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ABSTRACT Rotating machines require bearings to operate smoothly. However, wear, misalignment, and
poor lubrication can degrade bearings over time. Fault diagnosis models identify and classify bearing faults.
A fault diagnosis model trained in a specific working condition may not perform well in different working
conditions. Real-world datasets are mixed with various work environment conditions; therefore, validating a
model using different working conditions datasets is necessary. In this study, raw vibrational accelerometer
data of variable working conditions is preprocessed using the window length and stride method to generate
a data format suitable for evaluating the proposed model. This model employs the Transfer learning-based
VGG16 model as the feature extractor and random forest as the classifier, and it has proven to be highly
effective. This proposed fault diagnosis model adapts to different work environments and enhances fault
classification at variable working conditions. The performance of the proposed model is evaluated using
various metrics such as confusion matrix heatmap, t-SNE plot, precision-recall curve and learning curve.
Results obtained from these metrics indicate that this model performs well compared to others. The overall
accuracy of the model is 99.90%, and both the training and testing of this model are fast. It is evident from
the learning curve evaluation that this model is free from over- or under-fitting issues. Overall, this model
is reliable and suitable for classifying bearing faults at different working conditions and can be useable for
real world purposes.

INDEX TERMS Bearing fault, bearing fault classification, bearing fault classification under variable
working conditions, machine condition monitoring, random forest, transfer learning, VGG16.

I. INTRODUCTION
The heart of any industrial entity or manufacturing facility
is the machine. There are numerous varieties of machinery
available in the industry. The profitability of any manu-
facturing facility is extremely reliant on the time machines
are operational. In order to increase the company’s profit
margin, it is crucial to decrease outages, as maintenance
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expenses account for approximately 15–20% of total pro-
duction costs [1]. It is a fact, however, that nearly 30%
of maintenance expenditures are a waste of money due
to improper maintenance strategy implementation and fail-
ure to conduct maintenance at the appropriate times. The
unexpected failure of machine components may result in
significant production losses. Mechanical systems rely heav-
ily on the reliable and safe operation of rotating machinery
due to its widespread importance in industry [2]. Although
every machine is necessary for the operation of the plant,
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only 5–10% of machinery is deemed critical. Examples of
essential components are motors, compressors, turbines, boil-
ers, and generators. According to statistics, electrical motors
are utilized as prime movers in over 90% of mechanical
engines, including gearboxes, compressors, and pumps [3].
Rolling element bearings, one of the most crucial parts of
an electric motor, have a major effect on performance and
dependability [4], [5]. Bearing-related faults, stator winding-
related faults, and rotor-related faults are the most common
types of motor failure. Nearly 40% of these defects are
attributed to bearing-related problems [6]. However, these
bearings are frequently subjected to harsh environments
during operation, including high speeds, temperatures, and
pressures, all of which can cause malfunctions and break-
downs. Preventing major accidents and costly economic
losses requires prompt and precise detection of bearing
defects [7], [8]. Therefore, working on reliable techniques
for identifying bearing faults is important. Model-driven and
data-driven approaches can be used for defect identifica-
tion [9], [10]. Some model-driven techniques are vibration,
temperature, and wear debris analysis. Vibration analysis is
the most useful of these techniques since it may provide
plenty of information about anomalies [11]. Establishing the
physical model is difficult without prior understanding of the
physical structure, so model-driven approaches present a sig-
nificant challenge. On the other hand, data-driven approaches
do not need bearings expertise to identify problems using
the vibration signals collected from sensors. Fault identifi-
cation relies heavily on carefully selecting vibration signal
features [12]. Conventional data-driven fault diagnostic mod-
els use machine learning algorithms, classifiers, and signal
processing techniques [13], [14], [15]. For example, using
manifold learning and wavelet neural networks,Wu et al. suc-
cessfully classified faults in a diagnostic setting [16]. Cerrada
et al. proposed a fault diagnosis methodology that utilizes a
combination of a genetic algorithm and random forest [17].
Fault diagnostic techniques based on deep neural networks
have also been incorporated. Jia et al. [18] trained a deep neu-
ral network with frequency spectra collected from vibration
data to detect problems. The use of stacked denoising autoen-
coders in health state recognitionwas studied by Lu et al. [19].
A model for bearing diagnosis using an adaptive convo-
lutional neural network was proposed by Guo et al. [20].
Ren et al. [21] used a model based on deep neural networks
to estimate the remaining service life of rolling bearings.
Using Deep Boltzmann Machines, Deep Belief Networks,
and Stacked Autoencoders, Chen et al. [22] were able to
detect faults in rolling bearings. Gaussian-Bernoulli deep
Boltzmann machines were created by Li et al. [23] for signal
analysis and feature learning. A deep neural network-based
fault diagnostic model was suggested by Zhang et al. [24]
that could learn directly from time series data without the
need for signal preprocessing. However, the performance
of these conventional data-driven approaches using machine
learning algorithms is constrained to the same feature space,
distribution, and working conditions. They are unable to

