Accordingly, Fig. 2
summarizes our stock selection framework. For diversified
adaptation, we aggregate the ranking scores obtained from
ranking models in the non-continual and continual models,
where a higher ranking corresponds to higher expected
return rates [9]. Aggregation is performed separately for both
simple graph (SG) and hypergraph (HG). Simple graphs and
hypergraphs are used to represent pairwise and collective
relationships among stocks, respectively. Fig. 3 illustrates
an example of relationships where Oracle (ORCL), Tesla
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(TSLA), and Apple (AAPL) are connected via Larry Ellison.
In a simple graph, there are three pairwise relationships (i.e.,
(ORCL, TSLA), (ORCL, AAPL), and (TSLA, AAPL)). In a
hypergraph, the three pairwise relationships are represented
as a single collective relationship (ORCL, TSLA, andAAPL).
Because simple graphs and hypergraphs complement each
other [12], we leverage both of them. We select stocks by
intersecting the top-K stocks obtained from the aggregated
ranking scores for the simple graph and hypergraph.

We propose a diversified adaptive stock selection frame-
work called DASS, which adapts to various market volatili-
ties. First, we combine non-continual and continual models to
adapt to abrupt and gradual concept drifts. Second, we extract
both temporal and relational information by utilizing low-
level temporal, relational, and high-level temporal modeling.
Low-level temporal modeling extracts temporal information
from time-series features of each stock using a gated recurrent
unit (GRU) [27]. Relational modeling extracts relational
information from simple graphs and hypergraphs using a
graph attention network (GAT) [28] and hypergraph convolu-
tion (HConv) [29], respectively. High-level temporal model-
ing extracts temporal information from the learned relational
information using a transformer [30]. Third, we construct
simple graphs and hypergraphs based on dynamic time warp-
ing (DTW) [31] using stock prices and volume data. Com-
pared with graph learning-based state-of-the-art methods
(HATS [8], RSR [9], STH [10], ASA [12], and ALSP [15]),
the proposed DASS achieves a compounded annual growth
rate (CAGR) of 83.2%, surpassing the second-best method
by 23.0%P for stocks included in the Standard & Poor’s 500
(S&P500) index, which contains the 500 largest firms in the
United States.

The rest of this paper is structured as follows. Section II
describes GNNs, the transformer encoder, and continual
learning. Section III presents a review of related work.
Sections IV and V detail the proposed DASS and present
experimental results, respectively. Finally, conclusions and
suggestions for future research are described in Section VI.
For ease of reading, the abbreviations used in this paper are
listed in Table 5 of the Appendix.

II. BACKGROUND
A. TERMINOLOGIES
A simple graph Gs is described by Gs = (V ,E), where
V is the node set and E is the edge set. The pairwise
relationships between the nodes in Gs are represented using
a square adjacency matrix. A hypergraph Gh is a generalized
graph that captures the collective relationships among nodes.
It is described as Gh = (V ,E), where V is the node
set and E is the hyperedge set. Each hyperedge describes
a relationship among a group of nodes. Incidence matrix
H of dimensions N × M is used to connect the nodes
to hyperedges, where N and M are the numbers of nodes
and hyperedges, respectively. Value H (p, q) is 1 if node
p is a member of hyperedge q (i.e., p ∈ q) and 0
otherwise.

B. GNNS
GNNs [32] learn node representations by leveraging
inter-node relationships in a simple graph or hypergraph.
With the evolution of GNNs, more sophisticated methods
have emerged [33], including the graph convolutional
network [34] and GAT. The former employs a convolutional
neural network to extract local connection patterns, whereas
the latter employs a self-attention mechanism [30] to allocate
different weights considering the importance of neighboring
nodes.

To capture the comparative importance of neighboring
nodes around node p (including itself), the GAT allocates
weights to the nodes using the attention mechanism. The
GAT computes attention coefficient αpq between nodes p
and q, as detailed in Equation (1), where hi−1p and hi−1q
are the representations of nodes p and q at iteration i − 1,
respectively. Furthermore, a andW are learnable parameters,
φ1 denotes a non-linear function (e.g., LeakyReLU), and ∥
denotes concatenation. Attention coefficient αpq reflects the
importance of q with respect to p on a simple graph [35].

