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ABSTRACT Learning high-quality representations of users, items, and tags from historical interactive
data is crucial for personalized tag recommendation (PTR) systems. Currently, most PTR models are
committed to learning representations from first-order interactions without considering the exploitation of
high-order interactive relations, which can be beneficial for avoiding sub-optimal learning. Although several
PTR models equipped with graph neural networks (GNN) have been proposed to capture higher-order
semantic relevance from raw data, they all carry out representation learning in Euclidean space, which
can still easily result in sub-optimal learning due to embedding distortion. In order to further improve the
quality of representation learning for PTR, the paper proposes a novel PTR model based on a lightweight
GNN framework with hyperbolic embedding, namely GHPTR. GHPTR explicitly injects higher-order
relevance into entity representation through the message propagation and aggregation mechanism of GNN
and leverages hyperbolic embedding to alleviate the embedding distortion problem. Experimental results
on real-world datasets have demonstrated the superiority of our model over its Euclidean counterparts and
state-of-the-art baselines.

INDEX TERMS Tag recommendation, graph neural networks, hyperbolic geometry, representation learning,
embedding.

I. INTRODUCTION
Social tagging gained popularization with the growth of
social networking websites. These sites allow users to add
terms or keywords, which are most known as tags, to images,
videos, and other online items. Social tagging is an efficient
tool for users to annotate and organize online items and
a dependable aid for websites in delivering information
services. It has become indispensable in numerous web
platforms and applications. Meanwhile, many personalized
tag recommendation (PTR) systems [1] have been developed
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with the popularity of social tagging. These systems aim
to promote a virtuous circle of social tagging services and
facilitate the tagging process by automatically suggesting lists
of candidate tags for users to select.

Like the general recommender systems oriented to users’
preferences, the PTR is usually modeled as a ranking
problem, and the learning-to-rank (L2R) techniques have
been widely adopted to tackle it. The dominant paradigm
for L2R-based PTR is learning to represent entities including
users, items, and tags from their ternary interactions in a
low-dimensional embedding space, then generating a ranked
list of tags based on learned embeddings. Among such learn-
ing techniques, those [2], [3], [4], [5], [6] related to tensor
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factorization used to be the most competitive because the
interactions of triples (user, item, tag) constitute the primary
content of raw data, which can be represented as three-
order tensors. However, most tensor factorization-based
models are committed to learning shallow representations
from direct (a.k.a first-order) interactive relations, and
the learned representations can not precisely characterize
entities’ properties for the lack of semantics. Furthermore,
the ternary interactions derived from the social tagging
system naturally constitute a tripartite graph [7]. From
the perspective of graph learning, a considerable amount
of semantic relevance lurks in the high-order connected
paths of the graph. Such high-order semantic information
is beneficial to recommendations for their ability to reveal
the underlying properties of entities, e.g., users’ potential
preferences on tags.

Recently, some studies [8] have incorporated graph
neural networks (GNN) [9], [10], [11] into the framework
of PTR models to leverage high-order relevance in raw
data. By utilizing the message propagation and aggregation
mechanism of GNN, these models are capable of encoding
high-order semantic relevance into entity representations,
thereby enhancing the performance of PTRmodels. However,
despite the effectiveness of GNN-based PTR models, their
abilities to express graph data are limited by Euclidean
spaces. These models are designed to learn representations
in Euclidean space, which aligns with people’s intuition and
is easy to visualize. More importantly, Euclidean space has
complete and mature vector operators. Meanwhile, many
data with graph structure always exhibit the properties of
complex networks [12] such as scale-free and power-law
distribution, and the tripartite graph of ternary interactions in
the PTR system also has such properties [13]. Related studies
have shown that Euclidean spaces are not the most suitable
geometric representation for complex networks [14], [15].
The power-law distribution of networks suggests that their
overall structure is tree-like. In a tree, the number of nodes
increases exponentially with the depth of the tree, while
the volume of Euclidean spaces increases polynomially with
distance from the origin point. The distortion problem will
arise when embedding tree-like data in Euclidean spaces,
resulting in sub-optimal learning.

Hyperbolic space has emerged as a promising tool for
modeling hierarchical or tree-like data in recent times [14],
[15], [16], [17]. Unlike Euclidean space, which has zero
curvature, hyperbolic space is a non-Euclidean space with
constant negative curvature. When a disk is embedded into
a two-dimensional hyperbolic space with curvature c = −1,
its circumference (2π sinh r) and area (2π (cosh r − 1))
grow exponentially with the radius r . On the other hand,
in the two-dimensional Euclidean space, the correspond-
ing circumference (2πr) grows linearly and area

(
πr2

)
grows quadratically. This makes hyperbolic space akin to
a continuous version of a tree, making it well-suited for
embedding graph data with lower distortion than in the
Euclidean space.