adapt to the ever-changing work environment and its plethora
of data sources. However, in practical situations, the operating
conditions of machinery, particularly bearings, are variable.
Due to the growing fault diameter makes a constant radial
load impossible to maintain. Traditional diagnostic methods
rely on manual feature extraction techniques, demanding
domain expertise and significant time investment. Moreover,
these methods often struggle to capture complex nonlinear
relationships in the data [25].Transfer learning is popular
in bearing fault diagnosis systems to solve these issues.
Transfer learning uses pre-trained models like VGG16 as
feature extractors to learn important representations from
enormous datasets. A random forest classifier classifies faults
using extracted features. This method improves generaliza-
tion, feature extraction, and manual labor. They can extract
relevant features from complex data, deep learning methods
like VGG16 are optimal for bearing fault diagnosis. The
pre-trained VGG16 model can readily identify vibration sig-
nal patterns and discriminative properties. This study uses
VGG16 feature extraction and a random forest classifier
to identify bearing defects. It employs transfer learning to
enhance diagnostic performance and minimize overfitting
resulting from insufficient training data. The bearing defect
dataset from CWRU is used to evaluate this method. Sev-
eral criteria, such as confusion matrix analysis, training and
testing duration, precision recall curve, t-SNE (t-distributed
Stochastic Neighbor Embedding) plot and comparisons to
existing methods, are used to evaluate the efficacy of this
method. In addition, this study uses learning curve visu-
alization to acquire understanding of the model’s learning
abilities with changing the number of training sample. The
results of this study demonstrate that the proposed method-
ology is efficacious in accurately detecting bearing faults
under diverse operational conditions. The contributions of
the research can be extended beyond bearing fault diagnosis.
By employing transfer learning and random forest classifica-
tion, our model exemplifies the potential of combining deep
learning techniques with traditional machine learning algo-
rithms. Knowledge gained from this research can be used to
make educated decisions during the fault diagnostic process
for a wide variety of mechanical and electrical parts. In the
following sections methodology of proposed model, experi-
mental setup, data of different working conditions, analysis
of results and findings are discussed elaborately.

II. THEORETICAL BACKGROUND OF THE PROPOSED
MODEL
A. TRANSFER LEARNING AND VGG 16
Transfer Learning is a technique where the model is pre-
trained using a massive dataset. Transfer learning mainly
consists of two components: pre-trained and transfer net-
works. During this training, the model learns to recognize
essential features, which helps them classify complex data
patterns easily. Transfer learning helps the model to become
efficient when dealing with small-scale datasets due to
its pre-trained network. It also reduces dependence on
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FIGURE 1. (a) Architecture of VGG 16 model (b) Architecture of proposed
model.

