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ABSTRACT To address the limitations of traditional burdensome and time-consuming manual diagnosis
of Sjogren’s syndrome, this study proposes and implements an improved version of YOLOv5s algorithm,
named YOLOv5s-MSS. Using YOLOv5s-MSS, we are able to detect lymphocytic infiltrative lesions in
pathological images and provide assistance for pathological diagnosis. Given the small size of lymphocytes
and the difficulty in distinguishing them, we made four improvements to the YOLOv5s model. Firstly,
we replace the original CIOU loss function with the Focal-SIOU loss function to accelerate model conver-
gence and improve the detection accuracy. Additionally, we introduce the multi-head self-attention module
into the backbone to enhance the model’s ability to capture long range dependencies and overcome the
challenges posed by complex background. Furthermore, we introduce the Shuffle Attention module into the
neck, which enhances the model’s ability to fuse features from both spatial and channel dimensions. Finally,
we remove the 1/32 downsampling section in the neck and the corresponding large object detection head.
This not only enhances accuracy but also reduces parameters and model complexity. Experimental results
show that YOLOv5s-MSS achieves a mAP, Precision, and Recall of 93.2%, 87.2%, and 89%, representing
increases of 2.9%, 2.6%, and 2.8% compared to the original YOLOv5s model. Additionally, YOLOv5s-MSS
reduces the parameters by 28.2%. These results demonstrate the effectiveness and value of YOLOv5s-MSS
for lymphocyte detection.

INDEX TERMS Attention mechanism, focal-SIOU, lymphocytes detection, multi-head self-attention,
YOLOv5.

I. INTRODUCTION
Sjogren’s syndrome (SS) is a chronic inflammatory autoim-
mune systemic disease characterized by lymphocyte prolif-
eration and progressive damage to exocrine glands [1], [2],
[3], [4]. In addition to mainly affecting salivary and lacrimal
glands, it can also affect multiple organ systems such as the
lungs, kidneys, skin, and blood. It frequently coexists with
other systemic immune diseases, such as Rheumatoid arthritis
(RA), Systemic lupus erythematosus (SLE). The cause of
Sjogren’s syndrome remains unknown, and it may involve
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genetic, viral infection, sex hormone levels, and other factors.
It is noteworthy that Sjogren’s syndrome is not rare, with an
estimated 10 million patients worldwide. The prevalence of
Sjogren’s syndrome in China is approximately 0.3%-0.7%,
and the incidence rate increases with age. The age of onset for
Sjogren’s syndrome is mostly between 40 and 50 years old,
but it can also occur in children. However, many patients have
limited awareness of Sjogren’s syndrome and often delay
seeking medical treatment. In the era of big data, AI has
been widely utilized in medical imaging-based diagnostic
assistance. With the rapid development of digital pathology
technology, AI-assisted pathological diagnosis technology
is gradually emerging. At present, in the diagnosis of lung
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FIGURE 1. YOLOv5s-MSS framework. YOLOv5s-MSS consists of three primary parts: backbone, neck, and
head. To enhance feature extraction from the input image, we introduce the C3MHSA module in the backbone
to assist in processing and analysis. The Shuffle Attention module is introduced in the neck to enhance the
diversity and robustness of features. Additionally, we remove the 1/32 downsampling section in the neck,
along with its corresponding large object detection head. Furthermore, this figure provides a more detailed
framework of the C3 and cbs modules. It should be noted that the C3 module in the backbone utilizes
BottleNeck1, while the C3 module in the neck utilizes BottleNeck2.

cancer, breast cancer and other tumors, AI-assisted patholog-
ical diagnosis technology demonstrates not only efficiency,
stability, and high repeatability but also a performance com-
parable to that of professional physicians. However, there is a
lack of reports on the application of AI-assisted pathological
diagnosis in Sjogren’s syndrome.

In their daily work, physicians need to examine each
pathological section under different magnification lenses
to diagnosis Sjogren’s syndrome. This process is lengthy
and time-consuming. Due to the subjective heterogeneity
of physicians at different levels, misdiagnosis and missed
diagnosis often occur. Accurate and efficient pathological
diagnosis has become a significant challenge. Our goal is to
utilize an object detection algorithm to detect lymphocytic
infiltrative lesions in pathological images and assist in the
diagnosis of Sjogren’s syndrome.