αpq =
exp(φ1(a

[
Whi−1p ∥Wh

i−1
q

]
))∑

k∈N (p)∪p exp(φ1(a
[
Whi−1p ∥Wh

i−1
k

]
))

(1)

Using the attention coefficients, the GAT computes a new
representation, hip, of node p by taking a weighted sum
of neighboring nodes N (p) including p, as expressed in
Equation (2), where αpq is the attention coefficient given
by Equation (1) and φ2 represents a non-linear activation
function (e.g., sigmoid or softmax).

hip = φ2(
∑

q∈N (p)∪p

αpqWhi−1q ) (2)

C. TRANSFORMER ENCODER
The transformer [30], which captures temporal dependencies
in sequential data, consists of stacked encoder and decoder
layers. The encoder layer employs a multi-head self-attention
and feed-forward network. To capture the relative importance
between all time points in sequential data, multi-head self-
attention calculates feature representation R using query
Qh, key Kh, and value Vh, as described in Equation (3).
In Equation (3), H is the number of heads and df is a scaling
factor. Specifically, query Qh = EWQ

h , key Kh = EWK
h ,

and value Vh = EWV
h are linear transformations of temporal

embeddingE into distinct learnable parametersWQ
h ,W

K
h , and

WV
h , respectively.

R = Multihead(Qh,Kh,Vh)

= ||
h=H
h=1 Softmax(QhKT

h /
√
df )Vh (3)

Subsequently, we obtain a new feature representation P
via the feed-forward network consisting of two linear layers
connected by the activation function ReLU, as expressed
by Equation (4), where R is the feature representation
given by Equation (3), and W1, W2, b1, and b2 are
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learnable parameters.

P = FFN(R)

= ReLU(RW1 + b1)W2 + b2 (4)

D. CONTINUAL LEARNING
Continual learning is intended to consolidate prior knowledge
to prevent catastrophic forgetting. Recent approaches fall
into three categories: (1) regularization-based methods [23],
[25], which constrain the changes in the model parameters
based on their importance, (2) replay-based methods [22],
[23], which store a subset of data used in previous tasks, and
(3) parameter isolation methods [21], [24], [26], which assign
different model parameters to each task.

Elastic weight consolidation (EWC) [36] is a promi-
nent regularization-based method for continual learning.
To preserve the model parameters learned in the preceding
task, it regulates the model parameters using the Fisher
information matrix [37], which represents the importance of
the previously learned model parameters. EWC combines
loss term Lnew(θ ) for optimizing the new task and a
regularization term, as described by Equation (5), where
λ is a hyperparameter that integrates the two loss terms,
θ represents the model parameters for the new task, θ∗old
represents the optimal model parameters learned for the
preceding task, F represents the diagonal elements of the
Fisher information matrix, and l is the parameter index.

L(θ ) = Lnew(θ )+
λ

2

∑
l

Fl(θl − θ∗old,l)
2 (5)

III. RELATED WORK
Our study is related to recent work based on non-continual
graph learning, continual graph learning, and transformers in
various fields, including investments.

A. NON-CONTINUAL GRAPH LEARNING-BASED
METHODS
Non-continual graph learning-based methods [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19] that
capture inter-stock relational dependencies have been pro-
posed for stock selection. Kim et al. [8] introduced a hier-
archical GAT called HATS to consolidate information
from neighboring nodes and various relationship types.
Feng et al. [9] proposed a relational stock ranking framework
called RSR, which incorporates temporal graph convolu-
tions to capture time-sensitive relationships between stocks.
Sawhney et al. [10] introduced a spatio-temporal hypergraph
attention network called STH, which integrates spatial hyper-
graph convolutions and the Hawkes process with attention
mechanism to consider spatial and temporal dependencies.
Hsu et al. [11] proposed a financial GAT to recommend
stocks using hierarchical relationships between stocks and
sectors. Kim et al. [12] proposed a portfolio management
framework called ASA that integrates ranking models with
classification and regression models for selecting stocks and