computational resources and training duration. The VGG-16
model architecture is illustrated in Fig.1(a), and the proposed
model architecture is depicted in Fig.1(b), which is discussed
in Chapter 3, section B. It is composed of a total of thirteen
convolutional layers, two fully connected layers, and one
SoftMax classifier. A sixteen-layer network was constructed
by Karen and Andrew, comprising convolutional and fully
connected layers. The authors of the study employed a con-
figuration of 3 × 3 convolutional layers stacked sequentially
to maintain a simplified architecture for the model [26].The
initial two convolutional layers of the network consist of
64 feature kernel filters, each with a filter size of 3 × 3. Upon
insertion of an RGB image with a depth of 3 into the layers,
as mentioned above, the resultant output dimensions trans-
form 224 by 224 by 64. Subsequently, the resulting output
is forwarded to a max pooling layer with a stride of 2 [26].
The network’s third and fourth convolutional layers consist
of 128 feature kernel filters, each with a filter size of 3 × 3.
After the layers mentioned above, a max pooling operation is
executed with a stride of 2, which leads to a decrease in the
output dimensions to 56×56×128. The convolutional layers
of the fifth, sixth, and seventh network layers are character-
ized by a kernel size 3 × 3. The present study reveals that
the three-layered framework under investigation comprises

256 feature maps in each constituent layer. Subsequent to
the convolutional layers, a max pooling layer is implemented
with a stride of 2 [26]. The eighth to thirteenth layers of
the model consist of two sets of convolutional layers, each
utilizing a kernel size of 3 × 3. The convolutional layers are
structured into sets, each comprising 512 kernel filters. After
the layers, as mentioned earlier, a minimum pooling layer is
implemented with a stride of 2. The present study reveals that
the neural network architecture under investigation comprises
two fully connected hidden layers, namely the fourteenth and
fifteenth layers, each consisting of 4096 units. After the layers
above, a SoftMax output layer consisting of 1000 units is
present at the sixteenth layer [26].

Each layer of VGG 16 needs to be discussed in detail to get
a clear picture of this model. Fig.2 depicts the convolutional
layer of the vgg16 model. A kernel matrix is applied to the
input matrix in the convolutional layer to generate a feature
map for the succeeding layer. The kernel matrix is slid across
the input matrix as part of a mathematical operation known as
convolution. An element-wise matrix multiplication is con-
ducted at each position, and the resulting values are added
to create the feature map. Convolution is a specialized linear
operation utilized extensively in numerous fields, including
image processing, statistics, and physics. It is applicable
along multiple axes. Calculation of the convoluted image for
a 2-dimensional input image (I) and a 2-dimensional kernel
filter (K) is as follows.

S (i, j) =

∑
m

∑
n
I (m, n)k(i− m, j− n) (1)

The activation function is a node that succeeds the convolu-
tional layer and transforms the input signal nonlinearly. ReLU
is a piecewise linear function that returns the input value if
positive and returns zero otherwise [26]. The disadvantage
of the convolutional layer’s feature map output is that it
captures the precise position of input features. This means
that even minor adjustments to the input image, such as
cropping or rotation, can result in an entirely different feature
map. We employ down-sampling techniques on the convo-
lutional layers to address this issue. After the nonlinearity
layer, a pooling layer can be applied to accomplish down
sampling. Pooling facilitates the creation of a representation
that is approximately invariant to minor input translations.
Invariance to translation signifies that if we translate the input
marginally, the majority of the pooled outputs retain their

FIGURE 2. Element-by-element matrix multiplication and summation of
the results on the feature map in convolutional layer.
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FIGURE 3. Pooling layer.

original values. A schematic of the pooling layer is shown
in Fig.3. The output of the final pooling layer functions as
the input for the fully connected layer in the final stage of
a convolutional neural network. There may be one or more
of these layers with complete connectivity. The term ‘‘fully
connected’’ suggests that each node in the first layer is con-
nected to each node in the second [26].A schematic of the
vgg16 fully connected layer is depicted in Fig.4.

FIGURE 4. Fully connected layer.

