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ABSTRACT Due to the large-scale changes of different forms of traffic signs and the rapid speed of
vehicles, the detection accuracy and real-time performance of general object detectors are greatly challenged,
especially the detection accuracy of small objects. In order to solve this problem, a multi-scale traffic sign
detection model CR-YOLOv8 is proposed based on the latest YOLOv8. In the feature extraction stage, the
attention module is introduced to enhance the channel and spatial features, so that the network can learn
the key information of the small objects more easily. The RFB module is introduced in the feature fusion
stage, which improves the feature diversity with less computational overhead and improves the network’s
ability to detect multi-scale objects. By improving the loss function to enable the model to effectively balance
multi-scale objectives during training, the model generalization ability is improved.The experimental results
on TT100k dataset show that compared with the baseline network, the average detection accuracy of the
improved method is increased by 2.3 %, and the detection accuracy of small objects is increased by 1.6 %,
which effectively reduces the detection accuracy gap among different scales.

INDEX TERMS Traffic sign recognition, traffic sign recognition, YOLOv8.

I. INTRODUCTION
Road traffic sign detection is the most basic and critical
component of Intelligent Transportation Systems (ITS) and
driverless systems [1]. Demand for intelligence has accel-
erated the technological development of computer vision,
intelligent traffic safety systems, and other related fields.
To improve the safety of vehicles and pedestrians on the road,
the accuracy and detection efficiency of traffic sign detection
must be continuously improved. However, in real-world
scenarios, owing to the different uses and types of traffic
signs (as shown in Figure 1), there are large differences in
the scales of traffic signs captured by imaging devices. At the
same time, to ensure that high-speed vehicles have sufficient
braking distance, traffic signs at a greater distance need to
be identified as early as possible, which further increases the
difficulty of detecting traffic signs and is receiving increasing
attention.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Tucci .

In recent years, object detection techniques driven by deep
learning architectures have developed rapidly and achieved
fruitful results. Most state-of-the-art object detectors use
convolutional neural networks (CNN) for image feature
extraction, which can be categorized into two-stage object
detectors and one-stage object detectors. Among them, R-
CNN [2] is the most representative two-stage object detection
method and has laid a solid foundation for the development
of subsequent two-stage algorithms. The remaining two-stage
object detection algorithms are Cascade R-CNN [3], Pv-
RCNN [4], sparse R-CNN [5] and others [6], [7], [8], [9].
The above algorithms first generate candidate regions, and
then perform classification and regression. This method is
designed flexibly and covers a wide range of work, but due
to the need to generate a large number of candidate regions,
it increases computational complexity and reduces detection
speed. In order to reduce the high computational cost
and improve the slow detection speed caused by obtaining
higher detection accuracy, researchers discarded the object
generation phase and investigated one-stage object-detection
algorithms. Typical one-stage object detection methods are
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FIGURE 1. Examples of the size, color, and shape of traffic signs.

SSD [10], M2det [11], You Only Look Once (YOLO) [12],
[13], [14], [15], [16] series and their variants [17], [18], [19],
[20], [21].

Traffic sign detection [22] is a subfield of object detection
techniques for detecting and localizing traffic-sign instances
in digital images or video frames. However, when the above
detectionmethods are applied directly to traffic sign detection
in real-world scenarios, the results are usually unsatisfactory.
Owing to the differences in the uses and types of traffic signs,
as well as the differences in the scales of traffic signs captured
by imaging devices owing to the characteristics of vehicle
travel, a universal detector cannot fully extract all scales of
traffic sign features, and thus cannot satisfy the needs of
vehicles for highly accurate detection of objects at multiple
scales. At the same time, the object detection of the vehicle
mobile terminal not only requires high detection accuracy
of objects of different scales but also has a high demand
for the speed of identification. A higher processing speed
in the traffic-sign detection stage can provide more time for
subsequent decision-making and subsequent operation of the
vehicle. Therefore, a detector with both detection accuracy
and speed is essential to ensure the safety and efficiency of
road traffic. Compared to two-phase object detectors, one-
phase object detectors are more in line with the need for
detection speed in traffic-sign detection. To ensure that the
detector can effectively detect traffic signs on mobile devices
with limited computational resources, the state-of-the-art
one-stage object detection networkYOLOv8s is chosen as the
benchmark in this paper. YOLOv8s combines the advantages
of fast detection speed and a small number of network
parameters. However, the detection effect of YOLOv8s
on traffic signs at different scales needs to be improved,
especially when the detection accuracy of small-scale objects
is quite different from that of large-scale objects, which
reduces the detection accuracy of large-scale objects, and the
detection accuracy of large-scale objects is quite different
from that of large-scale objects. In particular, the detection