II. RELATED WORK
Object detection is a fundamental task in computer vision
that aims to identify and localize objects of interest within
an image or video sequence. Significant advancements have
been made in the development of object detection mod-
els over the years [5], leading to improved accuracy and
efficiency.

The introduction of R-CNN [6] revolutionized the field
of object detection. Building on R-CNN, Fast R-CNN [7]

introduced a more efficient approach by sharing computa-
tion among region proposals. It used a region of interest
pooling layer to extract fixed-size features from the entire
image, which were subsequently processed by fully con-
nected layers for classification and bounding box regression.
Faster R-CNN [8] achieved further improvements in speed
and accuracy through the introduction of Region Proposal
Network (RPN) that shared convolutional features with the
detection network. YOLO (You Only Look Once) [9], [10],
[11], [12], [13], [14] is a series of algorithms in computer
vision that are widely used for object detection tasks. YOLO
algorithms belong to the one-stage object detection category,
which means that they perform classification and bounding
box regression simultaneously using a single network pass.
This efficiency and speed make YOLO highly attractive for
real-time applications.

Recent developments in object detection include architec-
tures such as RetinaNet [15], which addressed the problem of
class imbalance in the training data, leading to improved per-
formance. Another noteworthy approach is the Transformer-
based architecture, such as DETR (DEtection TRansformer)
[16] and RT-DETR (Real-Time DEtection TRansformer)
[17], which utilized self-attention mechanism to perform
object detection by casting it as a set prediction problem.

YOLOv5 is built on the YOLO series of algorithms and
adopts a more lightweight network structure. YOLOV5 is
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FIGURE 2. Illustration for calculating angle loss and distance loss.

well-suited for object detection tasks across diverse scenarios.
Yi et al. [18] proposed the YOLO-S model for insulator
and defect detection, incorporating a novel attention module,
MaECA, to enhance target perception. This model replaces
the original CIOU loss function with the SIOU loss func-
tion [19], effectively improving both the FPS and detection
accuracy. Xu et al. [20] proposed a fire detection algorithm
called Light-YOLOv5, which utilizes SepViT technology
to improve the accuracy of smoke and fire detection while
reducing the parameters. Additionally, this paper introduces
a novel Light-BiFPN structure, which not only reduces
computational costs and parameters but also enhances the
fusion of multi-scale features and enriches semantic features.
Zhu et al. [21] proposed an algorithm called TPH-YOLOv5,
replacing the original prediction heads with Transformer
Prediction Heads. This facilitates the detector accurately
localize objects in high-dense scenes.

Based on the experience of the aforementioned researchers,
this paper proposes the utilization of the YOLOv5s model
for detecting lymphocytic infiltrative lesions in pathological
images, with the aim of assisting in diagnosis. To over-
come the challenges posed by the small size and difficulty
in distinguishing lymphocytes, this paper introduces four
improvements to the YOLOv5s model: (1) The original
CIOU is replaced with the Focal-SIOU [22]. (2) The
C3MHSA module is introduced in the backbone. (3) The
Shuffle Attention module [23] is introduced in the neck.
(4) The 1/32 downsampling section in neck is removed,
along with its corresponding large object detection head. The
improved YOLOv5s framework is presented in Fig. 1.