determining the investment ratio. Feng et al. [13] introduced
a relation-aware dynamic attributed GAT to capture local
correlation topology information. He et al. [14] proposed
a static-dynamic GNN to consider potential relationships
between stocks. Heyuan et al. [15] presented an adaptive
long-short pattern transformer called ALSP to distill stock
patterns at different context scales. Ma et al. [16] devised
an attribute-driven fuzzy hypergraph network to quan-
tify the intensity of collective relationships among stocks
and simulate their influence. Huynh et al. [17] proposed a
profit-driven framework to capture non-pairwise correlations
and individual stock patterns. Song et al. [18] proposed a
multi-relational graph attention ranking network to capture
dependencies between stocks from industry, Wiki, and
price similarity relations. Tian et al. [19] proposed a graph
evolution recurrent unit that directly learns dynamic temporal
dependencies between stocks from time-series data.

Although changes in the set of edges have been considered
in [13], [14], [15], [16], [18], and [19], changes in the set of
nodes and knowledge retention have been neglected.

B. CONTINUAL GRAPH LEARNING-BASED METHODS
Continual graph learning-based methods [21], [22], [23],
[24], [25], [26] that address catastrophic forgetting have
been proposed in various fields. Wang et al. [23] proposed a
streaming GNN model to capture new patterns and integrate
existing information. Perini et al. [22] proposed a streaming
GNN model using experience replay to select rehearsal
samples and update the network parameters incrementally.
He et al. [24] proposed a model isolation-based continual
graph learningmethod to capture changes in user preferences.
Tan et al. [25] proposed a heterogeneous continual GNN to
learn temporal and spatial dependencies in future prices.
Zhang et al. [21] proposed a parameter isolation GNN to con-
tinually learn new patterns while freezing the parameters that
learn stable patterns. Wang et al. [26] proposed a continual
learning framework that combines an influence-based knowl-
edge expansion strategy and memory-augmented knowledge
consolidation mechanism to expand new knowledge and
preserve old knowledge. Despite the major developments in
continual graph learning, its application to stock selection has
remained largely unexplored.

C. TRANSFORMER-BASED METHODS
Transformer-based methods [15], [38] that capture temporal
dependencies in sequential data have been proposed in
various fields. Jina et al. [38] proposed a time-series anomaly
detection method that employs a stacked transformer
encoder and one-dimensional convolutional neural network
(1D-CNN) [39]-based decoder, to capture global trends and
local variability in time-series data. ALSP [15] is a stock
selection method that uses a transformer encoder to capture
long- and short-term stock patterns. In this paper, we propose
a sophisticated decoder suitable for stock selection to capture
local and global information.
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IV. PROPOSED STOCK SELECTION FRAMEWORK
We propose a stock selection framework called DASS that
employs continual graph learning and an ensemble approach
for diversified adaptation.

A. PROBLEM FORMULATION
To reduce the disparity between stock movement predictions
and investment returns, we use a ranking approach for stock
selection [9]. In a given set of N stocks, each stock involves
feature vectorXi = [xt−1T , . . . , xt−1] on trading day t , where
1T is the size of a sliding window. The output of the ranking
model is an ordering of the stocks, Yt = {y1t > y2t · · · > yNt },
with respect to expected return rates on day t .

B. ARCHITECTURE
Fig. 4 shows the architecture of DASS, which achieves diver-
sified adaptation. The proposed architecture preprocesses
stock data and constructs simple graphs and hypergraphs.
Subsequently, a graph learning method is applied to both
the non-continual and continual models to capture temporal
and relational dependencies. Finally, stocks are selected by
combining the non-continual and continual models through
an ensemble approach. This architecture enables a synergistic
interaction in which the non-continual model, which adapts to
abrupt concept drift, and the continual model, which adapts to
gradual concept drift, complement each other. Furthermore,
continual graph learning enables the continual model to adapt
to changes in node and edge sets with knowledge retention.

FIGURE 4. Architecture of DASS.