accuracy of small-scale objects differs greatly from that
of large-scale objects, and narrowing the gap between the
detection accuracies of large, medium, and small scales is the
key issue that this study aims to address.

To enhance the detection effect of YOLOv8s on multiscale
traffic signs, this study proposes a CR-Yolov8 (Convolutional
Block Attention Module and Receptive Field Block-You
Only Look Once Version 8) network structure based on
YOLOv8s. CR-Yolov8 detection network, that is, meets the
requirements of mobile devices on the size of the deployment
model, and simultaneously improves the detection accuracy
of the detector for multi-scale objects to meet real-time
requirements. The specific contributions of this study are as
follows.

1) The Convolutional Block Attention Module (CBAM)
lightweight attention module is introduced in to the backbone
network to reduce the effect of information loss due
to down-sampling by focusing on spatial and positional
information and to improve the sensitivity of the network to
traffic sign information.

2) Expanding the sensory field to obtain higher-resolution
features by fusing the Receptive Field Block (RFB) module
improves the feature diversity of the lightweight model and
enhances the network’s ability to learn multi-scale features.

3) Optimize the model bounding box regression loss
function and gradient gain allocation strategy to enhance the
robustness to object-scale changes. Compared with advanced
traffic sign detection, the method proposed in this study
exhibits good performance.

The remainder of this paper is organized as follows.
In Section II, related research work is presented, including
the development and research results in the field of traffic sign
detection and the YOLOv8 network structure. In Section III,
the details of the proposed method, which achieves accurate
recognition and localization of traffic signs at different scales,
are presented. In Section IV, the results of the experiments
are presented and compared with those of previous methods.
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Finally, in the Section V, the paper will summarize the
main conclusions of this study and propose future research
directions.

II. RELATED WORK
In this section, we will review the early detection methods in
the field of traffic sign detection and the advanced research
results in recent years, and introduce the YOLOv8 network
structure to lay the foundation for the subsequent research.

A. TRAFFIC SIGN DETECTION
Automatic identification and detection of traffic signs on the
road through image processing algorithms is an indispensable
key link in driverless and ITS systems, providing an
important basis for subsequent actions.In the realm of traffic
sign detection, there is a considerable variation in the
size, color, and shape of signs, significantly augmenting
the complexity of the detection task. Consequently, the
exploration of algorithms resilient to the diverse nature of
traffic signs stands as a pivotal and enduring challenge
in this domain [23]. In order to achieve the functions
of indication, warning, restriction, and guidance, traffic
signage is usually distinguished from its surroundings by
eye-catching colors to enhance the identifiability of the signs.
Traffic signs can be roughly distinguished from other objects
by color (red, yellow, or blue) and shape (triangle, circle,
rectangle, or polygon). Thus, early traffic sign detection
can be classified into color and shape based processing
methods. Color-based detection methods [24], [25], [26],
[27] perform traffic sign extraction through RGB (red,
green, and blue) color space or HSI (hue, saturation, and
intensity) color space. The detection performance of the
abovemethods decreases drastically when faced with lighting
changes and signage fading. The shape-based detection
method [28], [29], [30] employs manually crafted features
and classifiers for object detection and recognition. However,
these detection algorithms exhibit sensitivity to external
environmental conditions, including occlusion, deformation,
and scale differences, which can substantially impact the
detection performance. These scenarios are prevalent in
practical application scenarios [31].