B. RANDOM FOREST
The random forest classifier is a combination of tree classi-
fiers, each generated by independently sampling a random
vector and the input vector. Each tree then assigns a unit
vote to the most prevalent class for the purpose of classifying
an input vector [27]. Fig.5 depicts a schematic diagram of
a random forest classifier. In this study, the random forest
classifier builds a tree by arbitrarily selecting features or fea-
ture combinations at each node. Bagging is used to construct
the training dataset, which includes randomly selecting N
examples from the original training set, with replacement,
where N represents the shape of the primary training set.
Bagging is performed individually for every designated fea-
ture or combination of features. When classifying examples
(pixels), the tree predictor with the highest number of votes
is chosen [27]. When devising a decision tree, choosing both
an attribute selection measure and a pruning technique is
imperative. Various techniques exist for attribute selection in
decision tree induction, wherein most approaches involve an
evident linkage of a quality measure with each attribute. The

FIGURE 5. Schematic of random forest classifier principle.

Information Gain Ratio criterion [28] and the Gini Index have
commonly employed attribute selection measures in decision
tree induction. In the random forest classifier, the Gini Index
is used to measure the degree of impurity of an attribute in
relation to the classes. The Gini index can be expressed as

Gini index = 1−
∑n

i=1
(pi)2

= 1 −

[
(p+)2 + (p−)2

]
(2)

P+ is the probability of the positive class, and P- is the
probability of the negative class [29]. The random forest
classifier employs a combination of features to train each
tree to its maximum depth. One notable benefit of utilizing
the random forest classifier compared to other decision tree
techniques, such as the one introduced by Quinlan [28],
is that the fully developed trees are not subjected to pruning.
According to existing research, the performance of tree-based
classifiers is more significantly influenced by the selection
of pruning methods than attribute selection measures [30],
[31]. According to Breiman’s [27] proposal, the general-
ization error converges consistently as the number of trees
increases, even in the absence of tree pruning. This scenario
does not concern overfitting, as the Strong Law of Large
Numbers applies. The random forest classifier requires two
user-defined parameters: the number of features used at each
node to generate a tree and the number of trees to be produced.
The feature of importance in random forest can be calculated
using this formula.

fii =

∑
j : node j splits on featureinij∑

k∈ all nodes nik
(3)

where fii is the importance of feature i and nij is the impor-
tance of node j. This formula can achieve a normalized form
of the feature

Norm fii =
fii∑

jϵ all features fij
(4)
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The final feature importance of random forest on each tree
can be calculated by dividing the total number of trees.

RF fii =

∑
jϵ all features norm fii j

T
(5)

where RF fii is the feature of importance i calculated from
all the trees in random forest, Norm fii is normalized fea-
ture importance for i in node j and T is the total number
of trees [32]. The optimal split is determined solely based
on the designated features at each node. The random forest
classifier comprises a specific number of trees, denoted as
N, determined by the user’s input. The assigned value can be
customized to meet specific preferences. Before classifica-
tion, every case in a novel dataset undergoes evaluation by
each N tree. Subsequently, the forest determines the category
that has received themost votes from the N trees in the current
scenario.

III. METHODS
A. DATA PREPROCESSING
The data collection process entailed acquiring unprocessed
vibration data from the Bearing Data Center located at
Case Western Reserve University. The primary dataset com-
prised mainly of vibration measurements obtained from an
accelerometer transducer situated at the drive end of a bear-
ing. The data was gathered under diverse working conditions,
ranging from a load of 0 horsepower to 3 horsepower and
with varying rotational speeds. In order to initiate the data
preprocessing phase, the original vibration data was line
plotted and shown in Fig. 6. This visualization allowed for a
comprehensive understanding of the patterns and character-
istics of the data. In this study, a sliding window technique
with window size and stride parameters was implemented
to generate experimental data. This procedure involved slid-
ing a window of a predetermined size over the vibration
data with a predetermined step size (stride), allowing the
extraction of overlapping segments. The preprocessed dataset
was then constructed by arranging these segments into a
two-dimensional array of RGB images, which are shown
in Fig. 7.