C. GRAPH CONSTRUCTION
We use only stock information, including the opening, high-
est, lowest, closing, and volume values. The collected stock
data are normalized using MinMax scaling. We calculate the
distance between each pair of stocks using multi-dimensional
DTW [40], which determines the minimum alignment cost
between two sequences. Subsequently, we construct simple
graphs and hypergraphs based on the distance. For the

simple graph, we filter out trivial edges to reduce noise
by sorting edges based on the distance and attaching only
their lower ϵ%, where ϵ is a hyperparameter. For the
hypergraph, we cluster the target stock with the nearest stocks
in terms of the distance to generate hyperedges (i.e., collective
relationships). To cluster stocks, we employ the K -nearest
neighbor algorithm [41], where K is a hyperparameter that
determines the number of stocks included in the hyperedge.

D. GRAPH LEARNING
A graph learning method is employed to capture both
temporal and relational information. This method com-
prises (1) low-level temporal, (2) relational, and (3) high-level
temporal modeling. Low-level temporal modeling captures
temporal information of individual stocks. Relational mod-
eling captures relational information between stocks in
both simple graphs and hypergraphs. High-level temporal
modeling further captures temporal information from the
learned relational information. The following subsections
detail these graph learning components.

1) LOW-LEVEL TEMPORAL MODELING
A sliding window of the normalized feature vectors is used
as the input for low-level temporal modeling. To capture the
temporal dependencies of individual stocks, we use one GRU
layer, as depicted in Fig. 4.

2) RELATIONAL MODELING
For relational modeling, we leverage both simple graphs and
hypergraphs because the approach of using them together
showed good performance in recent study [12]. To capture
relational features, we use different networks for the simple
graph and hypergraph, as depicted in Fig. 5. For the simple
graph, we leverage the GAT to assign different weights
to neighboring nodes. We employ two GAT layers with
the activation functions ELU and LeakyReLU. For the
hypergraph, we leverage HConv with a multi-head attention
mechanism [29]. We employ two HConv layers with the
activation functions ELU and LeakyReLU.

FIGURE 5. Architecture of relational modeling.

3) HIGH-LEVEL TEMPORAL MODELING
For high-level temporal modeling, we leverage a transformer
encoder because the approach of using it in stock selection
showed superior performance over other methods [15]. Fig. 6
shows the architecture of high-level temporal modeling.
As the encoder, we employ a stacked transformer to enhance
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FIGURE 6. Architecture of high-level temporal modeling.

the feature representation of the relational feature vector.
To fully exploit the potential information of preceding layers,
we concatenate the outputs of all the transformer encoder
blocks and use them as the input to the decoder.

Each transformer encoder block employs a time interval
embedding [42] to capture the temporal distance between
all time points. It first calculates feature representation R̄,
as expressed in Equation (6), where Qh, Kh, and Vh are the
query, key, and value, respectively, df is the scaling factor, Zh
is the matrix that represents the temporal distance between
all time points, and H is the number of heads. Subsequently,
we apply the feed-forward network defined in Equation (4)
to R̄ and a residual connection between the input of the
transformer encoder block and output of the feed-forward
network.

R̄ = ||h=Hh=1 Softmax

(
ReLU(QhKh) ∗ Zh√

df

)
Vh (6)

For the decoder, we adopt a hierarchical structure of
1D-CNNs to extract local and global information from
a multi-level representation obtained from the encoder.
To extract local information, we use multiple 1D-CNNs
with different kernel sizes to capture the dependencies
across long and short time scales. After concatenating the
outputs of all the 1D-CNNs, we employ another 1D-CNN to
extract global information. Finally, we apply the feed-forward
network defined in Equation (4) and then predict the ranking
score using a linear layer with the activation function
LeakyReLU.

E. STOCK SELECTION WITH ENSEMBLE APPROACH
Algorithm 1 describes the diversified adaptive stock selection
algorithm. For diversified adaptation, we integrate the

ranking models in non-continual and continual models for
simple graph and hypergraph. Specifically, we combine the
ranking scores obtained from simple graph-based ranking
models (SGNC and SGC ) and hypergraph-based rankingmod-
els (HGNC and HGC ) using an AGGREGATE function (lines
1 and 2). We use averaging as the AGGREGATE function.
Subsequently, we intersect the top-K stocks obtained from
aggregated ranking scores RSG and RHG to select the stocks
with the highest expected profits (line 3).