Accurate and efficient detection can effectively extract
the traffic signs in the image, provide a reliable detection
result for subsequent processing and analysis, and ensure the
safe driving of vehicles and well-organized traffic. In recent
years, traffic sign detection techniques based on deep learning
architectures have been widely studied and rapidly devel-
oped, with outstanding performance on publicly available
traffic sign datasets. These methods driven by data exhibit
robust adaptability, demonstrating effectiveness in effectively
managing background noise and fluctuations in external
environmental conditions [31]. Wang et al. [22] enhanced
the internal correlation between location information and
channel information by adding coordinate attention to the
neck, effectively fused shallow feature representation and
deep semantic information, and improved the network’s

ability in complex environments for occluded traffic signs.
Wang et al. [32] mitigated the loss of contextual information
due to feature channel reduction by introducing an attention
module and a feature enhancement module to improve
the network’s sensitivity to traffic signs. Yuan et al. [33]
incorporated a path aggregation module into the feature
pyramid (FPN) structure to further enhance the encoding
and decoding parts by adding horizontal connections to
the spatial information, effectively enhancing the network’s
feature representation of traffic signs under normal weather.
Liang et al. [34] combined the coordinate attention module
with the backbone network ResNeSt and constructed the fea-
ture pyramid for multi-scale detection [35], which enhanced
the network’s ability to extract shallow texture and contour
information and enabled the extracted features to focus on
traffic sign information, thereby improving the detection
accuracy. Wang et al. [36] proposed a BANet network using
bi-directional attention, which reduces the impact of shallow
information loss caused by expanding the receptive field
and improves the performance of small object detection and
localization in traffic scenarios. Cao et al. [37] applied Swin
Transformer to the neck structure of YOLOv5s, which makes
the network more concerned with contextual spatial informa-
tion and, combined with coordinated attention, improves the
detection of traffic objects in real traffic scenarios. Overall,
deep learning-based detectionmethods show high application
potential and research value in traffic scenarios. All of the
above methods have shown a good improvement in detection
accuracy. However, practical application scenarios require
the model to be deployed on mobile devices for fast and
accurate detection of traffic signs of different sizes and shapes
in real environments. Therefore, the model is required to
improve the detection performance of multi-scale objects
with a small number of parameters and a fast detection speed.
That is to say, while meeting the real-time requirements of
the vehicle-mobile terminal, the detection network should
focus on narrowing the gap between the detection accuracy
of different scales so as to avoid the occurrence of good
detection performance only for a specific scale. In order to
achieve more accurate and fast traffic sign detection, it is
still necessary to further study and optimize the deep learning
algorithm and strive to achieve, under the premise of meeting
the detection speed, the ability to accurately detect objects
of multiple scales so that the detection network has a better
generalization of the frequent changes in scale. Based on
the above needs, the latest single-stage detector YOLOv8s
network is used as the basis in this paper, and the detection
speed and the number of network parameters can well meet
the needs of practical applications, on the basis of which
the difference between the detection performance of different
scales objects is narrowed.

B. INTRODUCTION TO THE YOLOV8 NETWORK
ARCHITECTURE
The YOLO family of algorithms in computer vision
detection stands out among the many detectors owing
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FIGURE 2. The architecture of improved YOLOv8 network structure. Among them, k is the size of the convolution kernel, s is the stripe, and p is
padding; CSPBottleneck with 2 conversions (C2f) is used for concatenating different feature maps and other operations; CBS consists of Conv,
BatchNorm, and SiLu activation functions for feature extraction; Spatial Pyramid Pooling Fast (SPPF) is used to increase feature diversity.

to its excellent balance of detection accuracy and speed.
As a typical algorithm in one-stage detection networks,
the YOLO series of detectors can quickly and reliably
recognize objects in images. In the field of traffic sign
detection, the real-time detection performance of YOLO is
highly valuable. YOLOv8, as the latest SOTA model of the
YOLO series, has better detection accuracy and speed than
other versions. Based on the different requirements of the
detection scenarios, there are five versions based on the
scaling factor: YOLOv8n, YOLOv8s, YOLOv8m,YOLOv8l,
and YOLOv8x. Starting from the fact that the network
deployed on vehicle-mounted mobile platforms needs to be
lightweight enough and the traffic sign detection needs to be
highly accurate and responsive, this was selects YOLOv8s
as YOLOv8s with a memory size of only 11.2M, which
meets the deployment requirements of the in-vehicle mobile
platform and is also the best choice for detection accuracy and
response speed.