B. PROPOSED CLASSIFICATION MODEL
The study conducted a multiclass analysis that involved iden-
tifying and classifying several distinct types of bearing faults.
The study utilized the accelerometer reading spectrogram as
the primary classification unit and employed VGG16 as the
feature extractor in conjunction with the RandomForest Clas-
sifier as the classificationmodel. The VGG16model has been
modified to enhance its performance in extracting relevant
features from vibration data. These modifications include
adjustments to the input shape, weight initialization, layer
freezing, and feature extraction techniques. Incorporating the
Random Forest classifier enhances the performance of the
VGG16 model by using ensemble learning methodologies to
generate precise predictions based on the extracted features.
Integrating feature extraction and classification techniques

FIGURE 6. (a) Spectrum of Normal condition at 0 HP load (b) Spectrum of
Ball fault at 2 HP load (c) Spectrum of Outer race fault at 1 HP load.

addresses the limitations of VGG16, yielding a more robust
and efficient model tailored to a particular objective. This
proposed model eliminates the final fully connected layer
responsible for classification. This model uses the Random
Forest Classifier instead of a fully connected layer for classi-
fication purposes. The Fig. 1(b) illustrates the architecture of
the proposed model.

C. FEATURE EXTRACTION AND CLASSIFICATION
The utilization of the VGG16 model as a feature extractor in
this study enables the capture of significant representations
from the preprocessed vibration data. A concise and informa-
tive depiction of the input data can be achieved by omitting
the ultimate classification layer.

The feature representation extraction is accomplished by
utilizing the output obtained from the ultimate pooling layer.
The VGG16 model’s extracted features indicate significant
information about the fundamental patterns and structures
inherent in the vibration data. Upon acquiring the feature
representations from the VGG16 model, the Random Forest
classifier is utilized for training and prediction purposes.
The extracted features from the training dataset were uti-
lized as input to train the Random Forest classifier. The
process involves training the classifier to establish a correla-
tion between the feature representations and the labels that
signify the health status of the bearing, such as normal or
faulty. In the training phase, a random forest classifier is con-
structed by creating multiple decision trees, each using only
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FIGURE 7. (a) Preprocessed RGB image of Normal condition at 0 Hp load
(b) Preprocessed RGB image of outer race fault at 1 Hp load
(c) Preprocessed RGB image of ball fault at 0 Hp load.

a subset of the available features and labels. The predictions
generated by these decision trees are a result of the patterns
learned within the feature space. Following the training of
the Random Forest classifier, the extracted features from
the testing dataset are inputted into the classifier to make

FIGURE 8. Comprehensive research methodology overview.

FIGURE 9. Instrumentation for the acquisition of bearing vibration signals
for CWRU bearing dataset.

predictions regarding the health condition of the bearings.
The classifier employs the acquired patterns from the training
stage to generate accurate predictions for the unobserved
vibration data. Fig.8 serves as an illustrative representation
of the comprehensive workflow employed in this research.

IV. A CASE OF BEARING FAULT CLASSIFICATION IN
MULTIPLE WORKING CONDITION
This section pertains to the discussion of experimental con-
figurations. The present study evaluates the efficacy of the
VGG16 model in conjunction with a random forest classifier
to diagnose bearing defects, utilizing the CWRU bearing
dataset. The gradual process of natural bearing degradation
spanning several years prompts researchers to induce bearing
defects artificially or utilize accelerated life testing methods
to conduct experiments and gather data, as per existing liter-
ature [33]. However, the process of collecting data remains a
time-intensive task. Thankfully, some institutions have pro-
vided their bearing fault datasets for academic research, such
as the CWRU dataset [34] and the Intelligent Maintenance
Systems (IMS) dataset [25]. The CWRU bearing dataset
is widely recognized as a highly utilized and dependable
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TABLE 1. Information on CWRU data selected for training and testing.