III. IMPROVEMENT OF YOLOV5
A. FOCAL-SIOU
The efficiency of object detection is highly dependent on the
definition of the loss function. The conventional loss func-
tion typically focuses on several metrics related to bounding
box regression, including the distance, overlapping area, and
aspect ratio between the predicted and ground truth boxes, but
does not take into account the direction mismatch between
the ground truth and predicted boxes. This can cause the
predicted box to wander around during the training process,
leading to slower model training and less effective con-
vergence, ultimately affecting the detection performance of
the model. Focal-SIOU takes into account angle loss and
addresses the aforementioned problem. The loss function of

Focal-SIOUmainly consists of four parts: angle loss, distance
loss, shape loss, and IOU loss. The calculation principle for
angle loss and distance loss is illustrated in Fig. 2.
First, let α be the angle less than or equal to π /4 between

the coordinate centers of the predicted box and the ground
truth box. Ch and Cw represent the vertical and horizontal
distance between the two coordinate centers. Dh and Dw rep-
resent the maximum horizontal and vertical distance between
the predicted box and the ground truth box. The linear dis-
tance σ and angle α between the two coordinate centers can
be calculated by the following formulas:

σ =

√
C2
h + C2

w (1)

α = sin−1Ch
σ

(2)

The calculation formula for the angle loss 3is as follows:

3 = sin(2α) (3)

The formulas for the distance loss 1 are as follows, where
bgt represents the ground truth box and b represents the
predicted box. cx and cy stand for the horizontal and vertical
coordinate of the center, respectively. ρ represents the factor
for distance loss, while γ represents the factor for angle loss.

1 =

∑
t=x,y

(
1 − e−γρt

)
(4)

ρx =

(
bgtcx − bcx

Dw

)2

(5)

ρy =

(
bgtcy − bcy

Dh

)2

(6)

γ = 2 − 3 (7)

It can infer from the above formulas that the distance loss
incorporates angle loss. As α approaches 0, the contribution
of the distance cost decreases significantly. On the other hand,
the closer α is to π /4, the greater the contribution of the
distance cost. It should be noted that the cost of distance will
become conventional as α approaches 0.

The formulas for the shape loss � are as follows:

� =

∑
t=w,h

(
1 − e−ωt

)θ (8)

ωw =

∣∣w− wgt
∣∣

max (w,wgt)
(9)

ωh =

∣∣h− hgt
∣∣

max (h, hgt)
(10)

w and h represent the width and height of the box, respec-
tively. ω represents the factor for shape loss. θ indicates the
attention given to the shape loss and needs to be adjusted
accordingly based on a specific dataset. In this paper, θ is
set to 4.

After integrating the losses of the aforementioned
indicators, the SIOU loss function formula is as follows:

LSIOU = 1 − IOU +
1 + �

2
(11)

774 VOLUME 12, 2024



P. Jiang et al.: Lymphocyte Detection Method Based on Improved YOLOv5

FIGURE 3. C3MHSA module. The q represents query vector, k represents
key vector, and v represents value vector. ⊗ represents matrix
multiplication. z represents the output of self-attention layer. Although
we use 4 heads, we do not show them on the figure for simplicity.

1 represents distance loss, � represents shape loss, and
IOU represents the intersection over union ratio between the
ground truth box and the predicted box.

When predicting the bounding box regression of the object,
the process is affected by the problem of imbalanced training
samples. In an image, there are fewer high-quality anchor
boxes with small regression errors compared to low-quality
anchor boxes with large errors. The poor quality anchor boxes
can generate excessive gradients, which can affect the train-
ing process negatively. To address this problem, we integrated
the Focal loss with SIOU to distinguish between high-quality
and low-quality anchor boxes. The Focal-SIOU loss function
formula is as follows, where γ represents the Focal factor and
is set to 0.5.

LFocal−SIOU = IOUγ LSIOU (12)

B. C3MHSA MODULE
Themulti-head self-attentionmodule is a simple yet powerful
mechanism that is well-suited for various machine vision
tasks [24], [25], including image classification [26], [27],
[28], [29], object detection, and visual tracking [30], [31],
[32], [33]. In this paper, we replace the third C3module of the
original YOLOv5 with the C3MHSAmodule, as presented in
Fig. 1. Convolution can effectively capture local information,
but it lacks the ability to capture long range dependencies.
In order to aggregate the locally captured filter responses
globally, convolution-based architectures require the stack-
ing of multiple layers. Therefore, utilizing self-attention to
model global dependencies can be a more powerful and
scalable solution, eliminating the need for as many layers.
Self-attention implements pairwise entity interactions with
a content-based addressing mechanism, thereby learning a
rich hierarchy of associative features across long sequences
of data.