The YOLOv8s network consists of four parts: image
input, feature extraction network, feature fusion module,
and detection head. YOLOv8 preprocesses the data in the
input stage, and the processing method continues the way
that YOLOv5 enhances the data using Mosaic, Mixup,
random perspective, and HSV augmentation. Inspired by
the extended efficient layer aggregation networks(E-ELAN)
module in the YOLOv7 network, the C2f module is proposed,
and the combination of the three modules, CBS, C2f, and
SPPF. In the feature fusion stage, a feature pyramid is
constructed using the PAFPN structure to fully fuse shallow
and deep feature information. Inspired by the YOLOX
network detection head, the YOLOv8 detection head adopts
a decoupling head structure to separate classification and
positioning tasks.

YOLOv8 is the most advanced one-stage object detector,
which integrates many current advanced detection methods
from the practical needs of traffic sign detection, and will be
based on YOLOv8s subsequent research.

III. THE PROPOSED METHOD
Traffic signs photographed in road environments vary greatly
in scale, resulting in a limited amount of information about

FIGURE 3. CBAM attention module.

smaller objects contained in the extracted image features,
which further exacerbates the difference in the accuracy
of multi-scale object detection. In order to reduce the
difference in the network’s accuracy for multi-scale traffic
signs, this paper proposes CR-Yolov8 for multi-scale traffic
sign detection based on the state-of-the-art one-stage detector
YOLOv8s for improvement.The main content of this section
is the improvement method of YOLOv8, including (a) adding
a lightweight CBAM attention mechanism in the feature
extraction network, which trades a negligible computational
overhead for accuracy improvement. (b) Incorporating the
RFB module in the feature fusion module to enhance
the feature diversity of the lightweight network model (c)
Optimize the gradient gain allocation strategy through the
Wise Intersection over Union (WIOU) loss function to
enhance the adaptability of the detector to multiple-scale
object changes. The improved network structure is shown in
Figure 2.

A. ATTENTION MECHANISM
The attention mechanism is a method used to simulate
the characteristics and behavior of the human perception
system, which enables the model to selectively focus on
important information by assigning different weights to
different features to achieve the purpose of focusing on the
information of the object. In the fields of machine learning
and deep learning, attention mechanisms are widely used.
It flexibly expresses features according to the importance
of each input feature, effectively helping information flow
through the network and enabling the model to adapt better
to complex tasks and changing input data.

In the feature extraction phase, spatial and channel features
are equally important for generating feature maps. The
CBAM attention module [38] improves the expressive ability
of the model to learn important features by generating
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FIGURE 4. Structure of channel attention module and spatial attention module.CBAM is added at two locations in the feature fusion section.
The input to the CBAM module after the C2f module is a feature matrix with a channel count of 64,160×160 and the input to the CBAM module
after the SPPF module is a feature matrix with a channel count of 512,20×20.

attention feature maps in both the channel and spatial dimen-
sions and multiplying them with the original input feature
maps with adaptive adjustment. CBAM assigns varying
weights to different features based on their importance,
flexibly expressing features. It selectively focuses on crucial
details, aiming to concentrate on target object information.
The specific process is shown in Figure 3, where the
intermediate feature map F ∈ RC×H×W is the input and then
outputs the one-dimensional channel attention map MC ∈

RC×1×1 and the two-dimensional spatial attention mapMS ∈

R1×H×W in sequence, and the attention is calculated as shown
in Equation (1).

F ′
= MC (F) ⊗ F

F ′′
= MS (F ′) ⊗ F ′ (1)

The CBAM Attention Module consists of two submod-
ules: the Channel Attention Module and Spatial Attention
Module. The Channel Attention Module utilizes the internal
relationship between feature channels to produce a channel
attention graph. As shown in Figure 4(a), the spatial informa-
tion is compressed by average pooling and maximum pooling
operations to improve the computational performance of
the channel attention features, followed by the generation
of two contextual feature maps, which finally generate a
one-dimensional channel attention map MC ∈ RC×1×1

through the multi-layer perceptron (MLP) and hidden layer.
The spatial attention module uses the internal relations
of the feature space to produce a spatial attention graph.
As shown in Figure 4(b), average pooling and maximum
pooling are performed in the channel dimension, and then
they are concatenated to obtain the feature map. Finally, the
2D spatial attention map MS ∈ R1×H×W is obtained after
the convolution operation. The use of signage and vehicle
driving characteristics leads to a large difference in the pixel
percentage of captured traffic signs in the image, resulting

in effective feature information extracted by the backbone
network that cannot take into account the three scales of
large, medium, and small traffic signs. Introducing the
CBAMmodule enables the network to focus on both channel
and spatial features, comprehensively capturing traffic sign-
related characteristics. This provides a more valuable feature
representation, enhancing the recognizability of these signs.