TABLE 2. Distribution of training and testing samples for different
working conditions.

TABLE 3. Accuracy of proposed model in various working conditions.

data source within the research community. As such, this
study employs CWRU datasets to authenticate the efficacy
of the proposed diagnostic model. CWRU datasets are vibra-
tion recordings from a 2-horsepower Electric motor. The
experimental data acquisition configuration of Case Western
Reserve University (CWRU) is depicted in Fig.9.

Using electric dischargemachining, defects are seeded into
the drive end (DE) bearing (6205-2RS JEM SKF) and fan

TABLE 4. Comparison of the classification accuracy of various published
methodologies.

FIGURE 10. Performance metrics of proposed model for (a) case-1,
(b) case-2, (c) case-3.

end (FE) bearing (6203-2RS JEM SKF bearing) at depths
of 0.007-inch, 0.014 inch, and 0.021 inch, with a diameter
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FIGURE 11. Heat map confusion matrix of proposed model for (a) case-1.

of 0.040 inch at the inner raceway, rolling element, and outer
raceway. Accelerometers were positioned at the 12 o’clock
position at DE, FE, and themotor housing’s baseline to record
vibration signals. In inches, the fault depth (FD) represents
the severity level. Bearing defects were used to record vibra-
tion data for motor loads of 0, 1, 2, and 3 horsepower (motor
speeds of 1797 to 1730 RPM). Using a 16-channel DATA
recorder, vibration signals were acquired at sampling rates of
12kHz and 48kHz for drive end bearing defects. Recordswere
made regarding the torque transducer/encoder’smeasurement
of speed and horsepower [35]. This work used 48k drive

end bearing fault data to evaluate the proposed model. Three
distinct cases are evaluated in this study. Each case is tabu-
lated with fault categories Inner Race (IR), Outer Race (OR),
Ball(B), and fault depths, such as 0.007-inch, 0.014-inch,
and 0.021-inch, for bearing faults. As shown in Table 1, the
CWRU dataset is selected for training and testing purposes
based on various bearing defect types and loading conditions.
Themodel is trained using 75% of the RGB image data, while
25% is utilized for evaluating the model’s efficacy.

In Table 2, the number of training and testing samples
utilized in this study are broken down. In this research, Python
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FIGURE 11. (Continued.) Heat map confusion matrix of proposed model for (b) case-2.

was the primary programming language employed for tasks
encompassing data preprocessing, feature extraction, classifi-
cation, and the generation of evaluation metrics and graphical
visualizations to assess the effectiveness of the proposed
methodology.

V. RESULTS AND DISCUSSION
A. PERFORMANCE METRICS AND ACCURACY OF THE
PROPOSED MODEL
Accuracy is a widely used performance metric for classifi-
cation models. The provided statement refers to the accuracy
metric, which quantifies the proportion of correctly classified
instances in relation to the total number of instances in the
dataset. Table 3 demonstrates that our proposed model is

robust under multiple load and fault conditions. In cases 1, 2,
and 3, the proposed model’s accuracy is 99.8%, 99.91%, and
100%. The evaluation of model accuracy compared to exist-
ing models is a crucial factor in assessing the performance
of the proposed model. Table 4 showcases the comparison of
the accuracy of the proposed model with existing literature.
The performance metrics of the proposed model for three
cases are presented in Fig. 10. By analyzing this figure, one
can gain insight into the classifier’s performance in correctly
identifying positive instances and averting false positives
and negatives. Analyzing the precision, recall, and F-1 score
from the preceding figure shows that the proposed model
for bearing defect classification is robust under all working
conditions.
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FIGURE 11. (Continued.) Heat map confusion matrix of proposed model for (c) case-3.

B. PERFORMANCE VISUALIZATION OF MODEL ON
DIFFERENT CLASSES
Figure 11 illustrates the heat map confusion matrix of the
proposed model. The model performed poorly in Fig.11(a),
exhibiting inconsistent classification. Instead of IR021_0, the
model incorrectly classifies 1.7% as IR007_0.