Algorithm1DiversifiedAdaptive Stock SelectionAlgorithm
Input: (1) the ranking models SGNC and HGNC in the non-
Input: (1) continual model,
Input: (2) the ranking models SGC and HGC in the continual
Input: (2) model
Output: the selected stock set Sselected

1. Aggregate the ranking scores of the simple graph-based ranking
models

RSG ← AGGREGATE(SGNC , SGC )

2. Aggregate the ranking scores of the hypergraph-based ranking
models

RHG ← AGGREGATE(HGNC ,HGC )

3. Sselected ← topK (RSG) ∩ topK (RHG)
4. return Sselected

To optimize ranking models SGNC and HGNC in the
non-continual model, we employ a loss function [15] that
combines ranking loss LR and graph proximity loss LGP,
as described in Equation (7), where η is a hyperparameter
to combine the two loss terms. Ranking loss LR integrates
the pointwise regression loss and pairwise ranking-aware
loss, as described in Equation (8), where r and r̂ represent
the ground-truth and predicted ranking vectors, respectively,
N is the number of stocks, and ρ is a hyperparameter
that combines the two loss terms. Graph proximity loss
LGP(i) regulates the representation of node i by gathering its
neighboring nodes together and pushing its non-neighboring
nodes farther. This is described by Equation (9), where N (i)
is a set of neighboring nodes of node i, S is the set of all the
stocks, and oi, oj, and op denote the representations of node
i, its neighbor node j, and a sampled non-neighbor node p,
respectively.

LNC = LR + ηLGP (7)

LR = ∥r̂ − r∥
2
+ ρ

N∑
i=0

N∑
j=0

max(0,−(r̂i − r̂j)(ri − rj))

(8)

LGP(i) = −
∑

j∈N (i)∪i

log(σ (oioj))−
∑

p∈S−N (i)∪i

log(σ (−oiop))

(9)
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To optimize rankingmodels SGC andHGC in the continual
model, we employ the EWC loss function, which integrates
loss function Lnew(θ ) of the new task and the regularization
term defined in Equation (5), where we use LNC defined in
Equation (7) as Lnew(θ ).

F. ANALYSIS OF STOCK SELECTION METHODS
Table 1 compares the proposed DASS framework with graph
learning-based state-of-the-art stock selection methods in
terms of temporal modeling, relational modeling, and learn-
ing approach. ALSP [15] does not use an RNN for temporal
modeling or hypergraphs for relational modeling, and it
does not consider continual graph learning. ASA [12] uses
neither a transformer for temporal modeling nor continual
learning. RSR [9] does not use a transformer for temporal
modeling, hypergraph for relational modeling, or continual
graph learning. STH [10] does not use a transformer for
temporal modeling, simple graphs for relational modeling,
or continual learning. HATS [8] does not use a transformer for
temporal modeling or hypergraphs for relational modeling,
and it considers neither ranking nor continual graph learning.
To the best of our knowledge, DASS is the only method
that combines non-continual and continual models to adapt
diverse market volatilities. Moreover, DASS is a comprehen-
sive solution that effectively integrates various techniques
(i.e., GRU, transformer, simple graph, hypergraph, ranking
approach, and continual graph learning) for the temporal
modeling, relational modeling, and learning approach dimen-
sions. Although DASS integrates some techniques used in
existing methods, the combination of these techniques to
yield positive results is not straightforward.

TABLE 1. Comparison of stock selection methods.

V. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) DATASETS
We evaluated the proposed DASS framework using stocks
included in the S&P500 index. We collected stock data from
Yahoo Finance [43], including the opening, highest, lowest,
closing, and volume values. To consider diverse market
conditions, we tested non-continual and continual models
using thewalk-forward testingmethod, as illustrated in Fig. 1.
On average, the periods of training, validation, and testing per
phase were 252 days, 126 days, and 126 days, respectively.
The validation data were used to select the model with the
lowest validation loss. For the non-continual and continual
models, simple graphs and hypergraphs were generated on

the first day of the validation period per phase using stocks
that remained within the S&P 500 index throughout the
validation and test periods.