CR-Yolov8 incorporates the CBAM attention mechanism
into the feature extraction part after C2f and SPPF modules.
After the C2f module, the CBAM produces a 160×160
feature matrix with 64 output channels. With the CBAM
module, the network focuses more on capturing features
related to traffic signs, providing a more valuable repre-
sentation of the features, and enhancing the recognizability
of these signs. The CBAM after the SPPF adaptive output
module generates a feature matrix with a channel count
of 512, 20×20, enhances the channel features and spatial
features, and outputs the results to the concat and up-sampling
modules for the subsequent feature fusion stage. The model,
by introducing CBAM, in which spatial attention and channel
attention are used for joint processing, reduces the impact
caused by the loss of information in the sampling process
based on the original model and improves the network’s
detection performance for multi-scale objects.

B. RECEPTIVE FIELD BLOCK
The Receptive Field Block (RFB) module [39] aims to
enhance the feature diversity of lightweight networks by
emulating the human visual system. This is achieved through
the extraction of features from input featuremaps viamultiple
receptive field sizes. The architecture of the RFB consists
of two primary components: the Multi-Branch Convolutional
Layer and the Dilated Convolutional Layer,as the structure
is shown in Figure 5. A multi-branch convolutional layer
is used to simulate different sizes of population receptive
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fields (pRF). Using the Inception [40] structure, the bottle-
neck structure of each branch undergoes 1×1 convolution
for dimensionality reduction and is combined with an n×n
convolutional layer for reducing the number of channels
for feature mapping to emphasize the importance of the
focus region and enhance the network’s sensitivity to spatial
changes. The dilated convolutional layer simulates the corre-
lation between the size of the pRF and the eccentricity of the
human visual system. RFB achieves a larger receptive field by
employing convolution kernels of different sizes and dilated
convolutions with various rates. Leveraging the diversity and
complementarity of different features, it enhances the feature
diversity of the model. CR-Yolov8 adds the RFB module
to the feature fusion stage to enhance the feature diversity
of the network before detecting the header. The issue of
information loss and reduced resolution, typically caused
by down-sampling, is mitigated while maintaining nearly
identical computational overhead.

FIGURE 5. RFB structure diagram.

C. LOSS FUNCTION
The loss function of bounding box regression (BBR) helps the
model optimize its ability to lock the object location infor-
mation by calculating the difference between the predicted
bounding box and the real bounding box at different scales.
Traffic sign detection requires the detector to be robust to
scale changes in an object. The bounding box loss function in
the optimization process, by gradually adjusting the predicted
position of the bounding box, makes the model better adapted
to the scale change of the object to improve themodel’s ability
to perceive multi-scale objects.The Complete Intersection
over Union (CIOU) [41] in the original YOLOv8 network
cannot efficiently measure the difference between the object
frame and the Anchor, which leads to slow convergence
and inaccurate localization in model optimization. Compared
with CIOU, Wise intersection over union(WIOU) [42]
optimizes the gradient gain allocation strategy so that the
model can well balance the learning of large, medium, and
small objects during the training process, which improves
the overall performance of the detector. Hence, WIOU is
employed to substitute CIOU in CR-Yolov8. The WIOU loss
function can be defined as shown in equation(2):

LWIOU = rRWIOULIOU , r =
β

δαβ−δ

RWIOU = exp

(
(x − xgt )2 + (y− ygt )2

)(
W 2
g + H2

g

)∗



LIOU = 1 − IOU (2)

where x and y are the center coordinates of the anchor frame;
xgt and ygt are the coordinates of the center point of the object
frame;Wg and Hg are the sizes of the minimum enclosing
frames; and the gradient gain r is dynamically adjusted
by means of α, the δ hyperparameter, and nonmonotonic
focusing factor β. LIOU is the IOU loss function.