The framework of C3MHSA is presented in Fig. 3. The
input first generates the query vector q, key vectork , and
value vector v through point convolution. The query vector
q and key vector k are then multiplied to generate the cor-
responding content-content vector qkT . This vector passes
through a SoftMax layer and is multiplied with the value
vector v to obtain the output z. We also attempt to incorporate
position encoder within the MHSA layer. However, experi-
mental results indicate that the introduction of the position
encoder increases the parameters and negatively impacts the

algorithm’s precision on our dataset. Compared to the original
C3 module, the C3MHSA module reduces the parameters
while capturing more long range dependencies. This module
successfully overcomes the challenges presented by complex
background and significantly improves the accuracy of the
model.

C. SHUFFLE ATTENTION MODULE
Attention mechanism has emerged as a crucial component
in enhancing model detection performance. There are two
widely used types of attention mechanisms in computer
vision tasks: spatial attention and channel attention. Both
types of attention mechanisms enhance the original fea-
tures by aggregating the same feature from all positions
using different aggregation strategies, transformations, and
strengthening functions. Since each channel of a feature map
is considered as a feature detector, channel attention focuses
on ‘what’ is meaningful given an input image. In contrast
to channel attention, spatial attention focuses on ‘where’ an
informative part is located, which complements the channel
attention. Although fusing them together may lead to better
performance than their individual implementations, it will
inevitably increase the computational overhead and com-
plexity. To address this problem, we introduce the Shuffle
Attention (SA) module in the neck of YOLOv5. The SA
module can efficiently capture information from both the
channel and spatial dimensions with fewer parameters and
lower computational cost. The framework of SA module is
presented in Fig. 4.
Let the input size is c × h × w, SA module first splits

the input into G groups along the channel dimension, each
group size is c/G×h×w. Then each group is further divided
into two branches along the channel dimension. The two
branches generate their own feature maps through the spatial
attention mechanism and the channel attention mechanim,
respectively. Following the extraction of relevant features, the
two feature maps are concatenated, and the size changes back
to c/G × h × w. After all G groups have extracted features,
they aggregate again, generating an output of the same size
as the input. Finally, the output is reordered through channel
shuffle to ensure information flow between different groups
and enhance the model’s representational capability.

In the SA module, the channel attention mechanism per-
forms average pooling to get a set of statistics related to the
channels. After a linear transformation and sigmoid activa-
tion function, these sets of statistics are multiplied by their
corresponding elements of the input to obtain the object fea-
ture information. The spatial attentionmechanism normalizes
the input to get spatially correlated statistics. After a linear
transformation and sigmoid activation function, these sets of
statistics are multiplied by their corresponding elements of
the input to obtain the object position information.

We conducted a series of experiments to compare and
analyze the detection performance of five different attention
mechanisms. The results are presented in Table 1. Compared
to SE [34], CBAM [35], CA [36], and ECA [37], the SA
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FIGURE 4. Shuffle attention module. The left orange block represents the input feature maps, which are grouped to generate g sets of feature
maps of the same size, as represented by the purple blocks. Subsequently, each purple block is divided into two equally sized parts, which are
separately subjected to the channel attention mechanism and spatial attention mechanism to facilitate feature extraction, as illustrated by the
green and blue blocks. Once feature extraction is complete, the green and blue feature maps are concatenated. After all groups have
completed this operation, they aggregate back to the original input size, as represented by the right orange block. Finally, the output is
reordered through channel shuffle.

TABLE 1. Performance comparison of five attention mechanisms.

module has the highest precision and mAP with slightly
lower recall, while having fewer parameters. Based on the
experimental results, we introduce a SA module in the neck
that enhances and fuses the features extracted by the back-
bone for subsequent detection, while balancing accuracy and
parameter efficiency.