In addition, 0.6% of the testing sample is misclassified
by the model as IR021_0 rather than IR007_0. Therefore,
IR021_0’s true positive response was 98%, and IR007_0’s
was 99%. Similarly, the model generates incorrect results for
Fig.11(b), 1.3% of the testing sample was misclassified as
B007_1 rather than OR014@6_1. Case 2 had a true positive

rate of 99%. In Fig.11(c), the proposedmodel correctly classi-
fied all fault categories. Figure 12 demonstrates the proposed
model’s precision-recall curve for three cases. In Fig.12(a),
class IR007_0 and IR021_0 are misclassified. Since IR007_0
has a precision and recall of 99%, just 1% of instances in
this class are incorrectly classified. IR021_0 has a precision
and recall of 98%, meaning that 2% of instances of this
class are misclassified. Similarly, in Fig.12(b) precision and
recall is decreased because of one fault categories incor-
rect classification. The precision of OR014@6_1 is 99%,
indicating that 1% of instances classified as OR014@6_1
is incorrectly classified. Similarly, class OR014@6_1 has a
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FIGURE 12. Precision-recall curve of proposed model for (a) case-1,
(b) case-2, (c) case-3.

recall score of 99%,meaning that 1% of instances in this class
are incorrectly identified. In Fig.12(c), in this instance, all
fault classes are classified flawlessly, resulting in 100% recall
and precision for all fault categories. This indicates that the
model identifies each instance of each fault class accurately.
Figure 13 illustrates the Receiver operating characteristic
curve of the proposed model.

In Fig.13(a), all other classes are accurately classified
except for classes IR007_0 and IR021_0. The AUC of
class IR007_0 is 0.99, and class IR021_0 is 0.98. Similarly,

FIGURE 13. Receiver operating characteristic curve of proposed model for
(a) case-1, (b) case-2, (c) case-3.

in Fig.13(b), except for class OR014@6_1, all other classes
are perfectly distinguishable; therefore, class OR014@6_1
has an AUC of 0.99. In Fig.13(c), the classifier can distin-
guish each class from the others, indicating that the AUC
value for all classes is 1.

C. VISUALIZATION OF DATA BEFORE AND AFTER
CLASSIFICATION
The visualization of data before and after classification for
three different cases are presented in figures 14 and 15.
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FIGURE 14. Raw vibrational data plotting using t-SNE before
classification for (a) case-1, (b) case-2, (c) case-3.

FIGURE 15. Raw vibrational data plotting using t-SNE after classification
for (a) case-1, (b) case-2, (c) case-3.
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FIGURE 16. Learning curve of proposed model for (a) case-1, (b) case-2,
(c) case-3.

In Fig.14, t-SNE is used to plot raw vibrational data.
Before classification, the data points representing various
fault categories overlapped, making fault classes difficult
to distinguish. However, after training the data with the

proposed model, the model effectively learned the underlying
patterns present in the diverse datasets. After plotting the
model’s learning using t-SNE, as depicted in Fig.15, it is
evident that a simple visual inspection can now distinguish
the defect types.

D. PERFORMANCE OF MODEL WITH CHANGING
TRAINING SET SIZE
The learning curve performs cross-validation and returns
training and validation scores for different training dataset
sizes. It helps to assess how well the model generalizes to
unseen data as more training examples are used. Figure 16
illustrates the learning curve of the proposed model with
changing training set size. Examining the learning curves in
Fig.16, it is evident that as the number of training samples
increases, the validation accuracy of the proposed model
gradually improves. The training and validation accuracy of
the proposed model demonstrates a high degree of similarity
as the number of training samples increases. Additionally, the
moderate gap between the training and validation accuracy
indicates that the model is not afflicted by either over-fitting
or under-fitting. All three curves indicate a healthy classifier
that accurately predicts bearing fault types.