WIOU enables YOLOv8 to equalize the learning of
multi-scale objects during the training process and improve
the ability to localize the targets through a dynamic
allocation strategy. By introducing non-monotonicity, the
model treats high-quality and low-quality examples equally
during training. This means that as the loss increases, the
gradient gain does not follow a monotonic pattern. While
reducing the gradient gain for low-quality anchor boxes,
it also decreases the gradient gain for high-quality ones.
This ensures the model treats high and low-quality examples
equally, aiming to stably learn effective features throughout
the training process.

IV. EXPERIMENTS AND RESULTS
In this section, the experimental dataset and evaluation
metrics are presented along with a more detailed description
of the experimental setting, analysis of results, and ablation
experiments.

A. DATASETS AND EVALUATION INDICATORS
1) DATASET
Traffic sign detection and localization are indispensable
components of ITS and autonomous driving. In generalized
object detection datasets such as MS COCO [43] (e.g.,
COCO2014), Pascal VOC [44], [45] (e.g., VOC2007,
VOC2012), and ImageNet [46] (e.g., ILSVRC2014), even
though they contain traffic sign images, detectors trained
on generalized benchmarks cannot learn well the feature
information of traffic signs. To bettermeet the detection needs
of real-world environments, CR-Yolov8 used TT100k [47] as
a benchmark to train and validate the improved network.

The TT100K dataset [47] is a large-scale traffic data
benchmark jointly compiled by Tsinghua and Tencent Labs,
covering street scenes of several cities in China and multiple
lighting and weather conditions. The dataset contained
221 traffic sign types, such as speed limit, warning, and
no passing, totaling 100,000 images and 30,000 instances.
In addition, the TT100k dataset provides a large number of
scene images, including city roads, highways, and rural roads,
which can satisfy different application requirements. Nearly
half of the instances in the TT100K dataset were severely
underrepresented, resulting in an extremely unbalanced
data distribution. Therefore, in this study, the dataset is
processed according to the article [47], and only 45 categories
with instance counts of 50 or more. The resolution of
the processed data is 640 × 640 RGB image,, with
5962 images in the training set and 2979 images in the test
set.
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TABLE 1. Experimental results of different algorithms on TT100k.

2) EVALUATION METRICS
For object detection, the evaluation criteria generally include
Precision, Recall, and Mean Average Precision (mAP),
as shown in equations(3) to(5). where TP represents the
number of correct detections by the detector, FP represents
the number of detector localization errors, FN represents
the number of false and missed detections by the detector,
Precision represents the accuracy of the algorithm with
respect to the results of the detection, Recall expresses the
algorithm’s ability to check the entirety of the algorithm, and
mAP measures the comprehensive performance of the object
detection algorithm in multiple categories.

Precision =
TP

TP+ FP
(3)

Recall =
TP

TP+ FN
(4)

mAP =

∑k
i=1 APi
k

(5)

CR-Yolov8 aims to enhance the performance of traffic
signs at multiple scales. For traffic sign detection, the
detection accuracy, detection speed, and model parameter
size have a significant impact on practical application
scenarios. Therefore, in addition to the commonly used object
detection evaluation metrics, FPS, APS , APM , and APL were
also used to comprehensively evaluate the processing speed
of the model and the detection accuracy of objects at different
scales. In addition, parametric params of the network model
are used to determine whether they meet the deployment
requirements.

B. RESULT ANALYSIS AND ABLATION EXPERIMENT
The experimental environment for this experiment was a
LINUX x86_64 operating system, Xeon(R) Gold 6230R,
graphics card NVIDIA Tesla A100 40G×2, 128G GB RAM,
and an experimental platform with CUDA 11.3, PyTorch
1.11, and Python 3.8. The network uses pre-trained weights
on ImageNet for transfer learning during training.The initial
learning rate of the model is 0.01, the bactch size is 32, and
the epoch is 200.

CR-YOLOv8 was compared with other state-of-the-art
traffic sign detection algorithms to validate the effectiveness
in the field of multi-scale traffic sign detection. The evalua-
tion was carried out on TT100k. The detection performance

FIGURE 6. Comparison of training losse between CR-YOLOv8 and
YOLOv8s models.