Both GNN and hyperbolic embedding are universal
learning algorithms. The universality of GNN lies in its
message propagation mechanism, i.e., the aggregation of
neighbor nodes, which is suitable for capturing the local
structural properties of graphs. On the other hand, most
graphs have global properties such as scale-free and power-
law distribution. These properties can not be directly reflected
byGNNbut can bewell presented by hyperbolic space. These
two algorithms have recently been integrated to enhance the
representation learning of user-item bipartite graphs for item
recommendation and achieved promising results. In contrast
to item recommendation models, PTR models must deal with
user-tag-item tripartite graphs, which have a structure closer
to complex networks than bipartite graphs. Therefore, how to
introduce hyperbolic embedding and GNN to the framework
of PTR models is a meaningful issue.

With the expectation of further enhancing the perfor-
mances of PTR systems, in this paper, we propose a graph
neural networks-based learning framework with hyperbolic
embedding for PTR, namely GHPTR, which utilizes GNN
to exploit high-order semantic relevance among entities and
employs hyperbolic embedding to alleviate the problem of
embedding distortion. In the first phase, GHPTR leverages
the GNN to capture the semantic relevances in high-order
connected paths and encode them into nodes’ representations.
Specifically, we derive two bipartite graphs from the tripartite
interactive graph, i.e., the user-tag graph and the item-
tag graph. Then the proposed model represents every node
by explicitly aggregating representations of its multi-hop
neighbors on each graph. Moreover, we remove feature
transformation and non-linear activation components of GNN
to make the proposed model more lightweight. The second
phase of GHPTR accounts for modeling the interactions
between nodes via embedding them into hyperbolic space
and calculating the hyperbolic distances between embeddings
for the final prediction. We conduct experiments on two real
datasets to validate the effectiveness of the proposed model,
and the experimental results have shown its superiority over
state-of-the-art baselines.

Our major contributions can be summarized as follows:
• We introduce a GNN with a lightweight architecture
to the framework of PTR, which can exploit the local
properties of interactive tripartite graph and reduce
computational consumption.

• We utilize hyperbolic embedding to improve the expres-
sive ability of the proposed model, which can better
accommodate the global properties of interactive data
and alleviate the problem of embedding distortion.

• We conduct extensive experiments on real-world
datasets to verify the efficiency of the proposed model,
and experimental results show that the proposed model
can outperform the state-of-the-art baselines.

The rest of the paper is organized as follows: The
related work is discussed in Section II. Section III presents
the problem definition of the personalized tag recommen-
dation and formalized description of hyperbolic space.
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In Section IV, we describe the details of the proposed model.
The effectiveness of the proposed model is demonstrated via
extensive experiments in Section V, followed by conclusions
and future works in Section VI.

II. RELATED WORK
This section briefly reviews the state-of-the-art related
works, including PTR models, GNN-based recommendation
models, and hyperbolic recommendation models.

A. PERSONALIZED TAG RECOMMENDATION MODELS
Social tagging systems have become popular in various
web applications, making personalized tag recommendation
(PTR) an attractive issue in the research of recommender
systems. The core of historical tagging information in PTR
system is the ternary interaction among entities, which
includes user, item, and tag. These interactions can be
represented by a three-order tensor. Consequently, most
classical studies utilize tensor factorization techniques, such
as the tucker decomposition (TD), to learn representations of
involved entities in PTR tasks [2], [4], [5].

The TDmodel’s computation cost becomes impractical for
large-scale PTR tasks due to its model equation resulting in
a cubic runtime with respect to the factorization dimension.
To meet this challenge, Rendle et al. proposed the pairwise
interaction tensor factorization (PITF) model [4], which
explicitly models the pairwise interactions between entities
with linear runtime. PITF is widely recognized for its superior
performance, and many learning methods derived from it
have been proposed to fit various PTR scenarios. Recently,
to leverage the end-to-end learning capability of deep neural
networks (DNN), several learning frameworks based on
DNN [6], [18], [19] have been developed to further improve
the performance of traditional PTR models.

Note that all the above models are conducted in Euclidean
spaces. As wementioned before, their capabilities of learning
the representations of tree-like data are restricted by the poly-
nomial expansion property of Euclidean space. Meanwhile,
these models have overlooked the semantic relevance hidden
in high-order interactions, and the embeddings they learned
are only derived from first-order interactions.