E. RESEARCH CHALLENGES
The most challenging aspect of bearing defect prediction
is the lengthy and highly technical data acquisition pro-
cess. Researchers currently rely on open-source databases
to pursue effective prediction methods. Another issue is the
quality of the data that is available. Feature extraction from
unprocessed vibration data is also difficult; consequently,
researchers are continually searching for more robust and
efficient feature extraction techniques. Additionally, deploy-
ing a data-driven model for fault detection in a complex
industrial environment is challenging.

Some issues need to be addressed when analyzing bear-
ing data using the proposed model. A number of outliers
must be addressed during the data preprocessing phase. In a
few instances, the dataset was unbalanced because one class
contained fewer data points than the others. Before prepro-
cessing, it is essential to balance each class’s data points.
At the moment of feature extraction, it was also necessary
to modify the input shape of the vgg16 model in order to
accommodate the shape of the raw vibration data. During the
training phase of the random forest classifier, it is also crucial
to optimize the hyperparameter in order to achieve optimal
model output.

F. CURRENT RESEARCH TRENDS AND FUTURE
DIRECTIONS
Current research trends are largely influenced by various
deep learning and machine learning algorithm combina-
tions. Transfer learning is a contemporary trend that employs
pre-trained models that are more robust in feature extrac-
tion. Consequently, contemporary researchers often utilize
conventional machine learningmethods combinedwith trans-
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fer learning to enhance the fault diagnosis procedure and
the model’s robustness. In the future, a more sophisticated,
precise, and effective deep learning-based model will be
developed, which will be utilized by numerous researchers
for bearing defect diagnosis. Furthermore, scholars suggest
adopting specific methodologies for future utilization in this
domain. These methodologies include the application of
semi-supervised learning to maximize the utility of available
labeled data alongside extensive unlabeled datasets.

Additionally, introducing data augmentation techniques,
such as Generative Adversarial Networks (GANs) and
advanced models like Big GAN, is recommended to address
data imbalance and scarcity challenges. Another avenue of
research involves the implementation of few-shot learning
algorithms to achieve robust classification accuracy with
significantly reduced data volumes. Moreover, exploring
transfer learning in diverse contexts within the field is encour-
aged, signifying its potential to enhance various techniques.
Integrating deep learning with cloud computing and the
Internet of Things (IoT) can generate a more intelligent and
effective bearing fault diagnosis model. Incorporating a deep-
learning model into a software package facilitates the end
user’s ability to identify malfunctions in rotating machinery.

VI. CONCLUSION
The present research introduces a novel approach for the auto-
mated identification and categorization of bearing defects.
This approach utilizes the Transfer-learning-based model
VGG16 as the feature extractor and Random Forest as the
classifier. To evaluate the performance of the proposedmodel,
this study is conducted onmultiple fault types operating under
varying load conditions. The raw vibration accelerometer
data is preprocessed for training and testing into a suitable 2D
array format, represented as an RGB image. This proposed
model has several advantages over other models, including
the fact that VGG 16 is trained on a large dataset of ImageNet,
which makes feature extraction of complex datasets very
simple for this model due to its use of pre-trained weights,
which conserves computational power. Pretrained weights
enable this model to extract meaningful information from
complex images without requiring extensive data preprocess-
ing or feature development. This also reduces overfitting and
improves the performance of classifiers on new samples. This
model’s overall accuracy is 99.90%, which is significantly
higher than other models. The random forest model requires
4 seconds for training and 1 second for testing. This is pos-
sible due to feature extraction with vgg16, as the extracted
features are very straightforward for the random forest model
to train and test the data. The duration for training data feature
extraction was 19 seconds, while the duration for testing data
feature extraction was approximately 3 seconds. All graphs
utilized in this study demonstrate that the proposed model
can accurately classify various fault categories. In conclusion,
all results indicate that the proposed method is efficient and
practicable, with promising implementation prospects in
bearing fault diagnosis.
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