To simulate real-world trading conditions, we started with
an initial balance of $10,000, only took long positions,
and assumed a transaction cost rate of 0.1%, unless stated
otherwise. For the sake of simplicity, we purchased the
maximum available number of shares per stock and sold them
at the closing price the following day.

2) EVALUATION METRICS
The return rate and risk indicators (i.e., Sharpe ratio—SR
[44] and maximum drawdown—MDD [45]) were used to
evaluate the performance of each method. The return rate was
computed as the ratio of portfolio value PVend after the test
period to initial balance PVstart as (PVend − PVstart )/PVstart .
The SR evaluates the return of an investment relative to its

risk [46], as defined in Equation (10), where E[R] denotes
the expected return and σ [R] denotes the standard deviation
of return, which quantifies the fluctuation (i.e., risk). A higher
SR indicates a higher risk-adjusted return. In Equation (10),
we use the portfolio change rate as the return.

SR =
E[R]
σ [R]

(10)

The MDD evaluates the maximum loss rate in a portfolio
from its peak to its trough over a specified period T ,
as expressed by Equation (11). The inner maximum term
calculates the drawdown for time τ .

MDD(T ) = max
τ∈(0,T )

[
max
t∈(0,τ )

PVt − PVτ

PVt

]
(11)

3) COMPARISON METHODS
The proposed DASS method was compared with the graph
learning-based state-of-the-art methods described below.
We evaluated the performance across the top-5, 10, and
15 stocks and recorded the best performance per method.
We employed the Adam optimizer [47] with momentum
parameters β1 = 0.9 and β2 = 0.999, epsilon of 10−7,
decay of 0.99, mini-batch size of 8, and learning rate of
0.001. Knowledge-based simple graphs and hypergraphs
were constructed according to the graph construction method
of ASA [12] for optimal performance. For each method,
we optimized the network architectures and hyperparameters
as listed below. The others were set as indicated in the original
studies.

• In the buy and hold (B&H)method, the S&P500 index
is bought at the start of each test phase. Then, it is held
and subsequently sold at the end of that phase.

• HATS [8] leverages long short-term memory (LSTM)
and hierarchical attention mechanism. The number of
LSTM units was set to 64, the dropout rate was set to
0.5, and the number of top-K stocks was set to 5.

• STH [10] leverages the Hawkes process with atten-
tion mechanism and hypergraph convolution using a
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TABLE 2. Experimental results for each phase.

FIGURE 7. Average number of selected stocks of DASS for each phase.

FIGURE 8. Comparison with other methods.

multi-head attention mechanism. The sliding window
size was set to 16 and the number of top-K stocks was
set to 5.

• RSR [9] leverages LSTM and temporal graph convo-
lution. The number of LSTM units was set to 64, the
dropout rate was set to 0.5, and the number of top-K
stocks was set to 5.

• ASA [12] leverages the Hawkes process with atten-
tion mechanism, hierarchical attention mechanism, and
hypergraph convolution using a multi-head attention
mechanism.

• ALSP [15] leverages the hierarchical transformer and
time-adaptive modulator. The graph sparsity was set to
0.9, the sliding window size was set to 16, and the
number of top-K stocks was set to 5.

• ALSP+C is an enhanced ALSP method that verifies the
effectiveness of using only continual graph learning. The
number of top-K stocks was set to 5.

• ALSP+E is an enhanced ALSP method that applies
the proposed ensemble approach to diversified adap-
tation, as in Algorithm 1, by using non-continual and

FIGURE 9. Comparison with stock selection method based on continual
graph learning.

continual models. The number of top-K stocks was
set to 5.