D. IMPROVING NECK STRUCTURE
The neck of the original YOLOv5 model connects three
detection heads with sampling ratios of 1/8, 1/16, and 1/32,
corresponding to small object detection, medium object
detection, and large object detection. However, as the objects
studied in this paper are all small and medium sized objects,
large object detection head is not suitable. Experimen-
tal results demonstrate that the 1/32 detection head not
only introduces additional parameters and computational
complexity but also reduces the accuracy of the detector.
Therefore, this paper has modified the neck of the original
YOLOv5 by removing the 1/32 downsampling section and
its corresponding detection head, as illustrated in Fig. 1.

IV. EXPERIMENT AND ANALYSIS
TheYOLOv5 algorithm offers five different scales ofmodels:
N, S,M, L, andX.While the structure of these five scale mod-
els remains the same, each scale model possesses a different
depth and width, resulting in varying sizes and complexities.
In this paper, we examine and analyze the ability of the
YOLOv5s model to detect lymphocytes in experiments. The
platform used for model training in this experiment is Intel
Core i9-13900 CPU and NVIDIA GTX4060 8G GPU. The

software uses Windows system, Python 3.11, PyTorch 2.0.1,
and Cuda11.8 deep learning framework.

The experiment involves 100 training epochs with a batch
size of 5. The input image size is 640 × 640. The initial
learning rate is set to 0.01, and SGD is used as the optimiza-
tion algorithm. The weight decay is 0.005 and the momentum
is 0.937.

A. LYMPHOCYTE DISCRIMINATION CRITERIA
In Whole-Slide Images (WSI) of labial gland biopsy, the
detection of lymphocytic infiltrative lesions is a diagnostic
criterion for Sjogren’s syndrome. However, in addition to
lymphocytes, other cell types such as epithelial cells and
mucus cells may be present in the biopsy sample, which
can interfere with the accurate identification of lympho-
cytes. To distinguish between different cell types at higher
magnification accurately, a comprehensive analysis of cell
morphological characteristics and staining effects is neces-
sary. This analysis should also take into account background
information to determine the cell category. The criteria for
lymphocyte discrimination are as follows:

1. Appearance: Lymphocytes are typically medium-sized,
single cells with a circular or ovoid shape. In WSI, they
present as a nucleus with a small amount of cytoplasm. They
usually lack protrusions or have smaller ones.

2. Nuclear characteristics: The nucleus of lymphocytes
is typically circular or ovoid with well-defined boundaries.
One or more deeply stained nucleoli can be observed within
the nucleus, appearing as one or more distinct dots or small
masses.

3. Staining properties: The nuclear staining properties
of lymphocytes are typically intense, using commonly
employed staining agents such as eosin (H&E) staining or
Kalman staining. The cytoplasm usually appears lighter in
color.

B. EXPERIMENTAL DATASET
The experimental dataset used in this paper is derived
from WSI of labial gland biopsy specimens obtained from
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FIGURE 5. Illustration of manually annotated lymphocytes. Green boxes
indicate the manually annotated lymphocytes.

FIGURE 6. Training mAP curves of two models. Orange line represents the
original YOLOv5s model, and the blue line represents the YOLOv5s-MSS
model.

Yantai Shan Hospital. The use of this dataset has been
approved by the hospital’s ethics review committee. Due to
the significant size of the WSI, it is not feasible to detect
lymphocytes directly. Therefore, we segment the WSI into
block images of size 640 × 640 at the highest resolution and
create a dataset containing 300 images. Based on the criteria
for lymphocyte discrimination, the lymphocytes within these
images are manually annotated.

It should be noted that due to the average number of
lymphocytes contained in a single image being 30, and
some images even exceeding 70, the manual labeling pro-
cess was extremely cumbersome and time-consuming. Our
sole detection object is lymphocyte, and there are a signifi-
cant number of lymphocytes with distinctive and consistent
features present in a single image. We chose to manually
annotate 300 images and opt for a lighter model for training,
in order to achieve a balance between model training and
annotation complexity. The dataset is divided into a train set,
a validation set, and a test set with a ratio of 8:1:1. An example
of an annotated image is presented in Fig. 5, where the green
boxes indicate the manually annotated lymphocytes.