B. GNN-BASED RECOMMENDATION MODELS
Graph Neural Networks (GNN) [9], [10] are a class of
deep learning methods designed to perform inference on
data described by graphs. GNN can be directly applied to
graphs and provide an easy way to do node-level, edge-
level, and graph-level prediction tasks. Since the target of the
recommender system can be viewed as the link-prediction
task, many recommendation models [20], [21], [22], [23],
[24], [25], [26] have adopted GNN to improve representation
learning. Representative GNN-based recommendation meth-
ods include but are not limited to SR-GNN [27], NGCF [21],
LightGCN [22], and GraphRec [23]. Wu et al. proposed a
session-based recommendation model using GNN, namely
SR-GNN [27]. SR-GNN converts session sequences to

graphs and utilizes GNN to capture the inner patterns
of items’ transitions. The NGCF model [21] employs the
graph convolutional networks (GCN) to carry out message
propagation and aggregation on the user-item interactive
bipartite graph and fully explores the higher-order similarities
between entities to achieve better collaborative filtering
performance. In [22], He et al. found that the two most
common components of GCN, i.e., feature transformation
and nonlinear activation, contribute little to collaborative
filtering and increase the difficulty of training. Therefore they
simplified the GCN to a lightweight version called Light-
GCN. LightGCN retains only the aggregation component,
which is closely related to collaborative filtering, and only
performs linear message propagation on the bipartite graph
to learn the representations of users and items. Fan et al.
proposed a GNN-based learning framework GraphRec [23]
to coherently model different bipartite graphs and strengths
of social relations for the social recommendation.

The above GNN-based recommendation models are
designed to deal with bipartite graph information, aiming at
the traditional item recommendation tasks. The representative
application of GNN in the study of PTR is the GNN-PTR
model proposed in [8], which decomposed the tripartite
graph of tagging information into two bipartite graphs
and leveraged GNN to perform representation learning.
GNN-PTR has achieved optimal performance on multiple
real datasets. But in essence, GNN-PTR belongs to the
recommendation models that operate in Euclidean space,
so it still has limitations in accurately expressing ternary
interactions in PTR systems.

C. HYPERBOLIC RECOMMENDATION MODELS
Most interactive data in the recommender systems actually
possesses non-Euclidean properties such as power-law dis-
tribution, but the classical recommendation models, such as
Bayesian Personalized Ranking (BPR) [28], Collaborative
Metric Learning (CML) [29] and Neural Collaborative
Filtering (NCF) [30] are designed in Euclidean space. These
models may suffer from various degrees of embedding
distortion. For this reason, some works [31], [32] make
efforts to bridge the gap between hyperbolic space and
recommender systems by modifying the matching functions
of the recommendation models. The basic idea is to embed
the representations of users and items into hyperbolic space,
then use hyperbolic distance instead of the classical matching
functions such as inner product or Euclidean distance to
compute the semantic similarity between user and item.
Vinh et al. studied the connection between metric learning in
hyperbolic space and collaborative filtering. They devised a
newmethod namedHyperML [32] for one-class collaborative
filtering. Hyperbolic metric embedding (HME) model [31] is
designed for next-poi recommendation. HME jointly captures
sequential transition, user preference, category, and region
information in a unified approach by learning embeddings in
a shared hyperbolic space. Subsequently, several models [33],
[34], [35] enhanced by hyperbolic embedding have been
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proposed to better perform in traditional recommendation
tasks or cope with new tasks. For example, Sun et al. [35]
proposed HGCF to capture higher-order information in
user-item interactions by incorporating multiple levels
of neighborhood aggregation through a hyperbolic GCN
module. To exploit mutual semantic relationships among
users/items for collaborative filtering tasks, Li et al. [33]
introduced a neighbor construction strategy to build user
and item semantic neighborhoods and developed a deep
framework with hyperbolic geometry to integrate constructed
neighborhoods into the recommendation. Regarding the PTR
tasks, Zhao et al. [36] proposed HPTR to learn the tagging
information in hyperbolic space and utilize hyperbolic
distance to model the entities’ interactions.

HGCF and HPTR are the most relevant works for our
model, the difference is that HGCF is suitable for the item
recommendation task of binary interaction, and GHPTR
is applicable to the PTR of ternary interaction. Moreover,
HGCF is optimized by Riemann stochastic gradient descent,
but GHPTR will adopt the tangent space optimization.
Although HPTR is a PTR model based on hyperbolic
embedding, it is only a shallow model without considering
the higher-order semantic relevance, and the GHPTR makes
up for this deficiency.