4) IMPLEMENTATION DETAILS OF DASS
For graph construction, we set filtering threshold ϵ for
the simple graph to 10% and clustering threshold K for the
hypergraph to 5. For low-level temporal modeling, we set the
size of the sliding window, 1T , to 16 and number of GRU
units to 32. For relational modeling, we set the number of
heads for the GAT layer to 1 and number of channels for
the HConv layer to 32. For high-level temporal modeling,
we set scaling factor df to 16, number H of heads to 6,
number n of transformer encoder blocks to 3, number L of
1D-CNNs that extract local information to 3, where each
kernel size is 2, 4, and 8, and the kernel size of the 1D-CNN
that extracts global information to 2. In stock selection using
the ensemble approach, we set K in the top-K selected stocks
to 10, λ in Equation (5) to 0.5, η in Equation (7) to 0.5, and
ρ in Equation (8) to 4. Furthermore, we set the number of
epochs for training to 10.

B. EXPERIMENTAL RESULTS
1) COMPARISON WITH OTHER METHODS
As demonstrated in Table 2, DASS outperformed the
comparison methods in all phases, except for phases 4 and 6,
in terms of return rate. DASS achieved an average return
rate of 36.5%, outperforming the second-best method, ALSP,
by 7.2%P. Specifically, in phases 4 and 8, which had higher
volatility than the preceding phase, DASS exhibited less
fluctuation in the return rate than the othermethods. For phase
8 with a downward trend, all the methods incurred substantial
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FIGURE 10. Comparison with other hyperparameter values.

TABLE 3. Number of days of investment during the whole test period.

losses, except for ASA and DASS, which made a good profit.
These results occurred because DASS selected a varying
number of stocks based on the volatilities of the market by
intersecting the top-K stocks acquired from the two ranking
scores, RSG and RHG, which integrate the non-continual and
continual models, as in Algorithm 1. As shown in Fig. 7,
DASS selected, on average, fewer than three stocks per day in
phase 8. This was because there were only a limited number
of profitable stocks when the market showed a downward
trend.

Regarding risk indicators, the average SR of DASS was
1.53, outperforming the second-best method, ASA, by 0.29.
The average MDD of DASS was 0.13, outperforming the
second-best method, B&H, by 0.001. In phases 4 and 6,
DASS exhibited the third- and second-best return rates,
and ALSP and ASA were the best methods, respectively.
This was because ALSP and ASA prioritized maximizing
profits rather than minimizing risks, as indicated by the
average performance of the risk indicators SR and MDD.
Compared with ALSP and ASA, DASS achieved a har-
monious balance between profit and risk by incorporating
various ranking models in non-continual and continual
models.

Fig. 8 shows the CAGR for each method over the whole
test period. DASS outperformed the comparison methods,
achieving a CAGR of 83.2%, which was 23.0%P higher
than that of the second-best method, ALSP. This was
because DASS yielded higher profits even when the market
showed high volatility in phases 1, 4, and 8, leading to a
compound interest effect. As listed in Table 3, DASS achieved
4%P fewer days of losses compared with the second-best
method, thus mitigating the adverse effects of losses on
compounding.

Overall, the evaluation results indicate that DASS, which
integrates non-continual and continual models and incorpo-
rates all the techniques listed in Table 1, is effective for stock
selection.

FIGURE 11. Experimental results of the ablation studies.

FIGURE 12. Comparison with hyperparameters for graph construction.

2) COMPARISON WITH STOCK SELECTION METHOD BASED
ON CONTINUAL GRAPH LEARNING
Fig. 9 shows the effects of applying continual graph
learning to the second-best method (ALSP). ALSP+C
achieved a higher CAGR than ALSP, but the improve-
ment was small (1.4%P). In contrast, ALSP+E exhib-
ited a substantial improvement over ALSP (8.2%P).
These results demonstrate that our ensemble approach
can maximize profits through diversified adaptive stock
selection. Moreover, DASS exhibited a 14.8%P higher
performance than ALSP+E, confirming the effectiveness of
our framework.

3) ABLATION STUDIES
Ablation studies were conducted to evaluate the contribution
of each component used in DASS. The transformer (TRM),
simple graph (SG), hypergraph (HG), continual model (C),
and non-continual model (NC) were excluded. ‘‘ALL’’
indicates DASS with all the components. Fig. 11 shows
the average performance of the DASS variant models.
The results indicate that all the components contributed
to the framework performance. In particular, the average
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FIGURE 13. Experimental results of the robustness study.

performance was degraded when either the continual model
(C) or non-continual model (NC) was used exclusively. These
results confirm the complementarity between the components
of DASS.