C. EVALUATION INDICATORS
We utilized a set of standard metrics to evaluate the perfor-
mance of the improved YOLOv5 in lymphocyte detection
tasks. The primary metrics considered in this paper are Recall
(R), Precision (P), and mean Average Precision (mAP). Since

the sole object to be detected in this study is lymphocyte,
these metrics can be represented as follows:

mAP =

∫ 1

0
P (R) dR (13)

P =
TP

TP+ FP
(14)

R =
TP

TP+ FN
(15)

Among these metrics, TP (true positive) refers to instances
that are correctly predicted as positive, TN (true negative)
refers to instances that are correctly predicted as negative,
FP (false positive) refers instances that are incorrectly pre-
dicted as positive, and FN (false negative) refers instances that
are incorrectly predicted as negative.

D. ABLATION EXPERIMENT
The YOLOv5s-MSS proposed in this paper has introduced
several improvements to the original algorithm’s loss function
and network structure. To evaluate the effectiveness of differ-
ent modules and their combinations, we conducted ablation
experiments on our dataset. The experimental results are
presented in Table 2.

As shown in Table 2, after replacing the original C3module
with the C3MHSA module in the backbone, the model’s
precision improved by 2.1%, while the recall remained rel-
atively stable. The mAP, parameters, and GFLOPs slightly
reduced. After introducing the Shuffle Attention module in
the neck, the model’s precision increased by 2.3%, while
the recall remained relatively stable. The mAP increased by
0.7%, and the parameters and GFLOPs slightly increased.
After modifying the neck structure, the model’s precision
improved by 0.4%, the recall increased by 4.3%, the mAP
rose by 2.1%, and the parameters and GFLOPs significantly
reduced. After replacing the original CIOUwith Focal-SIOU,
the model precision improved by 2.1%, the recall increased
by 2.4% and the mAP rose by 0.2%. The experimental results
demonstrate that the implementation of improvement mea-
sures in this paper resulted in variable enhancements in the
detection performance of the original YOLOv5s algorithm.

After merging the improvement measures, the final pre-
cision of the model reached 87.2%, the recall reached 89%,
and the mAP achieved 93.2%. In comparison to the original
YOLOv5s, the precision improved by 2.9%, recall increased
by 2.6%, mAP rose by 2.8%, and the parameters decreased
by 28.2%, while GFLOPs decreased by 13.3%. The exper-
imental results demonstrate that the improvement measures
employed in this paper have a significant positive effect on
enhancing lymphocyte detection performance.

The training mAP curves of the two models are presented
in Fig. 6, where the orange line represents the origi-
nal YOLOv5s model, and the blue line represents the
YOLOv5s-MSS model. As is evident from the figure, the
training mAP of YOLOv5s-MSS consistently surpasses that
of YOLOv5s, and its convergence speed is also faster.
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TABLE 2. Results of ablation experiment.

TABLE 3. CNN based algorithm comparison results.

TABLE 4. Transformer based algorithm comparison results.

The detection performance of YOLOv5s-MSS is presented
in Fig. 7, where the boxes represent the lymphocytes detected
by the model. As is evident from the figure, YOLOv5s-MSS
generates accurate and non-overlapping prediction boxes.
In contrast, the prediction boxes produced by YOLOv5s
overlap significantly, leading to some detection errors. The
detection results demonstrate that YOLOv5s-MSS adheres
strictly to the criteria for lymphocyte discrimination. It effec-
tively extracts background information while efficiently
recognizing interfering cells with similar color and shape,
such as epithelial cells, ensuring accurate detection.

E. MODEL COMPARISON EXPERIMENT
To evaluate the performance of YOLOv5s-MSS in lympho-
cyte detection, we first compared it with other state-of-the-art
and similar size CNN-based object detection models, includ-
ing YOLOv3, YOLOv6, YOLOv7, RetinaNet, and YOLOv8.
As presented in Table 3, YOLOv5s-MSS achieves a bal-
ance between model complexity and detection accuracy, and
possesses certain advantages compared to other algorithms.
As presented in Fig. 7, YOLOv7 incorrectly detects many
other types of cells, indicating a lack of full understanding
of lymphocyte characteristics and a tendency to be influ-
enced by background interference during detection. Although
the detection accuracy of YOLOv8s is relatively high, there

are still some cases of overlapping bounding boxes in local
regions with dense lymphocytes.