III. PRELIMINARIES
A. PROBLEM DEFINITION
The PTR system is different from item recommendation
systems as it comprises three types of entities: users U ,
items I , and tags T . The historical interactions between
these entities are represented as S which is a subset of
U × I × T . An element (u, i, t) ∈ S indicates that the user
u has annotated the item i with the tag t . From the ternary
relation set S, the PTR models usually deduce a three-order
tensor Y ∈ R|U |×|I |×|T |, whose element yu,i,t is defined as
follows:

yu,i,t =

{
1, (u, i, t) ∈ S
0, otherwise,

(1)

where yu,i,t = 1 indicates a positive instance, and
the remaining data are the mixture of negative instances
and missing values. In addition, the tagging informa-
tion for a certain user-item pair (u, i) is defined as
yu,i = {yu,i,t |yu,i,t , t ∈ T }.
PTR aims to recommend a ranked list of tags to a certain

user for annotating his target item. Usually, a matching
function Ŷ : U × I × T −→ R is employed to measure and
predict users’ preferences on tagsw.r .t their target items. The
entry ŷu,i,t of Ŷ indicates the degree to which a user u prefers
to annotate the item iwith the tag t . After predicting the score
ŷu,i,t of all candidate tag t for a given user-item pair (u, i),
the PTR system generates a ranked list of Top-N tags
according to the obtained scores. Formally, the ranked list
of Top-N tags given to the user-item pair (u, i) is defined as

follows:

Top(u, i,N ) =
N

argmax
t∈T

ŷu,i,t , (2)

where N denotes the number of recommended tags.

B. HYPERBOLIC SPACE
Hyperbolic space is a smooth Riemannian manifold with
constant negative curvature. Due to the exponential expansion
rate of the volume, hyperbolic space is well-suited for embed-
ding tree-like data that follows the power-law distribution.
Since hyperbolic space is difficult to exhibit intuitively, it is
always described by five isometric models [37], i.e., Lorentz
(hyperboloid) model, Poincaré ball model, Poincaré half
space model, Klein model, and hemisphere model, of which
the Poincaré ball and the Lorentz are commonly used in
representation learning tasks. Let Bd =

{
x ∈ Rd

| ∥x∥ < 1
}

be the an open d-dimensional unit ball, where ∥ · ∥ denotes
the Euclidean norm. The Poincaré ball can be defined by the

Riemannian manifold
(
Bd , gBx

)
, where gBx =

(
2

1−∥x∥2

)2
gE is

the Riemannian metric tensor, in which x ∈ Bd and gE
= I

denotes the Euclidean metric tensor. The distance between
points x, y ∈ Bd is given as:

dB(x, y) = arcosh

(
1 + 2

∥x− y∥2(
1 − ∥x∥2

) (
1 − ∥y∥2

)) (3)

Lorentz model, the so-called hyperboloid model, can be
defined as Riemannian manifold

(
Ld , gLx

)
, where Ld ={

x ∈ Rd+1
: ⟨x, x⟩L = −1, x0 > 0

}
, in which ⟨x, y⟩L =

−x0y0 +

d∑
i=1

xdyd denotes the Lorentzian scalar product,

and where gLx = diag([−1, 1, . . . , 1]). Based on above
definitions, the distance between two points on Lorentz is
given as:

dL(x, y) = arcosh (−⟨x, y⟩L) (4)

IV. THE PROPOSED MODEL
In this section, we first elaborate the overall framework of
our proposed model, followed by presenting each component
in detail. Finally, we introduce the learning process of model
parameters.

The overall framework of our proposed model is illustrated
in Figure 1. The model consists of three layers: embedding
layer, propagation layer and prediction layer. The function
of the embedding layer is to get the initial representations
of the nodes based on their IDs; The propagation layer is
responsible for aggregating the neighbors’ representations
by message propagation, so as to enrich the semantics of
nodes’ representations; After combining the higher-order
representation of each entity, the prediction layer projects
the combined representation to the hyperbolic space through
the exponential mapping, and then matches the entity on the
basis of the hyperbolic distance. Finally, the model predicts
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FIGURE 1. The framework of proposed model.

the user’s preferred tags on the target item according to the
matching degree (score).

A. EMBEDDING LAYER
In the embedding layer, we project all involved entities into a
low-dimensional latent space according to their IDs. It should
be noted that, to facilitate the optimization of the proposed
model, the latent space here is not a hyperbolic space, but
a tangent space of a hyperbolic space, which has the same
flat property as a Euclidean space. The specific reasons are
explained in Section IV-D. Specifically, a training instance
of our model is a quadruple (u, i, t, t ′) where u denotes a
user and i denotes an item. t corresponds to the positive
tag, which had been assigned to the item i by the user u,
and t ′ represents the negative tag which had not interacted
with u and i. First, we perform a lookup operation in the
corresponding embedding matrices according to the entity’s
IDs, then obtain the embedding of user u, item i, positive tag
t , and negative tag t ′. Formally,

eu = U. onehot (u), ei = I. onehot (i),

eUt = TU . onehot (t), eUt ′ = TU . onehot
(
t ′
)
,

eIt = TI . onehot (t), eIt ′ = TI . onehot
(
t ′
)

(5)

where onehot(.) denotes the one-hot encoding operation.
U ∈ R|U |×d , I ∈ R|I |×d ,TU ∈ R|T |×d ,TI ∈ R|T |×d (d
is the embedding dimension) are the matrices of user
embeddings, item embeddings, user-specific tag embeddings,
and item-specific tag embeddings, respectively.