4) COMPARISON WITH HYPERPARAMETERS FOR GRAPH
CONSTRUCTION
Fig. 12 shows the performance of DASS according to
the hyperparameters for constructing the simple graph and
hypergraph (i.e., the filtering and clustering thresholds).
As shown in Fig. 12(a), the performance was degraded as
the filtering threshold increased because many trivial edges
were included in the simple graph. Fig. 12(b) indicates that
the performance was degraded as the clustering threshold
increased because many dissimilar stocks were included in
the hyperedge.

5) COMPARISON WITH OTHER HYPERPARAMETER VALUES
Fig. 10 shows the performance of DASS according to
various hyperparameters including the sliding window size
for ranking models, K in the top-K stocks selected from
each ranking model, number of transformer encoders, λ

in EWC loss (Equation (5)), η in the non-continual loss
(Equation (7)), and ρ in the ranking loss (Equation (8)).
As shown in Fig. 10(a), if the sliding window size was
very small or large, the performance was degraded because
of insufficient or excessive information. Fig. 10(b) shows
that the performance was degraded as K increased because
low-profit stocks were included in the portfolio for high K
values. Fig. 10(c) shows that the performance was degraded
as λ increased because the continual model was adapted too
slowly to the market volatilities. Figs. 10(d) to (f) indicate
that the performance was not very sensitive to the number of
transformer encoders, η, and ρ. Furthermore, we also verified
that the performance was insensitive to other hyperparame-
ters (e.g., learning rate, the number of epochs, and mini-batch
size).

6) ROBUSTNESS STUDY
Transaction costs (e.g., transaction fees and taxes) are
important factors in stock trading. Hence, we evaluated

TABLE 4. Average running time per phase.

TABLE 5. List of abbreviations.

the influence of the transaction cost rate on the DASS
performance to confirm its robustness. Fig. 13 shows the
average return rate for varying transaction cost rates. The
average return rate decreased with increasing transaction
cost rate for all the methods. Nevertheless, DASS exhibited
superior performance even when the transaction cost rate
reached 0.5%,which exceeds typical real-world trading costs.
This performance can be attributed to DASS generating
more profit per trade, overcoming the related transaction
cost.

7) RUNNING TIME COMPARISON
Table 4 shows the average training and testing time per phase
for DASS and the second-best method (ALSP). We used
a computer with an Intel (R) Core (TM) i7-7700 CPU at
3.60GHz, 16GB of RAM, and a GeForce GTX 1070 Ti GPU.
As shown in Table 4, the training and testing time of ALSP
were 1.39 and 1.86 times faster than those of DASS. This
was because DASS trained and predicted both simple graph-
and hypergraph-based ranking models in non-continual and
continual models, while ALSP trained and predicted only a
simple graph-based ranking model in a non-continual model.
Although the total time of DASS was slower than that of
ALSP, it is less than 17 minutes on a commodity computer.
Moreover, DASS outperformed ALSP in terms of CAGR by
23.0%P.

VI. CONCLUSION AND FUTURE WORK
We have proposed a graph learning-based framework called
DASS that integrates non-continual and continual mod-
els for diversified adaptive stock selection to achieve a
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harmonious balance between profit and risk. We also
leveraged both simple graphs and hypergraphs for more
diversity. In addition, we incorporated low-level temporal,
relational, and high-level temporal modeling for graph
learning to capture both temporal and relational depen-
dencies. The performance of DASS was compared with
the that of state-of-the-art stock selection methods. The
results of the experiments using stocks included in the
S&P500 index showed that DASS achieved a CAGR of
83.2%, outperforming the second-best method by 23.0%P.
In particular, DASS exhibited stable profits and reduced
risks by integrating the non-continual and continual models.
In future work, we plan to combine various non-continual and
continual models, incorporate more diverse graph data into
our framework, and apply the framework to actual investing
scenarios.

APPENDIX
See Table 5.
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