Then we compared our YOLOv5s-MSS with state-of-the-
art Transformer-based object detection models, including
DETR and RT-DETR, to further evaluate its performance.
Table 4 demonstrates that YOLOv5s-MSS boasts a notewor-
thy accuracy advantage over the other two network models.
Compared to DETR, YOLOv5s-MSS has an mAP advantage
of 23.1%. When compared to RT-DETR, the mAP advantage
is 4.9%. Additionally, YOLOv5s-MSS has fewer network
parameters and lower GFLOPs. It should be noted that train-
ing DETR and RT-DETR is more challenging than training
YOLOv5s-MSS. DETR requires 300 epochs and a total of
170 minutes to achieve a moderate level of mAP on our
dataset. The training time is approximately 28 times that
of YOLOv5s-MSS. RT-DETR, despite being relatively easy
to converge, still has a training time that is approximately
5 times that of YOLOv5s-MSS. Therefore, in terms of train-
ing complexity, YOLOv5s-MSS, which is based on the CNN
architecture, is simpler to train than DETR and RT-DETR,
which are based on the Transformer architecture. As pre-
sented in Fig. 7, DETR’s detection has a significant amount
of overlapping boxes and erroneous detections, indicating a
lack of sufficient feature learning of lymphocytes and a ten-
dency to be influenced by background interference. Although
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FIGURE 7. Comparison of different algorithm detection effects.
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FIGURE 8. YOLOv5s-MSS assists pathological diagnosis. Top three images represent the lesions marked by
the physician, and the bottom three images represent the lesions identified by YOLOv5s-MSS.

RT-DETR’s detection accuracy is relatively higher, there are
still some cases of missed detections in the edge area.

F. AUXILIARY PATHOLOGICAL DIAGNOSIS
We use the YOLOv5s-MSS algorithm to perform block
detection on labial gland biopsy WSI and count the number
of lymphocytes in each block. Blocks with high lympho-
cyte counts are labeled in red as suspicious lesions for
further physician evaluation in diagnosing Sjogren’s syn-
drome. As presented in Fig. 8, the top three images represent
the lesions marked by the physician, while the bottom three
images illustrate the lesions identified by YOLOv5s-MSS.
It is evident that the lymphocyte detection model, based on
improved YOLOv5s, effectively identifies and labels sus-
picious lesion areas, which roughly correspond to those
annotated by the physician. In lesion-free areas, there are
no instances of erroneous labeling, indicating that the model
boasts high accuracy in lesion discernment and can assist in
pathological diagnosis to a certain extent.

V. CONCLUSION
This paper presents the YOLOv5s-MSS algorithm, which
is suitable for assisting in the diagnosis of Sjogren’s syn-
drome. Four improvement measures have been proposed for
lymphocyte detection. Firstly, we replace the original CIOU
loss function with the Focal-SIOU loss function to accelerate
the model training and improve the detection accuracy. Addi-
tionally, we introduce a multi-head self-attention module
into the backbone to enhance the model’s ability to cap-
ture long range dependencies and overcome the challenges
posed by complex background. Furthermore, we introduce
the Shuffle Attention module into the neck, which enhances

the model’s ability to fuse features from both spatial and
channel dimensions. Finally, we remove the 1/32 downsam-
pling section in the neck and the corresponding large object
detection head, which not only improves accuracy but also
reduces the parameters and model complexity. The exper-
imental results demonstrate that YOLOv5s-MSS achieves
mAP, Precision, and Recall of 93.2%, 87.2%, and 89%,
respectively, representing increases of 2.9%, 2.6%, and 2.8%
over the original YOLOv5s model. Additionally, it reduces
the parameters by 28.2%, thus proving the efficacy of the
proposed improvement measures. We also explore the appli-
cation of YOLOv5s-MSS in assisting pathological diagnosis,
and the results indicate that it is effective and valuable for
pathological diagnosis.
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