B. PROPAGATION LAYERS
As the core component of GHPTR, the propagation
layer focuses on capturing the semantic relevance from
higher-order connected path in historical interactions. Due to
semantic relevance lurks in bidirectional interactions between
entities, the propagation layer leverages GNN to explicitly
capture such relevance.

Since the tripartite graph of historical interactions contains
multiple relations among nodes, how to deal with these
relations in the propagation process will directly affect the
learning results of the proposed model. Inspired by the
work [4], which demonstrates that only the user-tag and item-
tag relation are deterministic for modeling a user’s tagging
preference, we consider these two relations and decompose
the tripartite graph into two corresponding bipartite graphs.
For each type of relation, two kinds of messages are
propagated along the corresponding bipartite graph. In the
case of the user-tag graph, the propagated messages include
information from tag nodes to user nodes and from user
nodes to tag nodes, and so it is with the item-tag graph.
Based on the above settings, we can introduce a GNN
framework to the propagation layer. Considering that the
propagation layer needs to perform high-order information
aggregation on two bipartite graphs, and the parameters to
be learned involve four embedding matrices, both of which
will increase the computational consumption, thus we adopt
a lightweight GNN framework as that in [22] to explicitly
inject the high-order relevance into nodes’ embeddings by
aggregating their neighbors’ embeddings. Formally, embed-
dings of a triple (u, i, t) obtained at l-th propagating layer are
formulated as:

e(l)u =

∑
t∈Nu

1
√

|Nu|
√∣∣NU

t
∣∣eU (l−1)
t

e(l)i =

∑
t∈Ni

1
√

|Ni|
√∣∣N I

t
∣∣eI (l−1)
t

eU (l)
t =

∑
u∈NU

t

1
√

|Nu|
√∣∣NU

t
∣∣e(l−1)
u

eI (l)t =

∑
i∈N I

t

1
√

|Ni|
√∣∣N I

t
∣∣e(l−1)
i (6)
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where e(l−1)
u , e(l−1)

i ,eU (l−1)
t and eI (l−1)

t denote the embeddings
of the user, item, user-specific tag and item-specific tag
obtained from the previous propagation layer, Nu denotes the
set of tags that interacted with the user u and refer to this set as
the user’s neighborhood. Similarly, the neighborhoods of the
item, user-specific tag, and item-specific tag are denoted as
Ni, NU

t , and N I
t , respectively.

1
√

|·|
√

|·|
are symmetric square

root normalization terms for avoiding amplification of the
embedding scale caused by the graph convolution operation.

C. PREDICTING LAYER
The task of the predicting layer is to embed the nodes’ repre-
sentations encoded with higher-order relevance in hyperbolic
space and model nodes’ interactions via hyperbolic distance,
and finally output the predicted score through a matching
function. The specific process is as follows:

By stacking multiple propagation layers, we obtain the
embedding sets of each entity. Every element in the set rep-
resents the semantic relevance of different-order neighbors,
it is conducive to characterizing different properties of an
entity, so we combine all corresponding elements into a single
embedding. Formally,

e∗u = α1e(1)u + α2e(2)u + · · · + αl−1e(l−1)
u + αle(l)u

eU∗
t = α1e

U (1)
t + α2e

U (2)
t + · · · + αl−1e

U (l−1)
t + αle

U (l)
t

e∗i = α1e
(1)
i + α2e

(2)
i + · · · + αl−1e

(l−1)
i + αle

(l)
i

eI∗t = α1e
I (1)
t + α2e

I (2)
t + · · · + αl−1e

I (l−1)
t + αle

I (l)
t (7)

where al denotes the weight of a embedding in the l-th layer.
In order to simplify our model, we empirically set the al to

1
(L+1) , where L is the total number of propagation layers.
Based on the obtained higher-order representations,

we define a matching function with hyperbolic distance for
the final prediction. Given a triplet (u, i, t), the matching
function ŷu,i,t can be defined as:

ŷu,i,t = p
(
dH (e∗u, e

U∗
t ) + dH (e∗i , e

I∗
t )
)

(8)

where dH (·) denotes the hyperbolic distance function, p(·)
is the transformation function for converting hyperbolic
distances to the matching degree, here we take it as p(x) =

βx + c with β ∈ R and c ∈ R.
Note that in order to adequately examine the influence of

hyperbolic embedding on the performance of our proposed
GHPTR model, we take Poincaré Ball and Lorentz as the
geometric representation of hyperbolic space, and obtain two
versions of the proposed model, denoted as GHPTR(P) and
GHPTR(L). Thus the hyperbolic distance dH (·) in this paper
will be computed according to Equation 3 and Equation 4,
respectively.