FIGURE 7. Comparison of mAP between CR-YOLOv8 and YOLOv8s models.

of the network was evaluated by comparing the parameters of
the model, frames per second (FPS),mean average precision
(mAP), and detection accuracy for small, medium, and large
sized (APS , APM , and APL) objects. The experimental results
are shown in Table 1.
From the Table 1, it can be seen that the performance of

the model proposed CR-YOLOv8 model has been improved
compared to state-of-the-art traffic sign detection networks.
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FIGURE 8. Visualization results of traffic sign detection on the TT100k dataset. (a) shows an example of detection on the benchmark
network YOLOv8s. (b) is an example of detection on the CR-YOLOv8.

The accuracy was improved by 2.3 percentage points com-
pared to that of YOLOv8s. In terms of APS , APM , and APL ,
the proposed model has different degrees of improvement
compared to the YOLO series of algorithms. The highest
improvement is inAPS , which is 1.6 percentage points higher,
and the improvement effect is obvious in the performance of
small-scale traffic-sign detection. Despite the slight increase
in the number of parameters it does not have a significant
impact on the performance, and this task focuses more on
improving the detection accuracy ofmulti-scale object, where
the effect of the improvement is more pronounced at this
order of magnitude. This proves that CR-YOLOv8 effectively
shortens the difference in the detection accuracy of objects
at different scales and successfully optimizes the multi-scale
detection effect. Figure 6 and Figure 7 show a comparison of
the training process between the CR-YOLOv8 model and the
YOLOv8s model. It can be seen that the CR-YOLOv8 model
converges faster and the training process is smoother than
YOLOv8s, indicating that CR-YOLOv8 has better stability
and reliability in traffic sign detection tasks.

Ablation experiments were performed on TT100k to verify
the effects of the CBAM, RFB, and loss functions on network
performance. As shown in Table 2, network improvement
increased the accuracy of multiscale traffic sign detection.
To address the problem of information loss in the feature
extraction stage of the network, the CBAM module is added
at the bottom of the backbone network, which makes the
network more focused on effective feature information, and
the detection accuracy is improved by 0.6 percentage points.
It can be seen from Table 3 that the CBAM module is more
effective than other attention mechanisms. To enhance the
feature diversity of the lightweight network, the RBF module

TABLE 2. Ablation experiments on TT100k.

was added to the feature fusion part to improve the network
accuracy by 1.2 percentage points.By improving the loss
function, the model is well balanced to learn multi-scale
objects during the training process and has better adaptability
to model scale changes. It can be seen from Table 4 that
compared with CIOU, intersection over Union (IOU) and
generalized intersection over Union (GIOU), WIOU has the
best effect on improving the network performance, which
improves the detection accuracy by 1.4 percentage points.The
detection network incorporating the three modules improves
by 2.3 percentage points compared to the baseline network,
which effectively improves the performance of multi-scale
traffic signs.

Figure 8 shows the visualization results of the benchmark
network and the improved network on TT100k, which shows
that CR-YOLOv8 network has a higher detection accuracy
for traffic signs of different sizes and shapes, and the objects
not detected by the benchmark network on the left side are
also improved in the method on the right side. CR-YOLOv8
network can effectively improve the different-scale sign
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TABLE 3. Comparison of results of different attention mechanisms.

TABLE 4. Performance of each bounding box loss.

detection accuracy, narrow the multi-scale detection accuracy
imbalance problem, and is more suitable for multi-scale
traffic sign detection

V. CONCLUSION
In summary, this paper presents a multi-scale traffic sign
detection model CR-Yolov8 based on a single-stage detection
network. The proposed approach effectively mitigates the
information loss problem caused by down-sampling, thereby
preserving richer object information in the high-level feature
map. Therefore, the network is better equipped to focus on
and learn important features within the feature map. The
experimental results on TT100k dataset demonstrate that the
CR-Yolov8 significantly improves the performance of traffic
sign detection across large, medium, and small scales, and
alleviates the imbalance of precision measurement among
multi-scale traffic signs. Considering the inherently complex
and dynamic nature of the traffic sign detection environment,
future research should explore strategies to maintain or
even enhance detection performance under adverse weather
conditions such as fog, snow, and low-light scenarios.
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