D. MODEL TRAINING
The strategy of training set construction is inspired by the
work [4]: When observing a certain pair (u, i) in historical
interactions S, it can be inferred that the user u should prefer
tag t over tag t ′ iff the triple (u, i, t) can be observed from S

and
(
u, i, t ′

)
can not be observed. Based on this idea, the

training set DS (i.e., the set of quadruple
(
u, i, t, t ′

))
with the

pairwise constraint is defined as:

DS =
{(
u, i, t, t ′

)
| (u, i, t) ∈ S ∧

(
u, i, t ′

)
/∈ S
}

(9)

The objective of model training is to maximize the gap
between the matching scores ŷu,i,t of the positive triple
(u, i, t) and negative triple

(
u, i, t ′

)
, so we adopt the Bayesian

Personalized Ranking (BPR) optimization criterion [28] to
learn model parameters 2 = {U, I,TU,TI, β, c}, and build
the objective function of proposed model as follows:

L = min
2

∑
(u,i,t,t ′)∈Ds

− ln σ
(̂
yu,i,t − ŷu,i,t ′

)
+ λ2∥2∥

2
F (10)

As the Poincaré ball and Lorentz are both Riemannian
manifolds with constant negative curvature, their related
parameters need to be updated by Riemannian gradient,
so the Riemannian stochastic gradient descent(RSGD) [38]
has been widely adopted to optimize most of Hyperbolic
embedding-based models [14], [31]. However, RSGD is
challenging in practice. Concerning our model, its parameters
consist of {U, I,T} that require to be projected into hyper-
bolic space and {β, c} that with no requirement for projection.
To avoid using two corresponding optimizers, we update all
the parameters via tangent space optimization [16], [17].

We recall that a d-dimensional hyperbolic space is a
Riemannian manifoldM with a constant negative curvature
−c(c > 0), the tangent space TxM at point x on M is a
d-dimensional flat space that best approximatesM around x,
and the elements v of TxM are referred to as tangent vectors.
In our work, We define all the parameters in the tangent
space so that we can update them via powerful Euclidean
optimizers(e.g., Adam). When it comes to calculating the
hyperbolic distance dH , we use the exponential map expH

d

x (v)
to recover the corresponding parameters ( project v of tangent
space back to hyperbolic space). The exponential map related
to the Poincaré ball is formulated as follows:

expB
d

x (v) = x⊕

(
tanh

(
λx∥v∥
2

)
v

∥v∥

)
(11)

where ⊕ denotes the Möbius addition operator [39] that
provides an analogue to Euclidean addition for hyperbolic
space. Formally,

x⊕ y :=

(
1 + 2⟨x, y⟩ + ∥y∥2

)
x+

(
1 − ∥x∥2

)
y

1 + 2⟨x, y⟩ + ∥x∥2∥y∥2
(12)

The corresponding exponential map of Lorentz is given as:

expL
d

x (v) = cosh (∥v∥) x+ sinh (∥v∥)
v

∥v∥
(13)

V. EXPERIMENTS AND ANALYSIS
In this section, we first set up the experiments, and then
present the performance comparison and result analysis.
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A. EXPERIMENTAL SETUP
In our experiments, we choose two public datasets,
i.e., LastFM and ML10M, to evaluate the performance of
all compared methods. Similar to [4], we preprocess each
dataset to obtain their corresponding p-core, which is the
largest subset where each user, item, and tag has to occur at
least p times. In our experiments, every datasets is the result
of 5-core or 10-core preprocessing. The general statistics of
datasets are summarized in TABLE 1.

TABLE 1. Description of datasets.

We adopt the leave-one-out protocol to evaluate the
recommendation performance of all compared methods.
Specifically, for each pair (u, i), we select the last triple
(u, i, t) according to the timestamp and transfer it from S to
Stest . The remaining observed triples constitute the training
set Strain = S − Stest . Similar to the item recommendation
problem, the PTR provides a top- N ranked list of tags
for a given pair (u, i), so we employ two typical ranking
metrics to measure the performance of all comparedmethods,
i.e., Precision@N and Recall@N . Formally,

Precision@N =
1∣∣PStest ∣∣∑

(u,i)∈Ptest

| Top (u, i, t) ∩ (u, i, t) ∈ Stest |

N

Recall@N =
1∣∣PStest ∣∣∑

(u,i)∈Ptest

| Top (u, i,N ) ∩ (u, i, t) ∈ Stest |

|{t | (u, i, t) ∈ Stest }|

(14)

For both metrics, we set N = 3, 5, 10 in the experiments.

B. BASELINES AND PARAMETER SETTINGS
In order to evaluate the effectiveness of our proposed model,
we choose the following personalized tag recommendation
models as baselines:

• PITF: PITF [4] explicitly models the pairwise interac-
tions among users, items and tags by inner product,
it is a strong competitor in the field of personalized tag
recommendation.

• NLTF: NLTF [3] is a non-linear tensor factorization
model, which enhances PITF by exploiting the Gaussian
radial basis function to capture the nonlinear interactive
relations among users, items and tags.

• ABNT: ABNT [6] utilizes the multi-layer perception
to model nonlinear interactions between users, items,

and tags, and employs attention networks to capture
complex patterns of users’ behaviors.

• DAE-PTR: DAE-PTR [42] utilizes the learning
framework of denoising auto-encoder to enhance the
robustness of features learned from historical tagging
information.

• HPTR: HPTR [36] learns the representations of entities
by modeling their interactive relationships in hyperbolic
space and utilizes hyperbolic distance to measure
semantic relevance between entities.

• GNN-PTR: GNN-PTR [8] is a graph-neural-networks
enhanced tag recommendation model, which introduces
GNN to the pairwise interaction tensor factorization
framework for mining high-order similarity between
embeddings.

We empirically set the parameters of baselines according
to their corresponding literatures in order to recover their
optimal performance: the dimension of embedding d is
set to 64, and the learning rate η is tuned amongst
{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}. For the ABNT
model, the number of hidden layers is set to 2. All the
parameters of HPTR andGHPTR are defined in tangent space
TxM located at origin point (x = 0) of hyperbolic space. The
number of propagation layers is set to 3 for both GNN-PTR
and GHPTR. We adopt Adam [40] as the optimizer for all
involved models.

C. PERFORMANCE COMPARISION
The experimental results of all comparison models on each
dataset are presented in the following tables.

From TABLE 2 to TABLE 5, we have the following
observations:

(1) Among the baselines not equipped with hyper-
bolic embeddings, the GNN-PTR is superior to other
models for all evaluation metrics, which indicates that
the neighborhood aggregation implemented by message
propagation mechanisms is efficient for enhancing tag
recommendation. The reason for the poorer performance
of the rest may be that they learn shallow representations
from low-order interactions. Thus, the learned representa-
tions lack the semantics for revealing the user’s tagging
preference.

(2) Although HPTR is a shallow representation learning
model, it outperforms the GNN-PTR in most cases of our
experiments, and the reason for this may be that HPTR
desires to better express the global structural properties
(e.g., scale-free or power-law) of the interactive tripartite,
graph so it leverages hyperbolic embedding to alleviate
the distortion problem. GNN-PTR focuses on the local
properties of the graph. Therefore, it utilizes GNN to
capture high-order relevance within the neighborhood. This
result implies that using global properties is more effective
than local properties in improving the performance of tag
recommendations.
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TABLE 2. LastFM-5core.

TABLE 3. LastFM-10core.

TABLE 4. ML10M-5core.

TABLE 5. ML10M-10core.

(3) GHPTR shows the best performance overall involved
baselines. It surpasses Precision@10 of the best baselines by
8.6%, 12.5%, 12.7%, and 14.1% on Lastfm-core5, Lastfm-
core10, ML10M-core5, and ML10M-core10, respectively.
With respect to Recall@10, the improvements of GHPTR
over best baselines are 5.7%, 5.0%, 11.1%, and 8.8%
on the above four datasets. The main reason should be
that we integrated GNN and hyperbolic geometry into the
learning framework of personalized tag recommendation.
In this way, the learned representations are endowed with
the global and local structural properties of the raw data
so that the proposed model is challenging to fall into

sub-optimal learning, resulting in the enhancement of recom-
mendation performance.

D. EFFECT OF PROPAGATION LAYERS
For the GHPTR model, the number of message propagation
layers l is another important hyper-parameter, which controls
the range of capturing the semantic relevance in the
higher-order connected paths. In order to analyze the impact
of l on the recommendation quality of our model, we conduct
a set of extended experiments in this section. With Recall@5
as the indicator, we keep the same settings described in
Section V-A and adjust the value of l in steps of 1 until l=4,
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FIGURE 2. Effect of the parameter l for GHPTR.

reporting the result of Recall@5 obtained by the model for
each l.

Figure 2 exhibits the performance of GHPTR under
different l values on each dataset. As shown in the figure,
for both model versions, their recommendation perfor-
mance improves as the number of message propagation
layers increases. When the number of propagation layers
reaches 3 or 4, the performances of GHPTR on most datasets
begin to decrease. The reason is that excessive stacking of
propagation layers will introduce the semantic information
of long-range neighbors into the representation of the target
node, and the semantic relevance between these neighbors
and the target is relatively weak. Therefore they become
useless or even noisy information that will be finally encoded
into the representations, decreasing the performance of our
proposed model.

E. EFFECT OF EMBEDDING DIMENSION
In our proposed model, the dimension of embeddings d is an
essential parameter since it controls the expressive ability of
the whole model, so we conduct additional experiments to
study the sensitivity of d to the performance of our model
by tuning it within {8, 16, 32, 64, 128, 256, 512, 1024}. Here
we choose Precision@5 to give an insight into the impact
on performance with respect to the parameter d , and the
experimental results are plotted in FIGURE 3. From the
content of the figure, we can have the following observations
and findings:

(1) In the beginning, the values of Precision@5 increase
stably with the growth of d . When d exceeds 128, most of
the curves are no longer in an uptrend, which indicates that
merely increasing the dimension is not conducive to sustained

improvement of recommendation. The main reason may be
similar to the Euclidean embedding: the model will obtain
sufficient learning ability when d reaches a certain threshold.
After that, continuously increasing the embedding dimension
can also lead to overfitting problems.

(2) Compared with GHPTR (L), the curve of GHPTR
(P) exhibits less smooth, such observation is consistent
with previous studies [14], [17], The reason lies in the
Equation 3 of Poincaré ball distance, i.e., dB(x, y) =

arcosh
(
1 + 2 ∥x−y∥2

(1−∥x∥2)(1−∥y∥2)

)
, When the norm of x or y

approaches 1, that is, when the embeddings are closer to
the edge of the ball, the denominator of the equation rapidly
approaches 0, resulting in instability of the calculation results.

F. ABLATION STUDY
The learning framework of our GHPTR contains two compo-
nents: a lightweight GNN workflow and a hyperbolic match-
ing process. To study the rationality of these two components,
we remove them from the proposedmodel and obtain two cor-
responding variants, denoted as GHPTR-H and GHPTR-G.
We conducted an extended set of experiments to observe the
performance of GHPTR and its variants on ML10M-10core
and LastFM-10core, taking Precision@10 as the evaluation
metric and setting all involved hyper-parameters the same
as GHPTR in Section V-A. In addition, considering the
relative stability of the Lorentz model, we choose it as
the geometric representation of the hyperbolic space in
this section. The experimental results on different embed-
ding dimension d ranging from 16 to 256 are plotted
in FIGURE 4.

As shown in FIGURE 4, we can get the following
observations and inferences:

(1) The performance curves of the variants are all lower
than that of the original model, indicating that each com-
ponent of the GHPTR significantly affects recommendation
quality. On the other hand, the performance of GHPTR-H
is inferior to that of GHPTR-G, revealing that hyperbolic
embedding contributes more to recommendation perfor-
mance than GNN. More importantly, this result suggests that
we should give priority to catch the global properties of
interactive data when designing learning framework of PTR
models.

(2) Both GHPTR and GHPTR-G outperform GHPTR-H
at lower embedding dimensions. With the increase of
embedding dimension, the performance improvement of
these two models is not as significant as that of GHPTR-H.
This observation is consistent with studies [16], [17], which
indicates that the advantage of hyperbolic spaces is reflected
in the lower embedding dimensions because its exponential
expansion property can endow the embedded model with
considerable expressiveness in the lower dimension. In con-
trast, Euclidean space requires larger embedding dimensions
to obtain sufficient learning ability. Furthermore, when
embedding dimensions reach a certain threshold, they all will
fall into overfitting problems.
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FIGURE 3. Effect of the parameter d for GHPTR.

FIGURE 4. Ablation study of GHPTR.

VI. CONCLUSION
Existing hyperbolic embedding-based tag recommendation
models only account for the macro properties of the
data, overlooking the node-level properties. In comparison,

GNN-based tag recommendation models are competent for
exploiting the properties of nodes and their neighborhoods.
In this work, in order to learn both global and local
properties of historical interactions, we present a lightweight
yet effective personalized tag recommendation model based
on the integration of hyperbolic embedding and GNN.
Through extensive experiments on two datasets, we are
able to demonstrate the effectiveness of GHPTR over other
baselines.

Although hyperbolic embedding is adept at representing
tree-like data, we should not neglect the advantages of
Euclidean space. Compared with hyperbolic space, the
vector operators of Euclidean space is more efficient, and
the relative distance between points can be better distin-
guished via Euclidean metrics. Considering the advantages
of hyperbolic and Euclidean spaces, our future work will
construct contrasting views from these spaces and carry out
graph contrastive learning [41] to obtain more semantics for
promoting personalized tag recommendations.
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